Rosa R, Seibel BA: Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci. 2008, 105: 20776-20780.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pörtner H-O, Webber DM, Boutilier RG, O‘Dor RK: Acid–base regulation in exercising squid (Illex illecebrosus, Loligo pealei). Am J Physiol Regul Integr Comp Physiol. 1991, 261: R239-R246.
Google Scholar
Gutowska MA, Melzner F, Langenbuch M, Bock C, Claireaux G, Pörtner H-O: Acid–base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. J Comp Physiol B. 2010, 180: 323-335.
Article
PubMed
CAS
Google Scholar
Pörtner HO: Coordination of metabolism, acid–base regulation and haemocyanin function in cephalopods. Mar Fresh Behav Physiol. 1994, 25: 131-148.
Article
Google Scholar
Brix O, Lykkeboe G, Johansen K: The significance of the linkage between the Bohr and Haldane effects in cephalopod bloods. Respir Physiol. 1981, 44: 177-186.
Article
PubMed
CAS
Google Scholar
Pörtner H-O: An analysis of the effects of pH on oxygen binding by squid (Illex illecebrosus, Loligo pealei) haemocyanin. J Exp Biol. 1990, 150: 407-424.
Google Scholar
Pörtner HO, Langenbuch M, Reipschläger A: Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr. 2004, 60: 705-718.
Article
Google Scholar
Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner H-O: Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?. Biogeosciences. 2009, 6: 2313-2331.
Article
CAS
Google Scholar
Gutowska MA, Pörtner H-O, Melzner F: Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Mar Ecol Prog Ser. 2008, 373: 303-309.
Article
CAS
Google Scholar
Hu MY, Lee J-R, Lin L-Y, Shih T-H, Stumpp M, Lee M-F, Hwang P-P, Tseng Y-C: Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos. Front Zool. 2013, 10: 51-67.
Article
PubMed
PubMed Central
Google Scholar
Schipp R, Mollenhauer S, Boletzky S: Electron microscopical and histochemical studies of differentiation and function of the cephalopod gill (Sepia officinalis L.). Zoomorph. 1979, 93: 193-207.
Article
Google Scholar
Hu MY, Tseng Y-C, Stumpp M, Gutowska MA, Kiko R, Lucassen M, Melzner F: Elevated seawater p CO2 differentially affects branchial acid–base transporters over the course of development in the cephalopod Sepia officinalis. Am J Physiol Regul Integr Comp Physiol. 2011, 300: R1100-R1114.
Article
PubMed
CAS
Google Scholar
Hu MY, Sucré E, Charmantier-Daures M, Charmantier G, Lucassen M, Melzner F: Localization of ion regulatory epithelia in embryos and hatchlings of two cephalopods. Cell Tiss Res. 2010, 441: 571-583.
Article
Google Scholar
Donaubauer HH: Sodium- and potassium-activated adenosine triphosphatase in the excretory organs of Sepia officinalis (Cephalopoda). Mar Biol. 1981, 63: 143-150.
Article
CAS
Google Scholar
Perry SF, Gilmour KM: Acid–base balance and CO2 excretion in fish: Unanswered questions and emerging models. Respir Physiol Neurobiol. 2006, 154: 199-215.
Article
PubMed
CAS
Google Scholar
Hwang PP, Perry SF: Ionic And Acid–Base Regulation. Zebrafish. Edited by: Perry SF, Ekker M, Farrel AP, Brauner CJ. 2010, Elsevier, London, 311-344.
Chapter
Google Scholar
Evans DH, Piermarini PM, Choe KP: The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiol Rev. 2005, 85: 97-177.
Article
PubMed
CAS
Google Scholar
Henry RP, Lucu C, Onken H, Weihrauch D: Multiple functions of the crustacean gill: osmotic/ionic reglation, acid–base balance, ammonia excretion, and bioaccumulation of toxic metals.Front Physiol 2012, 3:431.,
Tresguerres M, Parks S, Sabatini SE, Goss GG, Luquet CM: Regulation of ion transport by pH and [HCO3-] in isolated gills of the crab Neohelice (Chasmagnathus) granulata. Am J Physiol Regul Integr Comp Physiol. 2008, 294 (3): R1033-R1043.
Article
PubMed
CAS
Google Scholar
Cameron JN: Effects of hypercapnia on blood acid–base status, NaCl fluxes and trans-gill potential in freshwater blue crabs, Callinectes sapidus. J Comp Physiol B. 1978, 123: 137-141.
Article
CAS
Google Scholar
Weihrauch D, Ziegler A, Siebers D, Towle DW: Active ammonia excretion across the gills of the green shore crab Carcinus maenas: participation of Na+/k+-ATPase, V-type H+-ATPase and functional microtubules. J Exp Biol. 2002, 205: 2765-2775.
PubMed
CAS
Google Scholar
Martin M, Fehsenfeld S, Sourial MM, Weihrauch D: Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister. Comp Biochem Physiol A. 2011, 160: 267-277.
