Rosenberg MI, Lynch JA, Desplan C. Heads and tails: evolution of antero-posterior patterning in insects. Biochimica Et Biophysica Acta Bba Gene Regul Mech. 2009;1789:333–42.
CAS
Google Scholar
Stahi R, Chipman AD. Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms. Proc Roy Soc B Biological Sci. 2016;283:20161745.
Google Scholar
Chipman AD. Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. BioEssays. 2010;32:60–70.
CAS
PubMed
Google Scholar
Damen WGM. Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn. 2007;236:1379–91.
CAS
PubMed
Google Scholar
Seaver EC. Segmentation: mono- or polyphyletic? Int J Dev Biol. 2003;47:583–95.
PubMed
Google Scholar
Stollewerk A, Schoppmeier M, Damen WGM. Involvement of Notch and Delta genes in spider segmentation. Nature. 2003;423:863–5.
CAS
PubMed
Google Scholar
Anderson DT. Chelicerates. In: Embryology and phylogeny of annelids and arthropods. Pergamon; 1973. p. 365–451.
Yoshikura M. Comparative embryology and phylogeny of Arachnida. Kumamoto J Sci Ser B Sect Biol. 1975;12:71–142.
Google Scholar
Akiyama-Oda Y, Oda H. Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development. 2003;130:1735–47.
CAS
PubMed
Google Scholar
Akiyama-Oda Y, Oda H. Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development. 2006;133:2347–57.
CAS
PubMed
Google Scholar
Akiyama-Oda Y, Oda H. Hedgehog signaling controls segmentation dynamics and diversity via msx1 in a spider embryo. Sci Adv. 2020;6:eaba7261.
CAS
PubMed
Google Scholar
Akiyama-Oda Y, Oda H. Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development. 2010;137:1263–73.
CAS
PubMed
Google Scholar
Barnett AA, Thomas RH. Posterior Hox gene reduction in an arthropod: Ultrabithorax and Abdominal-B are expressed in a single segment in the mite Archegozetes longisetosus. EvoDevo. 2013;4:23–23.
PubMed
PubMed Central
Google Scholar
Barnett AA, Thomas RH. The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evol Dev. 2012;14:383–92.
CAS
PubMed
Google Scholar
Damen WGM, Hausdorf M, Seyfarth E-A, Tautz D. A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci. 1998;95:10665–70.
CAS
PubMed
PubMed Central
Google Scholar
Pechmann M, Schwager EE, Turetzek N, Prpic N-M. Regressive evolution of the arthropod tritocerebral segment linked to functional divergence of the Hox gene labial. Proc Roy Soc B Biol Sci. 2015;282:20151162.
Google Scholar
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, et al. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol. 2017;15:62.
PubMed
PubMed Central
Google Scholar
Telford MJ, Thomas RH. Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci. 1998;95:10671–5.
CAS
PubMed
PubMed Central
Google Scholar
Sharma PP, Schwager EE, Extavour CG, Wheeler WC. Hox gene duplications correlate with posterior heteronomy in scorpions. Proc Biol Sci. 2014;281:20140661–20140661.
PubMed
PubMed Central
Google Scholar
Abzhanov A, Popadić A, Kaufman TC. Chelicerate Hox genes and the homology of arthropod segments. Evol Dev. 1999;1:77–89.
CAS
PubMed
Google Scholar
Holm A. Experimentelle Untersuchungen über die Entwicklung und Entwicklungsphysiologie des Spinnenembryos. Zoologiska Bidrag Fran Uppsala. 1952;29:293–424.
Google Scholar
Pechmann M. Embryonic development and secondary axis induction in the Brazilian white knee tarantula Acanthoscurria geniculata, C. L. Koch, 1841 (Araneae; Mygalomorphae; Theraphosidae). Dev Genes Evolut. 2020;1–20.
Pechmann M, Benton MA, Kenny NJ, Posnien N, Roth S. A novel role for Ets4 in axis specification and cell migration in the spider Parasteatoda tepidariorum. Elife. 2017;6:e27590.
PubMed
PubMed Central
Google Scholar
Ontano AZ, Gainett G, Aharon S, Ballesteros JA, Benavides LR, Corbett KF, et al. Taxonomic sampling and rare genomic changes overcome long-branch attraction in the phylogenetic placement of pseudoscorpions. Mol Biol Evol. 2021;38:2446–67.
CAS
PubMed
PubMed Central
Google Scholar
Gainett G, Sharma PP. Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. EvoDevo. 2020;11:18–18.
PubMed
PubMed Central
Google Scholar
Schwager EE, Schönauer A, Leite DJ, Sharma PP, McGregor AP. Chelicerata. In: Evolutionary developmental biology of invertebrates 3. Evolutionary developmental biology of invertebrates, vol 3; 2015. p. 99–139.
