- Research
- Open access
- Published:
Proteins from toad’s parotoid macroglands: do they play a role in gland functioning and chemical defence?
Frontiers in Zoology volume 20, Article number: 21 (2023)
Abstract
Background
Parotoid gland secretion of bufonid toads is a rich source of toxic molecules that are used against predators, parasites and pathogens. Bufadienolides and biogenic amines are the principal compounds responsible for toxicity of parotoid secretion. Many toxicological and pharmacological analyses of parotoid secretions have been performed, but little is known about the processes related to poison production and secretion. Therefore, our aim was to investigate protein content in parotoids of the common toad, Bufo bufo, to understand the processes that regulate synthesis and excretion of toxins as well as functioning of parotoid macroglands.
Results
Applying a proteomic approach we identified 162 proteins in the extract from toad’s parotoids that were classified into 11 categories of biological functions. One-third (34.6%) of the identified molecules, including acyl-CoA-binding protein, actin, catalase, calmodulin, and enolases, were involved in cell metabolism. We found many proteins related to cell division and cell cycle regulation (12.0%; e.g. histone and tubulin), cell structure maintenance (8.4%; e.g. thymosin beta-4, tubulin), intra- and extracellular transport (8.4%), cell aging and apoptosis (7.3%; e.g. catalase and pyruvate kinase) as well as immune (7.0%; e.g. interleukin-24 and UV excision repair protein) and stress (6.3%; including heat shock proteins, peroxiredoxin-6 and superoxide dismutase) response. We also identified two proteins, phosphomevalonate kinase and isopentenyl-diphosphate delta-isomerase 1, that are involved in synthesis of cholesterol which is a precursor for bufadienolides biosynthesis. STRING protein-protein interaction network predicted for identified proteins showed that most proteins are related to metabolic processes, particularly glycolysis, stress response and DNA repair and replication. The results of GO enrichment and KEGG analyses are also consistent with these findings.
Conclusion
This finding indicates that cholesterol may be synthesized in parotoids, and not only in the liver from which is then transferred through the bloodstream to the parotoid macroglands. Presence of proteins that regulate cell cycle, cell division, aging and apoptosis may indicate a high epithelial cell turnover in parotoids. Proteins protecting skin cells from DNA damage may help to minimize the harmful effects of UV radiation. Thus, our work extends our knowledge with new and important functions of parotoids, major glands involved in the bufonid chemical defence.
Background
Amphibians inhabit a diverse range of environments worldwide [1, 2]. As amphibiotic organisms they require water reservoirs to complete their larval development. After metamorphosis most species, like bufonid toads, are usually terrestrial [1]. The migration from an aquatic to a more hybrid (semiaquatic and terrestrial) environment led to many unique traits in amphibian evolution. For instance, amphibian skin plays a crucial role in their adaptation to the terrestrial environment, being responsible for respiration, water balance regulation, excretion, temperature control, osmotic changes, reproduction, and also defence [3,4,5]. The tegument contains two types of specialized glands, termed mucous and granular (or poison) glands. The latter form in bufonids large parotoid macroglands located in the postorbital region (Fig. 1A) [3, 4] and are involved in chemical defence [6,7,8].
Poison secreted from parotoids is used to protect against fungi, microorganisms and predators [9,10,11,12,13,14], as it may be irritating and even lethal for the latter [6, 13]. The chemical compounds contained in parotoid secretions have been classified into four main categories: (i) biogenic amines, such as adrenaline, noradrenaline, bradykinin, or histamine; (ii) bufadienolides; (iii) alkaloids, such as batrachotoxin or tetrodotoxin, and (iv) peptides and proteins [4, 5, 11,12,13, 15]. Bufadienolides are the major components of the bufonid parotoid secretion responsible for its toxicity [8, 11, 15]. According to Steyn and Heerden [16], the toad gland secretion may contain up to 86 types of bufadienolides, including arenobufagin, bufalin, bufogenin, bufotalin, cinobufagin, cinobufotalin, gamabufotalin, marinobufagin, and telocinobufagin [8, 11, 17].