Article
CAS
Google Scholar
Stumpp M, Trübenbach K, Brennecke D, Hu MY, Melzner F: Resource allocation and extracellular acid–base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aqua Toxicol. 2012, 110–111: 194-207.
Article
Google Scholar
Thomsen J, Melzner F: Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol. 2010, 157: 2667-2676.
Article
Google Scholar
Fehsenfeld S, Weihrauch D: Differential acid–base regulation in various gills of the green crab Carcinus maenas: effects of elevated environmental pCO2.Comp Biochem Physiol A 2012, doi: 10.1016/j.cbpa.2012.09.016.,
Hu MY, Casties I, Stumpp M, Ortega-Martinez O, Dupont S: Energy metabolism and regeneration impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis.J Exp Biol doi:10.1242/jeb.100024.,
Wu S-C, Horng J-L, Liu S-T, Hwang PP, Wen Z-H, Lin C-S, Lin LY: Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol. 2010, 298: C237-C250.
Article
PubMed
CAS
Google Scholar
Nawata CM, Hirose S, Nakada T, Wood CM, Katoh A: Rh glycoprotein expression is modulated in pufferfish (Takifugu rubripes) during high environmental ammonia exposure. J Exp Biol. 2010, 213: 3150-3160.
Article
PubMed
CAS
Google Scholar
Wagner CA, Devuyst O, Belge H, Bourgeois S, Houillier P: The rhesus protein Rhcg: a new perspective in ammonium transport and distal urinary acidification. Kidney Int. 2011, 79: 154-161.
Article
PubMed
CAS
Google Scholar
Trübenbach K, Pegado MR, Seibel BA, Rosa R: Ventilation rates and activity levels of juvenile jumbo squid under metabolic suppression in the oxygen minimum zone. J Exp Biol. 2013, 216: 359-368.
Article
PubMed
Google Scholar
Webber DM, O´Dor RK: Monitoring the metabolic rate and activity of free-swimming squid with telemetered jet pressure. J Exp Biol. 1986, 126: 205-224.
Google Scholar
Boucher-Rodoni R, Mangold K: Comparative aspects of ammonia excretion in cephalopods. Malacologica. 1988, 29: 145-151.
Google Scholar
Boucher-Rodoni R, Mangold K: Respiration and nitrogen excretion by the squid Loligo forbesi. Mar Biol. 1989, 103: 333-338.
Article
Google Scholar
O‘Dor RK: Telemetered cephalopod energetics: swimming, soaring, and blimping. Integr Comp Biol. 2002, 42: 1065-1070.
Article
PubMed
Google Scholar
O‘Dor RK, Webber DM: Invertebrate athletes: trade-offs between transport efficiency and power density in cephalopod evolution. J Exp Biol. 1991, 160: 93-112.
Google Scholar
Heisler N: Acid–Base Regulation In Animals. 1986, Elsevier Biomedical Press, Amsterdam
Google Scholar
Claiborne JB, Evans DH: Acid–base balance and ion transfers in the spiny dogfish (Squalus acanthias) during hypercapnia - a role for ammonia excretion. J Exp Zool. 1992, 261: 9-17.
Article
CAS
Google Scholar
Toews DP, Holeton GF, Heisler N: Regulation of the acid–base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol. 1983, 107: 9-20.
PubMed
CAS
Google Scholar
Lykkeboe G, Johansen K: A cephalopod approach to rethinking about the importance of the Bohr and Haldane effects. Pac Sci. 1982, 36: 305-313.
Google Scholar
Heisler N: Acid–Base Regulation In Fishes. 1984, Academic, New York
Book
Google Scholar
Cameron JN: Acid–Base Equilibria In Invertebrates. Acid–Base Regulation In Animals. Edited by: Heisler N. 1986, Elsevier Biomedical Press, Amsterdam
Google Scholar
Hwang PP, Lee TH, Lin LY: Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol. 2011, 301 (1): R28-R47.
Article
PubMed
CAS
Google Scholar
Charmantier G, Charmantier-Daures M: Ontogeny of osmoregulation in crustaceans: the embryonic phase. Am Zool. 2001, 41: 1078-1089.
Google Scholar
Watanabe S, Niida M, Maruyama T, Kaneko T: Na+/H + exchanger isoform 3 expressed in apical membrane of gill mitochondrion-rich cells in Mozambique tilapia Oreochromis mossambicus. Fish Sci. 2008, 74: 813-821.
Article
CAS
Google Scholar
Bishop JM, Verlander JW, Lee H-W, Nelson RD, Weiner AJ, Handlogten ME, Weiner ID: Role of Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion. Am J Physiol Renal Physiol. 2010, 299: F1065-F1077.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee YC, Yan JJ, Cruz SA LHJ, Hwang PP: Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. Am J Physiol Regul Integr Comp Physiol. 2011, 300: C295-C307.