Sharma PP. Chelicerates and the conquest of land: a view of arachnid origins through an evo-devo spyglass. Integr Comp Biol. 2017;57:510–22.
PubMed
Google Scholar
Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG. Distal-less and dachshund pattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestman Phalangium opilio (Opiliones). Evol Dev. 2013;15:228–42.
CAS
PubMed
Google Scholar
Sharma PP, Schwager EE, Extavour CG, Giribet G. Evolution of the chelicera: a dachshund domain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol Dev. 2012;14:522–33.
PubMed
Google Scholar
Sharma PP, Tarazona OA, Lopez DH, Schwager EE, Cohn MJ, Wheeler WC, et al. A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids. Proc Roy Soc B Biol Sci. 2015;282:20150698.
Google Scholar
Garwood RJ, Sharma PP, Dunlop JA, Giribet G. A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development. Curr Biol. 2014;24:1017–23.
CAS
PubMed
Google Scholar
Setton EVW, March LE, Nolan ED, Jones TE, Cho H, Wheeler WC, et al. Expression and function of spineless orthologs correlate with distal deutocerebral appendage morphology across Arthropoda. Dev Biol. 2017;430:224–36.
CAS
PubMed
Google Scholar
Leite DJ, Baudouin-Gonzalez L, Iwasaki-Yokozawa S, Lozano-Fernandez J, Turetzek N, Akiyama-Oda Y, et al. Homeobox gene duplication and divergence in arachnids. Mol Biol Evol. 2018;35:2240–53.
CAS
PubMed
PubMed Central
Google Scholar
Sharma PP, Schwager EE, Extavour CG, Giribet G. Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma. Evol Dev. 2012;14:450–63.
CAS
PubMed
Google Scholar
Sharma PP, Gupta T, Schwager EE, Wheeler WC, Extavour CG. Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. EvoDevo. 2014;5:3.
PubMed
PubMed Central
Google Scholar
March LE, Smaby RM, Setton EVW, Sharma PP. The evolution of selector gene function: expression dynamics and regulatory interactions of tiptop/teashirt across Arthropoda. Evol Dev. 2018;20:219–32.
CAS
PubMed
Google Scholar
Baudouin-Gonzalez L, Schoenauer A, Harper A, Blakeley G, Seiter M, Arif S, et al. The evolution of Sox gene repertoires and regulation of segmentation in arachnids. Mol Biol Evol. 2021. https://doi.org/10.1093/molbev/msab088.
Article
PubMed
PubMed Central
Google Scholar
Gainett G, González VL, Ballesteros JA, Setton EVW, Baker CM, Gargiulo LB, et al. The genome of a daddy-long-legs (Opiliones) illuminates the evolution of arachnid appendages. Proc Roy Soc B. 2021;288:20211168.
CAS
Google Scholar
Setton EVW, Sharma PP. Cooption of an appendage-patterning gene cassette in the head segmentation of arachnids. Proc Natl Acad Sci. 2018;128:3491–510.
Google Scholar
Ballesteros JA, Sharma PP. A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Syst Biol. 2019;33:440–522.
Google Scholar
Kury AB, Mendes AC, Cardoso L, Kury MS, Granado AA, Yoder MJ, et al. WCO-Lite version 1.1: an online nomenclatural catalogue of harvestmen of the world (Arachnida, Opiliones) curated in TaxonWorks. Zootaxa. 2021;4908:447–50.
Google Scholar
Giribet G, Sharma PP. Evolutionary biology of harvestmen (Arachnida, Opiliones). Annu Rev Entomol. 2015;60:157–75.
CAS
PubMed
Google Scholar
Gnaspini P, Hara MR. Defense mechanisms. In: Pinto-da-Rocha R, Machado G, Giribet G, editors. Harvestmen: the biology of Opiliones. Cambridge: Harvard University Press; 2007. p. 374–99.
Google Scholar
Buzatto BA, Machado G. Male dimorphism and alternative reproductive tactics in harvestmen (Arachnida: Opiliones). Behav Proc. 2014;109:2–13.
Google Scholar
Machado G, Macías-Ordónéz R. Reproduction. In: Pinto-da-Rocha R, Machado G, Giribet G, editors. Harvestmen: the biology of Opiliones. Cambridge: Harvard University Press; 2007.
Google Scholar
Gainett G, Michalik P, Müller CHG, Giribet G, Talarico G, Willemart RH. Putative thermo-/hygroreceptive tarsal sensilla on the sensory legs of an armored harvestman (Arachnida, Opiliones). Zool Anz. 2017;270:81–97.