Recently, some peptides and proteins have been identified in the toad parotoid secretions [12, 13, 18,19,20,21,22,23,24], but their abundance seems to be much lower than those of bufadienolides and biogenic amines [4, 12]. For instance, Sousa-Filho et al. [20] obtained 104 proteins, including actin, beta-actin, ribosomal proteins, catalase, galectin, and uncharacterised proteins, in the Rhinella schneideri parotoid secretion by proteomic analysis. No peptides were found. Huo et al. [25] identified 939 unique peptides by de novo approach in parotoid macrogland secretion of Bufo gargarizans. Mariano et al. [23] identified 42 proteins and sequenced de novo 153 peptides in the Duttaphrynus melanostictus skin secretion. The most common proteins were acyl-CoA-binding protein, alcohol dehydrogenase, calmodulin, catalase, galectin, proteasome subunit alpha- and beta-type, and histone. It is assumed that bufonid parotoid gland secretions do not contain bioactive peptides similar to those from the skin of many frog species [4, 12]. It has been also suggested that peptides from parotoid secretion of Rhinella marina could be breakdown products of larger proteins that ensure the proper gland functioning [12, 23]. However, our previous results indicate that some proteins from parotoid secretion of Bufo bufo may participate in the toad chemical defence [13].
Most studies of bufonid chemical defence focused on the biochemistry and pharmacology of parotoid gland secretions. Little is known about the functioning of parotoid macroglands and processes that regulate toxin biosynthesis, poison production and excretion. Therefore, to understand these processes, in this work we aimed to investigate protein content in the extract from parotoid macroglands. As a model species we used the common toad, Bufo bufo, which is known for producing potent poison in its parotoids [13, 26]. Some proteins and peptides, such as muscle creatine kinase, proteasome subunit α type, phospholipid hydroperoxide glutathione peroxidase, cytotoxic T-lymphocyte protein, serine/threonine-protein kinase, so far have successfully been identified in this species [13].
Materials and methods
Toads trapping and housing
Trapping of toads was performed from March to April in 2016. Adult female toads Bufo bufo were captured (using 10-L pitfalls and drift fences) in gardens and parks in Poznań (western Poland), placed into transporters and carried to the laboratory. Then, they were placed into large (46 × 30 × 28 cm, 39 l) aqua-terraria equipped with bedding (a mixture of peat and sand). The terraria were regularly irrigated to maintain the adequate humidity. Each terrarium contained a shelter (flowerpot) and a water tank to allow the toads to submerge in water. Food (mealworms and crickets) and water were provided ad libitum. The toads were kept in the breeding room under standard laboratory conditions (temperature: 21 °C; humidity: 65–70%; artificial photoperiod: 12L:12D).
Extraction of toad parotoid macroglands and sample preparation
Two toads were decapitated and their parotoid glands were carefully isolated (to not squeeze them and not release the poison) and transferred into 600 µl of methanol. Tissues were next homogenized and samples were centrifuged at 10,000 × g and 4 °C for 30 min. The supernatants were collected, and the protein content was determined using a Direct Detect spectrometer (MERCK Millipore, Warsaw, Poland). Then, the supernatants were used for peptide analysis by reverse phase high-performance liquid chromatography (RP-HPLC). Separation was performed using a Dionex Ultimate 3000 chromatographic system comprising a dual pump programmable solvent module. Supernatants were analysed using a BioBasic-18 analytical column (5 µm, 150 × 4.6 mm; Thermo Scientific). The samples were eluted with a gradient of 5–60% acetonitrile (ACN)/0.1% TFA with a flow rate 0.5 ml/min for 55 min. The eluent was monitored at 214 nm and fractions were collected into 1.5-ml tubes.
