Lofts B. Physiology of the Amphibia. New York: Academic Press; 1976.
Google Scholar
Hanken J. Larvae in Amphibian Development and Evolution. In: Hall BK, Wake MH, editors. Orig Evol Larval Forms. 1st ed. San Diego: Academic Press; 1999. p. 61–108.
Chapter
Google Scholar
Vitt LJ, Caldwell JP. Anatomy of Amphibians and Reptiles. Herpetol An Introd Biol Amphib Reptil. Fourth: Academic Press; 2014. p. 35–82.
Fabre A-C, Bardua C, Bon M, Clavel J, Felice RN, Streicher JW, et al. Metamorphosis shapes cranial diversity and rate of evolution in salamanders. Nat Ecol Evol. 2020;4:1129–40 Nature Publishing Group.
Article
PubMed
Google Scholar
Pierce BA, Smith HM. Neoteny or Paedogenesis? J Herpetol. 1979;13:119–21.
Article
Google Scholar
Semlitsch RD. Paedomorphosis in Ambystoma talpoideum: Effects of Density, Food, and Pond Drying. Ecology. 1987;68:994–1002.
Article
Google Scholar
Hayes TB. Hormonal mechanisms as potential constraints on evolution: Examples from the anura. Am Zool. 1997;37:482–90.
Article
CAS
Google Scholar
Gould SJ. Ontogeny and phylogeny. 1st ed. Cambridge: The Belknap Press of Harvard University Press; 1977.
Google Scholar
Denoël M, Poncin P. The effect of food on growth and metamorphosis of paedomorphs in Triturus alpestris apuanus. Arch für Hydrobiol. 2001;152:661–70.
Article
Google Scholar
Wiens JJ, Bonett RM, Chippindale PT. Ontogeny Discombobulates Phylogeny: Paedomorphosis and Higher-Level Salamander Relationships. Syst Biol. 2005;54:91–110.
Article
PubMed
Google Scholar
Matsuda R. The evolutionary process in talitrid amphipods and salamanders in changing environments, with a discussion of “genetic assimilation” and some other evolutionary concepts. Can J Zool. 1982;60:733–49.
Article
CAS
Google Scholar
Lauder GV, Shaffer HB. Functional design of the feeding mechanism in lower vertebrates: unidirectional and bidirectional flow systems in the tiger salamander. Zool J Linn Soc. 1986;88:277–90. Oxford University Press.
Article
Google Scholar
Reilly S. The ontogeny of aquatic feeding behavior in Salamandra salamandra: stereotypy and isometry in feeding kinematics. J Exp Biol. 1995;198:701–8. The Company of Biologists Ltd.
CAS
PubMed
Google Scholar
Reilly SM, Lauder GV. Ontogeny of aquatic feeding performance in the eastern newt, Notophthalmus viridescens (Salamandridae). Copeia. 1988:87–91. JSTOR.
Heiss E, Grell J. Same but different: aquatic prey capture in paedomorphic and metamorphic Alpine newts. Zool Lett. 2019;5:1–12 Zoological Letters.
Article
Google Scholar
Shaffer HB, Lauder GV. The ontogeny of functional design: metamorphosis of feeding behaviour in the tiger salamander (Ambystoma tigrinum). J Zool. 1988;216:437–54. Wiley Online Library.
Article
Google Scholar
Reilly SM, Lauder GV. Prey transport in the tiger salamander:quantitative electromography and muscle function in tetrapods. J Exp Zool. 1991;260:1–17.
Article
Google Scholar
Gillis GB, Lauder GV. Aquatic Prey Transport and the Comparative Kinematics of Ambystoma tigrinum Feeding Behaviors. J Exp Biol. 1994;187:159–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9317549.
CAS
PubMed
Google Scholar
Reilly SM, Lauder GV. The Evolution of Tetrapod Feeding Behavior: Kinematic Homologies in Prey Transport. Evolution (N Y). 1990;44:1542–57. Available from: http://www.jstor.org/stable/2409336?origin=crossref%5Cnpapers3://publication/doi/10.2307/2409336.