Google Scholar
Gainett G, Michalik P, Müller CHG, Giribet G, Talarico G, Willemart RH. Ultrastructure of chemoreceptive tarsal sensilla in an armored harvestman and evidence of olfaction across Laniatores (Arachnida, Opiliones). Arthropod Struct Dev. 2017;46:178–95.
PubMed
Google Scholar
Willemart RH, Farine J-P, Gnaspini P. Sensory biology of Phalangida harvestmen (Arachnida, Opiliones): a review, with new morphological data on 18 species. Acta Zoologica. 2009;90:209–27.
Google Scholar
Holm A. On the development of Opilio parietinus Deg. Zoologiska Bidrag Fran Uppsala; 1947; p. 1–17.
Juberthie C. Recherches sur la Biologie des Opilions. 1964.
Juberthie C. Les phases du développement embryonnaire et leurs relations avec la température et l’humidité chez un Opilion Palpatores. C R Biol. 1961;252:2144–2142.
Google Scholar
Moritz M. Zur Embryonalentwicklung der Phalangiiden (Opiliones, Palpatores) unter besonder Berücksichtigung der äußeren Morphologie, der Bildung des Mitteldarmes und der Genitalanlage. Zool Jahrb Abt Anat Ontog Tiere. 1957;76:331–70.
Google Scholar
Moritz M. Zur Embryonalentwicklungs der Phalangiiden (Opiliones; Palpatores) II. Die Anlage und Entwicklung der Coxaldrüse bei Phalangium opilio L.). Zool Jahrb Abt Anat Ontog Tiere. 1959;77:229–40.
Google Scholar
Muñoz-Cuevas A. Etude du développement embryonnaire de Pachylus quinamavidensis (Arachnides, Opilions, Gonyleptidae). Bulletin du Muséum national d’histoire naturelle. 1971;6:1238–50.
Google Scholar
Gnaspini P. Development. In: Pinto-da-Rocha R, Machado G, Giribet G, editors. Harvestmen: the biology of Opiliones. Cambridge: Harvard University Press; 2007.
Google Scholar
Mittmann B, Wolff C. Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol. 2012;222:189–216.
PubMed
Google Scholar
Wolff C, Hilbrant M. The embryonic development of the central American wandering spider Cupiennius salei. Front Zool. 2011;8:15–15.
PubMed
PubMed Central
Google Scholar
Winkler D. Die Entwicklung Der Äusseren Körpergestalt bei Den Phalangiidae (Opiliones). Mitt Zool Mus Berl. 1957;33:355–89.
Google Scholar
Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, et al. Expression of engrailed proteins in arthropods, annelids, and chordates. Cell. 1989;58:955–68.
CAS
PubMed
Google Scholar
Faussek V. Zur Anatomie und Embryologie der Phalangiden. Trav Soc Imp Natur St Pétersb. 1891;2.
Schimkewitsch W. Ueber die Entwicklung des Darmkanals bei einigen Arachniden. Trav Soc Imp Natur St Pétersb. 1898;2:25.
Google Scholar
Edgar A, Bates C, Larkin K, Black S. Gastrulation occurs in multiple phases at two distinct sites in Latrodectus and Cheiracanthium spiders. EvoDevo. 2015;6:33.
PubMed
PubMed Central
Google Scholar
Schwager EE, Meng Y, Extavour CG. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum. Dev Biol. 2015;402:276–90.
CAS
PubMed
Google Scholar
Oda H, Nishimura O, Hirao Y, Tarui H, Agata K, Akiyama-Oda Y. Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development. 2007;134:2195–205.
CAS
PubMed
Google Scholar
Paese CLB, Schoenauer A, Leite DJ, Russell S, McGregor AP. A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider. Elife. 2018;7:1735.
Google Scholar
Schönauer A, Paese CLB, Hilbrant M, Leite DJ, Schwager EE, Feitosa NM, et al. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum. Development. 2016;143:2455–63.
PubMed
Google Scholar
Brena C, Akam M. The embryonic development of the centipede Strigamia maritima. Dev Biol. 2012;363:290–307.
CAS
PubMed
Google Scholar
Schwager EE, Pechmann M, Feitosa NM, McGregor AP, Damen WGM. hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum. Curr Biol. 2009;19:1333–40.
CAS
PubMed
Google Scholar
Doeffinger C, Hartenstein V, Stollewerk A. Compartmentalisation of the precheliceral neuroectoderm in the spider Cupiennius salei: Development of the arcuate body, the optic ganglia and the mushroom body. J Comp Neurol. 2010;:NA-NA.