Protein identification and analysis of their biological functions
Peptides and proteins from the methanolic extract of the toad parotoid glands were analysed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) using a Nano-Acquity LC system (Waters, Milford, Massachusetts, USA) and an OrbitrapVelos mass spectrometer (Thermo Electron Corp., San Jose, CA). Before performing the analysis, the proteins were subjected to an ion-solution digestion procedure. Proteins were: (1) reduced with 50 mM TCEP for 30 min at 60 °C, (2) alkylated with 200 mM MMTA for 30 min at room temperature and (3) digested overnight with trypsin (sequencing Grade Modified Trypsin—Promega V5111). Next, the samples were applied to an RP-18 precolumn (nanoACQUITY Symmetry® C18—Waters 186,003,514) using water containing 0.1% TFA as a mobile phase and were transferred to a nano-HPLC RP-18 column (nanoACQUITY BEH C18—Waters 186,003,545). The samples were eluted with a gradient of 0–35% acetonitrile in the presence of 0.05% formic acid with a flow rate of 250 nl/min for 180 min. The column was directly coupled to the ion source of the spectrometer working within data dependent on the MS to MS/MS switch. To ensure a lack of cross contamination from previous samples, each analysis was preceded by a blank run.
The proteins were identified by a Mascot Search (Matrix Science, London, UK) against the SwissProt database. The search parameters were as follows: type of search: MS/MS Ion Search; enzyme specificity: trypsin; fixed methylthio modification of cysteine; variable modifications: methionine oxidation; mass values: monoisotopic; protein mass: unrestricted; peptide mass tolerance: 20 ppm; fragment mass tolerance: 0.1 D; number of missed cleavage sites allowed: 1; instrument type: HCD. Peptides with Mascot scores exceeding the threshold value of p < 0.05 were considered positively identified. The protein content was calculated based on the Exponentially Modified Protein Abundance Index (emPAI) [27].
The biological functions of the identified proteins were determined by searching the UniProt database. All functions were then classified into 11 categories (Table 1). The percentage of proteins displaying particular functions from each category was calculated. To understand the cellular processes in toad’s parotoids, protein-protein interaction networks were built using STRING database [28]. Because molecular data on bufonid toads are scarce, predicted interactions between identified in this work proteins were analysed based on homology to the western clawed frog Xenopus tropicalis, a common anuran model. Then, Gene ontology (GO) enrichment analysis was performed to predict which metabolic processes the identified proteins are involved in, and what are their molecular functions (GO molecular function analysis). KEGG analysis was carried out to predict which signalling pathways the identified proteins participate in. Finally, GO component analysis was performed to predict the localisation of particular proteins within the cell.
Results and discussion
Bufonids are worldwide distributed amphibians [1, 2] that store potent chemical weapon in their parotoid macroglands [6,7,8, 13]. Most of the studies dealing with toad parotoid secretions focus on biological activities of bufadienolides, biogenic amines and alkaloids [8, 11, 15]. Therefore, these molecules and their toxic and pharmacological effects are particularly well characterised [8]. Little is known about the protein and peptide content in the bufonid parotoids, as well as their toxic properties. Also, the processes related to poison production and excretion remain unknown.
Here, we identified 162 proteins in the extract from parotoid macroglands of B. bufo (Table 2; Additional file 1: Table A1). The most abundant (with the highest emPAI) were proteins related to the cell structure maintenance and proteins with enzymatic activities involved in metabolic pathways (see Additional file 1: Table A1). For each identified protein at least one biological function was assigned by searching UniProt database (Table 2). Then, all functions were assigned to one of 11 categories (Tables 1 and 2).
STRING protein-protein interaction network predicted for proteins identified in the extract from B. bufo parotoids confirms the results obtained by searching the UniProt database (Additional file 2: Fig. A1). Most proteins are related to the metabolic processes with the strongest interactions between proteins involved in glycolysis, including phosphoglucomutase (pgm1), fructose-bisphosphate aldolase (aldoa), triosephosphate isomerase (tpi1), phosphoglycerate kinase 1 (pgk1) and transaldolase (taldo1). Strong interactions occur also between proteins, such as transitional endoplasmic reticulum ATPase (vcp), S-phase kinase-associated protein 1 (skp1), NEDD8 (nedd8), small ubiquitin-related modifier 2 (sumo2) and UV excision repair protein (rad23b), that participate in stress response and DNA repair and replication. This finding indicates that proteins present in the toad parotoids may effectively protect skin cells from DNA damage and thus minimize the harmful effects of UV radiation. Similarly, the results of GO enrichment and KEGG analyses are consistent with previous findings. Most predicted genes code intracellular proteins involved in metabolic processes and stress response (see Additional file 2: Figs A2–A5).