Google Scholar
Reilly SM. The Metamorphosis of Feeding Kinematics in Salamandra salamandra and the Evolution of Terrestrial Feeding Behavior. J Exp Biol. 1996;199:1219–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9319073.
CAS
PubMed
Google Scholar
Heiss E, Schwarz D, Konow N. Chewing or not? Intraoral food processing in a salamandrid newt. J Exp Biol. 2019;222:12. The Company of Biologists Ltd.
Article
Google Scholar
Schwenk K, Wake DB. Prey processing in Leurognathus marmoratus and the evolution of form and function in desmognathine salamanders (Plethodontidae). Biol J Linn Soc. 1993;49:141–62.
Article
Google Scholar
Schwarz D, Konow N, Roba YT, Heiss E. A salamander that chews using complex, three-dimensional mandible movements. J Exp Biol. 2020;223:12. The Company of Biologists Ltd.
Google Scholar
Konow N, Herrel A, Ross CF, Williams SH, German RZ, Sanford CPJ, et al. Evolution of Muscle Activity Patterns Driving Motions of the Jaw and Hyoid during Chewing in Gnathostomes. Integr Comp Biol. 2011;51:235–46.
Article
PubMed
PubMed Central
Google Scholar
Ross CF, Baden AL, Georgi J, Herrel A, Metzger KA, Reed DA, et al. Chewing variation in lepidosaurs and primates. J Exp Biol. 2010;213:572–84. Available from: http://jeb.biologists.org/cgi/doi/10.1242/jeb.036822.
Article
CAS
PubMed
Google Scholar
Greven H, Van De Kamp T, Rolo S, Baumbach T, Clemen G. Vomeropterygopalatina in larval Ichthyosaura alpestris apuanus (Amphibia: Urodela) and comments on the formation of the definite vomer in the Salamandridae. Vertebr Zool. 2017;67:179–96.
Google Scholar
Clemen G, Greven H. Remodelling of the palate: an additional tool to classify larval salamandrids through metamorphosis. Vertebr Zool. 2013;63:207–16.
Google Scholar
Regal PJ. Feeding Specializations and the Classification of Terrestrial Salamanders. Soc Study Evol. 1966;20:392–407.
Google Scholar
Clemen G, Greven H. The buccal cavity of larval and metamorphosed Salamandra salamandra: Structural and developmental aspects. Mertensiella. 1994;4:9.
Google Scholar
Reilly SM. Ontogeny of the Hyobranchial apparatus in the salamanders Ambystoma talpoideum (Ambystomatidae) and Notophthalmus viridescens (Salamandridae): the ecological morphology. J Morphol. 1987;214:205–14. Available from: http://onlinelibrary.wiley.com/doi/10.1002/jmor.1051910210/abstract.
Article
Google Scholar
Djorović A, Kalezić ML. Paedogenesis in European Newts (Triturus: Salamandridae): Cranial Morphology During Ontogeny. J Morphol. 2000;243:127–39.
Article
PubMed
Google Scholar
Noble GK. Further observations on the life-history of the newt, Triturus viridescens. Am Museum Novit. 1929;348:1–22. New York City: American Museum of Natural History.
Google Scholar
Findeis EK, Bemis WE. Functional morphology of tongue projection in Taricha torosa (Urodela: Salamandridae). Zool J Linn Soc. 1990;99:129–57. Wiley Online Library.
Article
Google Scholar
Rose CS. The developmental morphology of salamander skulls. In: Heatwole H, Davies M, editors. Amphib Biol. Sydney: Surrey Beatty & Sons Pty Ltd; 2003. p. 1684–781.
Google Scholar
Reilly SM, Lauder GV. Kinetics of tongue projection in Ambystoma tigrinum: quantitative kinematics, muscle function, and evolutionary hypotheses. J Morphol. 1989;199:223–43. Wiley Online Library.
Article
PubMed
Google Scholar
Reilly SM. Ontogeny of cranial ossification in the eastern newt, Notophthalmus viridescens (Caudata: Salamandridae), and its relationship to metamorphosis and neoteny. J Morphol. 1986;188:315–26.