Stollewerk A, Weller M, Tautz D. Neurogenesis in the spider Cupiennius salei. Development. 2001;128:2673–88.
CAS
PubMed
Google Scholar
Stollewerk A, Tautz D, Weller M. Neurogenesis in the spider: new insights from comparative analysis of morphological processes and gene expression patterns. Arthropod Struct Dev. 2003;32:5–16.
PubMed
Google Scholar
Stollewerk A. Recruitment of cell groups through Delta/Notch signalling during spider neurogenesis. Development. 2002;129:5339–48.
CAS
PubMed
Google Scholar
Dove H, Stollewerk A. Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects. Development. 2003;130:2161–71.
CAS
PubMed
Google Scholar
Kreissl S, Uber A, Harzsch S. Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain. Dev Genes Evol. 2008;218:253–65.
CAS
PubMed
PubMed Central
Google Scholar
Mittmann B, Scholtz G. Distal-less expression in embryos of Limulus polyphemus (Chelicerata, Xiphosura) and Lepisma saccharina (Insecta, Zygentoma) suggests a role in the development of mechanoreceptors, chemoreceptors, and the CNS. Dev Genes Evol. 2001;211:232–43.
CAS
PubMed
Google Scholar
Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, et al. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol Biol Evol. 2014;31:2963–84.
CAS
PubMed
Google Scholar
Lozano-Fernandez J, Tanner AR, Giacomelli M, Carton R, Vinther J, Edgecombe GD, et al. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nat Commun. 2019;10:2295–8.
PubMed
PubMed Central
Google Scholar
Sharma PP, Santiago MA, González-Santillán E, Monod L, Wheeler WC. Evidence of duplicated Hox genes in the most recent common ancestor of extant scorpions. Evol Dev. 2015;17:347–55.
CAS
PubMed
Google Scholar
Nolan ED, López CES, Sharma PP. Developmental gene expression as a phylogenetic data class: support for the monophyly of Arachnopulmonata. Dev Genes Evol. 2020;230:137–53.
CAS
PubMed
Google Scholar
Santos VT, Ribeiro L, Fraga A, Barros CM, Campos E, Moraes J, et al. The embryogenesis of the Tick Rhipicephalus (Boophilus) microplus: the establishment of a new chelicerate model system. Genesis. 2013;51:803–18.
CAS
PubMed
Google Scholar
Battelle B-A, Ryan JF, Kempler KE, Saraf SR, Marten CE, Warren WC, et al. Opsin repertoire and expression patterns in horseshoe crabs: evidence from the genome of limulus polyphemus (Arthropoda: Chelicerata). Genome Biol Evol. 2016;8:1571–89.
CAS
PubMed
PubMed Central
Google Scholar
Kenny NJ, Chan KW, Nong W, Qu Z, Maeso I, Yip HY, et al. Ancestral whole-genome duplication in the marine chelicerate horseshoe crabs. Heredity. 2015;116:190–9.
PubMed
PubMed Central
Google Scholar
Nossa CW, Havlak P, Yue J-X, Lv J, Vincent KY, Brockmann HJ, et al. Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. GigaSci. 2014;3:708–21.
Google Scholar
Shingate P, Ravi V, Prasad A, Tay B-H, Garg KM, Chattopadhyay B, et al. Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution. Nat Commun. 2020;11:1–13.
Google Scholar
Shingate P, Ravi V, Prasad A, Tay B-H, Venkatesh B. Chromosome-level genome assembly of the coastal horseshoe crab (Tachypleus gigas). Mol Ecol Resour. 2020;20:1748–60.
CAS
PubMed
Google Scholar
Grbić M, Leeuwen TV, Clark RM, Rombauts S, Rouzé P, Grbić V, et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature. 2011;479:487–92.
PubMed
PubMed Central
Google Scholar
Khila A, Grbić M. Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev Genes Evol. 2007;217:241–51.
CAS
Google Scholar
Dermauw W, Jonckheere W, Riga M, Livadaras I, Vontas J, Leeuwen TV. Targeted mutagenesis using CRISPR-Cas9 in the chelicerate herbivore Tetranychus urticae. Insect Biochem Mol Biol. 2020;120:103347.
CAS
PubMed
Google Scholar
Sharma A, Pham MN, Reyes JB, Chana R, Yim WC, Heu CC, et al. Cas9-mediated gene-editing in the black-legged tick, Ixodes Scapularis, by embryo injection and ReMOT control. Ssrn Electron J. 2020. https://doi.org/10.2139/ssrn.3691041.
Article
Google Scholar
Sharma PP. Chelicerates. Curr Biol. 2018;28:R774-8.
CAS
PubMed
Google Scholar