Regarding the number of identified proteins our results seem to be similar to those obtained recently by other researchers [e.g., 20, 23, 25] (see Introduction for details). One-third (34.6%) of the identified in this work proteins are involved in cell metabolism (Fig. 2 and Additional file 2: Figs A1–A4) with many of them being related to biosynthesis, regulation of transcription and translation, and gland functioning (Table 2 and Additional file 2: Figs A1–A4). This finding is consistent with the results of protein abundance analysis. Similarly, Sousa-Filho et al. [20] found numerous proteins related to cell metabolism and cell matrix in the R. schneideri parotoid secretion. Here, presence of two proteins, phosphomevalonate kinase (PMVK) and isopentenyl-diphosphate delta-isomerase 1 (IDI1; Table 2), is particularly noteworthy. These molecules are involved in the mevalonate arm of the cholesterol biosynthesis pathway [29, 30]. PMVK catalyses formation of mevalonate 5-diphosphate from mevalonate 5-phosphate, an essential step in the mevalonate pathway, while IDI1 performs isomerisation of isopentenyl diphosphate into dimethylallyl diphosphate (Fig. 3) [29, 30]. Cholesterol has been confirmed to be a precursor for synthesis of various steroids including bufadienolides [31,32,33], and it has been assumed that it is synthesised in the liver and then secreted and transferred through the bloodstream to the parotoid glands [31, 32]. Recent studies showed that genes coding PMVK and IDI1 are expressed in 27 human tissues including liver, kidney, spleen, adrenal glands and brain [34]. Genes coding IDI1 have been also proven to express in the liver of X. tropicalis frog [35]. PMVK has not been reported in any amphibian organs and tissues so far. Thus, confirming the presence of PMVK and IDI1 in the toad parotoid extract indicates that cholesterol necessary for toxin production may be also synthesised in parotoids, major glands that store bufadienolides.
Parotoids are holocrine glands [6, 36,37,38] in which poison excretion is accompanied by changes in the gland structure (Fig. 1B) [7]. Therefore, the complete poison replenishment is considered to be metabolically costly and time-consuming for toads [7], and may affect their growth and behaviour [39]. According to Jared et al. [7], the Cururu toad Rhinella icterica requires more than 3 months to restore the poison secreted from parotoids after mechanical compression of glands and the parotoid content seems to not return to the state preceding poison extraction. Rapid poison replenishment is necessary to ensure chemical protection against predators and microorganisms. Therefore, for toads, a reduced or depleted poison supply can be life-threatening because of diminished defence capabilities. In this work, we found various proteins involved in cell division and cell cycle regulation (12.0%), as well as cell aging and apoptosis (7.3%; Fig. 2). Together with many proteins that participate in molecule biosynthesis and transport (8.4%) as well as maintenance of cell structure (8.4%; Fig. 2), it may be indicative of a high epithelial cell turnover in parotoids. Such an intense cell turnover in the holocrine gland should require well developed protein machinery that regulates cell cycle and cell divisions to enable quick and effective replenishment of toxins and thus increase the chance of survival during encounter with a predator.
Some proteins found in this study are likely to reinforce toxic activity of parotoid secretion. For instance, gamma-enolase has neurotropic properties [40, 41] and thus its presence in parotoid secretion may increase paralytic activity of toad poison. Antithrombin-III regulates the blood coagulation cascade (Table 2) and may block blood clot formation [42, 43] and thus cause bleeding. Few proteins, such as puromycin-sensitive aminopeptidase-like protein, cytosolic non-specific dipeptidase or proteasome subunit alpha type-1, cause proteolysis [44,45,46,47] and thus may reinforce proteolytic action of toad poison. Previously, we also described in B. bufo parotoid secretion some peptides that may display physiological effects [13]. Mariano et al. [23] found proteasomes in D. melanostictus skin secretions. It is therefore likely that some molecules obtained in this work also participate in the toad chemical defence. However, further studies are required to confirm their biological activity and describe their action modes.