Article
CAS
Google Scholar
Gilmour KM, Perry SF: Carbonic anhydrase and acid–base regulation in fish. J Exp Biol. 2009, 212: 1647-1661.
Article
PubMed
CAS
Google Scholar
Gilmour KM, Bayaa M, Kenny L, McNeill B, Perry SF: Type IV carbonic anhydrase is present in the gills of spiny dogfish (Squalus acanthias). Am J Physiol Integr Comp Physiol. 2007, 292: R556-R567.
Article
CAS
Google Scholar
Hu MY, Tseng Y-C, Lin L-Y, Chen P-Y, Charmantier-Daures M, Hwang PP, Melzner F: New insights into ion regulation of cephalopod molluscs: a role of epidermal ionocytes in acid–base regulation during embryogenesis. Am J Physiol Regul Integr Comp Physiol. 2011, 301: 1700-1709.
Article
Google Scholar
Wagner CA, Finberg KE, Breton S, Marshanski V, Brown D, Geibel JP: Renal vacuolar H+-ATPase. Physiol Rev. 2003, 84: 1263-1314.
Article
Google Scholar
Tresguerres M, Parks SK, Katoh F, Goss GG: Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion. J Exp Biol. 2006, 209: 599-609.
Article
PubMed
CAS
Google Scholar
Piermarini PM, Evans DH: Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na+/K+-ATPase. J Exp Biol. 2001, 204: 3251-3259.
PubMed
CAS
Google Scholar
Weihrauch D, Chan AC, Meyer H, Döring C, Sourial MM, O´Donnell MJ: Ammonia excetion in the freshwater planarian Schmidtea mediterranea.J Exp Biol 2012, doi:10.1242/jeb.067942. J Exp Biol 2012, 215:3242–3253.,
Potts WTW: Ammonia excretion in Octopus dolfeini. Comp Biochem Physiol. 1965, 14: 339-355.
Article
PubMed
CAS
Google Scholar
Lykkeboe G, Brix O, Johansen K: Oxygen-linked CO2 binding independent of pH in cephalopod blood. Nature. 1980, 287: 330-331.
Article
PubMed
CAS
Google Scholar
Brix O, Bardgard A, Cau A, Colosimo SGC, Giardina B: Oxygen-binding properties of cephalopod blood with special reference to environmental temperatures and ecological distribution. J Exp Zool. 1989, 252: 34-42.
Article
Google Scholar
Voight JR, Pörtner HO, O‘Dor RK: A review of ammonia-mediated buoyancy in squids (Cephalopoda: Teuthoidea). Mar Fresh Behav Physiol. 1994, 25: 193-203.
Article
Google Scholar
Wright PA, Wood CM: A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. J Exp Biol. 2009, 212: 2303-2312.
Article
PubMed
CAS
Google Scholar
Lewis E, Wallace DWR: Program developed for CO2 system calculations. 1998, Oak Ridge National Laboratory ORNL/CDIAC-105, Oak Ridge
Book
Google Scholar
Mehrbach C, Culberso C, Hawley J, Pytkowic R: Measurement of apparent dissociation constants of carbonic acid in seawter at atmospheric pressure. Limnol Oceanogr. 1973, 18: 897-907.
Article
CAS
Google Scholar
Dickson A, Millero F: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res A. 1987, 34: 1733-1743.
Article
CAS
Google Scholar
Lipiński MR: Changes in pH in the caecum of Loligo vulgaris reynaudii during digestion. S Afr J Mar Sci. 2010, 9 (1): 43-51.
Article
Google Scholar
Katsanevakis S, Protopapas N, Miliou H, Verriopoulos G: Effect of temperature on specific dynamic action in the common octopus Octopus vulgaris (Cephalopoda). Mar Biol. 2005, 146: 733-738.
Article
Google Scholar
Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ: A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci. 1999, 56 (10): 1801-1808.
Article
CAS
Google Scholar
Körner S, Das SK, Veenstra S, Vermaat JE: The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba. Aquat Bot. 2001, 71: 71-78.
Article
Google Scholar
Weiss RF: Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem. 1974, 2: 203-215.
Article
CAS
Google Scholar
Lämmli UK: Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature. 1970, 227: 680-685.
Article
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012, 9: 671-675.
Article
PubMed
CAS
Google Scholar
Schwartz AA, Allen JC, Harigaya S: Possible involvement of cardiac Na+/K+-adenosine triphosphatase in the mechanism of action of cardiac glycosides. J Pharmacol Exp Ther. 1969, 168: 31-41.
PubMed
CAS
Google Scholar
Morris JF, Ismail-Beigi F, Jr BVP, Gati I, Lichtstein D: Ouabain-sensitive Na+, K(+)-ATPase activity in toad brain. Comp Biochem Physiol A. 1997, 118: 599-606.
Article
CAS
Google Scholar
Dröse S, Altendorf K: Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp Biol. 1997, 200: 1-8.
PubMed
Google Scholar