Article
CAS
PubMed
Google Scholar
Schoch RR, Pogoda P, Kupfer A. The impact of metamorphosis on the cranial osteology of giant salamanders of the genus Dicamptodon. Acta Zool. 2019; Wiley Online Library.
Ivanović A, Cvijanović M, Denoël M, Slijepčević M, Kalezić ML. Facultative paedomorphosis and the pattern of intra-and interspecific variation in cranial skeleton: lessons from European newts (Ichthyosaura alpestris and Lissotriton vulgaris). Zoomorphology. 2014;133:99–109. Springer.
Article
Google Scholar
Ziermann JM, Diogo R. Cranial muscle development in the model organism Ambystoma mexicanum: Implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny. Anat Rec. 2013;296:1031–48.
Article
Google Scholar
Lauder GV, Reilly SM. Metamorphosis of the feeding mechanism in tiger salamanders (Ambystoma tigrinum): the ontogeny of cranial muscle mass. J Zool Lond. 1990;222:59–74 Wiley. Online Library.
Lauder GV, Reilly SM. Amphibian Feeding Behavior: Comparative Biomechanics and Evolution. Adv Comp Environ Physiol 18 Biomech Feed Vertebr. 1994:163–95 1st ed. Berlin: Springer-Verlag Berlin Heidelberg GmbH. Available from: http://link.springer.com/10.1007/978-3-642-57906-6_7%5Cnpapers3://publication/doi/10.1007/978-3-642-57906-6_7.
Schoch RR. The evolution of metamorphosis in temnospondyls. Lethaia. 2002;35:309–27. Wiley Online Library.
Article
Google Scholar
Fortuny J, Marcé‐Nogué J, De Esteban‐Trivigno S, Gil L, Galobart À. Temnospondyli bite club: ecomorphological patterns of the most diverse group of early tetrapods. J Evol Biol. 2011;24:2040–54. Wiley Online Library.
Article
CAS
PubMed
Google Scholar
Schoch RR. Evolution of life cycles in early amphibians. Annu Rev Earth Planet Sci. 2009;37:135–62. Annual Reviews.
Article
CAS
Google Scholar
Witzmann F. Phylogenetic patterns of character evolution in the hyobranchial apparatus of early tetrapods; 2013. p. 145–67.
Google Scholar
Özeti N, Wake DB. The morphology and evolution of the tongue and associated structures in salamanders and newts (family Salamandridae). Am Soc Ichthyol Herpetol. 1969;1969:91–123 JSTOR.
Google Scholar
Heiss E, Handschuh S, Aerts P, Van Wassenbergh S. Musculoskeletal architecture of the prey capture apparatus in salamandrid newts with multiphasic lifestyle: does anatomy change during the seasonal habitat switches? J Anat. 2016;228:757–70. Wiley Online Library.
Article
PubMed
PubMed Central
Google Scholar
Bauer WJ. A contribution to the morphology of visceral jaw‐opening muscles of urodeles (Amphibia: Caudata). J Morphol. 1997;233:77–97. Wiley Online Library.
Article
PubMed
Google Scholar
Smith GM. The detailed anatomy of Triturus torosus: The University of British Columbia; 1926.
Marconi M, Simonetta AM. The Morphology of the Skull in Neotenic and normal Triturus vulgaris meridionale (Boulenger)(Amphibia Caudata Salamandridae). Monit Zool Ital J Zool. 1988;22:365–96. Taylor & Francis.
Google Scholar
Tarapani H. Zur Entwicklungsgeschichte des Hyobranchialskelettes von Salamandra atra Laur. und Triton alpestris Laur: [Jena]: Gustav Fischer Jena; 1909.
Heiss E, Handschuh S, Aerts P, Van Wassenbergh S. A tongue for all seasons: extreme phenotypic flexibility in salamandrid newts. Sci Rep. 2017;7:1–10. Nature Publishing Group.
Article
CAS
Google Scholar
Kleinteich T, Herzen J, Beckmann F, Matsui M, Haas A. Anatomy, Function, and Evolution of Jaw and Hyobranchial Muscles in Cryptobranchoid Salamander Larvae. J Morphol. 2014;275:230–46.