Tropomyosin alpha-3 chain, myosin light polypeptide 6 and calponin-3 are involved in regulation of muscle contraction (Table 2) [48,49,50]. Calmodulin is a Ca+2 binding protein that regulates apoptosis, inflammation and smooth muscle contraction [51,52,53]. Therefore, these proteins may promote poison excretion from parotoids. Also, 78 kDa glucose regulated protein, which is related to toxin transport [54], may participate in poison secretion from toad parotoids. Myosin light polypeptide 6 and calmodulin have already been reported in the D. melanostictus parotoid secretion [22, 23]. Calmodulin has been also found in the toad urinary bladder, oviduct and retina photoreceptors [55,56,57], while myosin and tropomyosin in smooth muscles within the carotid labyrinth of Rh. marina [58] and skeletal muscles of X. tropicalis and the Japanese tree frog Hyla japonica [59].
Mariano et al. [23] identified 62 binding proteins in the skin secretions of D. melanostictus. These proteins might bind to different molecules and play important role in amphibian skin secretion. In this work, we found acyl-CoA-binding domain-containing protein 7 and annexins in the B. bufo parotoid extract. The latter have been suggested to regulate diverse cellular and physiological processes, such as endo- and exocytosis [60, 61], and thus promote toxin excretion from poison glands. Both, acyl-CoA-binding proteins (ACBPs) and annexins, have recently been reported in D. melanostictus skin secretions [22, 23]. ACBPs have also been found in the frog’s brain [62], while annexins in the skin of the large-webbed bell toad Bombina maxima, the Dybovsky’s frog Rana dybowskii, and the Chinese giant salamander Andrias davidianus [63,64,65]. It seems that the latter are unique to the skin and because of their antimicrobial activity related to the immune response of amphibian skin secretions.
It is well known that amphibian skin plays an important role in antimicrobial defence [66, 67]. Proteins related to immune defence have already been reported in anuran skin secretions [18, 66,67,68]. Also, in this work we found proteins involved in innate and adaptive immune response, and antimicrobial, allergic and inflammatory response (7.0%; Table 2, Fig. 2). Thus, our results confirm antimicrobial functions of bufonid skin secretions. Also, proteins related to stress response are quite abundant (6.3%) in the extract from B. bufo parotoids (Fig. 2 and Additional file 2: Figs A1–A3). Here, we identified catalase, peroxiredoxin 6 and superoxide dismutase that are related to the anti-oxidant system [69]. Similar proteins (catalase, glutathione peroxidase 3, peroxiredoxin 6, superoxide dismutase and thioredoxin like 1) have previously been reported in parotoid secretion of R. schneideri [20]. Superoxide dismutase has also been identified in skin secretions of R. dybowskii [64], while catalase in lungs, heart, liver and kidney of the painted frog Discoglossus pictus [70].
Amphibian populations are in decline, which has been exacerbated in the last few decades and caused by several factors [71]. Ultraviolet (UV) radiation is especially dangerous to amphibians because of their thin and poorly cornified integument [72], and may lead to protein denaturation, cell damage and death, and/or mutagenesis in amphibian skin [73, 74]. Amphibians can cope with the harmful effects of UV radiation in many ways which include behavioural and molecular mechanisms. Here, we report 6 proteins in the extract from toad parotoids (Table 2, Fig. 2 and Additional file 2: Fig. A1) that are involved in DNA repair. Also, heat shock proteins (HSPs) may be synthesised under environmental or physiological stress [75]. They interact with denatured proteins and help them to refold and reassemble, turning back their active forms [23, 76]. Therefore, all these molecules may represent molecular mechanisms that may effectively protect toad skin cells from DNA damage and thus minimize the harmful effects of UV radiation. Such proteins involved in protection against UV radiation damage and protein recycling have been recently found in the skin secretion of D. melanostictus [23]. Related to stress response HSPs have been reported for many anuran organs, such as skin, liver, heart, kidneys, lungs and brain [77, 78].
Conclusions
We report here housekeeping proteins in the extract from B. bufo parotoid macroglands. Applying a proteomic approach enabled us to obtain new findings on the molecules that are involved in poison production and secretion, and may contribute to the gland functioning. Most identified proteins are involved in metabolic processes and cell structure maintenance. Our results indicate that in toads cholesterol may be synthesized in parotoids, and not only in the liver from which is then transferred through the bloodstream to the parotoids. Presence of proteins that protect skin cells from DNA damage may help to minimize the harmful effects of UV radiation. It opens up new perspectives for studying biological activity of molecules from parotoid secretions and their role in the toad chemical defence system. Applying de novo peptide sequencing coupled with analyses of various databases will provide new protein dataset in anuran skin secretions and extend our knowledge on the functioning of bufonid parotoids.
Availability of data and materials
All data are available in the main text and the supplementary information files. Further information and requests for data should be directed to and will be fulfilled by the corresponding author.
References
McDiarmid RW. Amphibian diversity and natural history: an overview. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek LAC, Foster MS, editors. Measuring and monitoring biological diversity: standard methods for amphibians. Washington: Smithsonian Institution Press; 1994. p. 5–15.
Duellman WE. Patterns of distribution of amphibians: a global perspective. Baltimore: Johns Hopkins University Press; 1999.
Toledo RC, Jared C, Brunner JA. Morphology of the large granular alveoli of the parotoid glands in toad (Bufo ictericus) before and after compression. Toxicon. 1992;30:745–53. https://doi.org/10.1016/0041-0101(92)90008-S.
Clarke BT. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev Camb Philos Soc. 1997;1997(72):365–79. https://doi.org/10.1017/s0006323197005045.
Zhao Y, Jin Y, Lee WH, Zhang Y. Purification of a lysozyme from skin secretions of Bufo andrewsi. Comp Biochem Physiol C. 2006;142:46–52. https://doi.org/10.1016/j.cbpc.2005.10.001.
Toledo RC, Jared C. Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol A. 1995;111:1–29. https://doi.org/10.1016/0300-9629(95)98515-I.
Jared SGS, Jared C, Egami MI, Mailho-Fontana PL, Rodrigues MT, Antoniazzi MM. Functional assessment of toad parotoid macroglands: a study based on poison replacement after mechanical compression. Toxicon. 2014;87:92–103. https://doi.org/10.1016/j.toxicon.2014.05.020.
Zhan X, Wu H, Wu H, Wang R, Luo C, Gao B, Chen Z, Li Q. Metabolites from Bufo gargarizans (Cantor, 1842): A review of traditional use, pharmacological activity, toxicity and quality control. J Ethnopharmacol. 2020;246:112178. https://doi.org/10.1016/j.jep.2019.112178.
Toledo RC, Jared C. Cutaneous adaptations to water balance in amphibians. Comp Biochem Physiol A. 1993;105:593–608. https://doi.org/10.1016/0300-9629(93)90259-7.
Tempone AG, Carvalho Pimenta D, Lebrun I, Sartorelli P, Taniwaki NN, de Andrade Jr HF, Antoniazzi MM, Jared C. Antileishmanial and antitrypanosomal activity of bufadienolides isolated from the toad Rhinella jimi parotoid macrogland secretion. Toxicon. 2008;52:13–21. https://doi.org/10.1016/j.toxicon.2008.05.008.
Abdel-Rahman MA, Hamid Ahmed S, Nabil ZI. In vitro cardiotoxicity and mechanism of action of the Egyptian green toad Bufo viridis skin secretions. Toxicol Vitro. 2010;24:480–5. https://doi.org/10.1016/j.tiv.2009.09.021.