Article
PubMed
Google Scholar
Ziermann JM. Diversity of Heads, Jaws, and Cephalic Muscles in Amphibians. Heads, Jaws, and Muscles. Springer; 2019. p. 143–70.
Wainwright PC, Mehta RS, Higham TE. Stereotypy, flexibility and coordination: key concepts in behavioral functional morphology. J Exp Biol. 2008;211:3523–8. Available from: http://jeb.biologists.org/cgi/doi/10.1242/jeb.007187.
Article
PubMed
Google Scholar
Koc D, Dogan A, Bek B. Bite force and influential factors on bite force measurements: a literature review. Eur J Dent. 2010;4:223–32. Thieme Medical and Scientific Publishers Private Ltd.
Article
PubMed
PubMed Central
Google Scholar
Fortuny J, Marce-Nogue J, Heiss E, Sanchez M, Gil L, Galobart À. 3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese giant salamander Andrias davidianus (Amphibia: Urodela). PLoS One. 2015;10. Public Library of Science.
Throckmorton GS. Oral food processing in two herbivorous lizards, Iguana iguana (Iguanidae) and Uromastix aegyptius (Agarnidae). J Morphol. 1976;148:363–90.
Article
CAS
PubMed
Google Scholar
Schwenk K. An Introduction to Tetrapod Feeding. Feed Form, Funct Evol Tetrapod Vertebr. 1st ed. San Diego: Academic Press; 2000. p. 21–61.
Google Scholar
Reilly SM, McBrayer LD, White TD. Prey processing in amniotes: Biomechanical and behavioral patterns of food reduction. Comp Biochem Physiol - A Mol Integr Physiol. 2001;128:397–415. Elsevier.
Article
CAS
PubMed
Google Scholar
Lucas PW, Luke DA. Chewing it over: basic principles of food breakdown. Food Acquis Process primates: Springer; 1984. p. 283–301.
Gintof C, Konow N, Ross CF, Sanford CPJ. Rhythmic chewing with oral jaws in teleost fishes: a comparison with amniotes. J Exp Biol. 2010;213:1868–75. Available from: http://jeb.biologists.org/cgi/doi/10.1242/jeb.041012.
Article
PubMed
Google Scholar
Lautenschlager S, Brassey CA, Button DJ, Barrett PM. Decoupled form and function in disparate herbivorous dinosaur clades. Sci Rep. 2016;6:26495. Nature Publishing Group.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahlberg PE, Clack JA, Blom H. The axial skeleton of the Devonian tetrapod Ichthyostega. 2005;437:137–40.
Clack JA. Gaining ground: the origin and evolution of tetrapods: Indiana University Press; 2012.
Markey MJ, Marshall CR. Terrestrial-style feeding in a very early aquatic tetrapod is supported by evidence from experimental analysis of suture morphology. Proc Natl Acad Sci U S A. 2007;104:7134–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porro LB, Rayfield EJ, Clack JA. Descriptive anatomy and three-dimensional reconstruction of the skull of the early tetrapod Acanthostega gunnari Jarvik, 1952. PLoS One. 2015;10. Public Library of Science.
Heiss E. The Alpine “axolotl”: a remarkable example of phenotypic plasticity in Ichthyosaura alpestris ( Amphibia : Salamandridae ). Salamandra. 2017;53:137–41.
Google Scholar
Sattmann H. Über die Nahrung des Bergmolches, Triturus alpestris (LAURENTI, 1768), in der aquatischen Phase (Caudata: Salamandridae). Herpetozoa. 1989;2:37–49.
Google Scholar
Denoël M, Andreone F. Trophic habits and aquatic microhabitat use in gilled immature, paedomorphic and metamorphic Alpine newts (Triturus alpestris apuanus) in a pond in central Italy. Belgian J Zool. 2003;133:95–102. Société royale zoologique de Belgique.
Google Scholar
Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6:241–52. Taylor & Francis Group.
Article
Google Scholar