Rash LD, Morales RAV, Vink S, Alewood PF. De novo sequencing of peptides from the parotoid secretion of the cane toad, Bufo marinus (Rhinella marina). Toxicon. 2011;57:208–16. https://doi.org/10.1016/j.toxicon.2010.11.012.
Kowalski K, Marciniak P, Rosiński G, Rychlik L. Toxic activity and protein identification from the parotoid secretion of the common toad Bufo bufo. Comp Biochem Physiol C. 2018;205:43–52. https://doi.org/10.1016/j.cbpc.2018.01.004.
Kowalski K, Sawościanik O, Rychlik L. Do bufonids employ different anti-predator behaviors than ranids? Comparison among three European anurans. Copeia. 2018;106:120–9. https://doi.org/10.1643/CE-16-567.
Gao H, Zehl M, Leitner A, Wu X, Wang Z, Kopp B. Comparison of toad venoms from different Bufo species by HPLC and LC-DAD-MS/MS. J Ethnopharmacol. 2010;131:368–76. https://doi.org/10.1016/j.jep.2010.07.017.
Steyn PS, Heerden FR. Bufadienolides of plant and animal origin. Nat Prod Rep. 1998;15:397–413. https://doi.org/10.1039/A815397Y.
Ma H, Zhou J, Jiang J, Duan J, Xu H, Tang Y, Lv G, Zhang J, Zhan Z, Ding A. The novel antidote Bezoar Bovis prevents the cardiotoxicity of toad (Bufo bufo gargarizans Canto) venom in mice. Exp Toxicol Pathol. 2012;64:417–23. https://doi.org/10.1016/j.etp.2010.10.007.
Zhao Y, Jin Y, Wang JH, Wang RR, Yang LM, Lee WH, Zheng YT, Zhang Y. A novel heme-containing protein with anti-HIV-1 activity from skin secretions of Bufo andrewsi. Toxicon. 2005;46:619–24. https://doi.org/10.1016/j.toxicon.2005.06.022.
Zhao Y, Jin Y, Wei SS, Lee WH, Zhang Y. Purification and characterization of an irreversible serine protease inhibitor from skin secretions of Bufo andrewsi. Toxicon. 2005;46:635–40. https://doi.org/10.1016/j.toxicon.2005.07.003.
Sousa-Filho LM, Freitas CDT, Lobo MDP, Monteiro-Moreira ACO, Silva RO, Santana LAB, Ribeiro RA, Souza MHLP, Ferreira GP, Pereira ACT, Barbosa ALR, Lima MSCS, Oliveira JS. Biochemical profile, biological activities, and toxic effects of proteins in the Rhinella schneideri parotoid gland secretion. J Exp Zool A Ecol Genet Physiol. 2016;325(8):511–23. https://doi.org/10.1002/jez.2035.
Mariano DOC, Messias MDG, Prezotto-Neto JP, Spencer PJ, Pimenta DC. Biochemical analyses of proteins from Duttaphrynus melanostictus (Bufo melanostictus) skin secretion: soluble protein retrieval from a viscous matrix by ion-exchange batch sample preparation. Protein J. 2018;37(4):380–9. https://doi.org/10.1007/s10930-018-9780-z.
Mariano DOC, Messias MDG, Spencer PJ, Pimenta DC. Protein identification from the parotoid macrogland secretion of Duttaphrynus melanostictus. J Venom Anim Toxins Incl Trop Dis. 2019;25:e 20190029. https://doi.org/10.1590/1678-9199-JVATITD-2019-0029.
Mariano DOC, Prezotto-Neto JP, Spencer PJ, Sciani JM, Pimenta DC. Proteomic analysis of soluble proteins retrieved from Duttaphrynus melanostictus skin secretion by IEx-batch sample preparation. J Proteomics. 2019;209:103525. https://doi.org/10.1016/j.jprot.2019.103525.
Alexandre LS, Braga FMS, de Oliveira PK, Coelho TLS, Fonseca MG, de Sousa RWR, Dittz D, de Castro e Sousa JM, Ferreira PMP, Dantas C, Barbosa HS, Chaves MH, Lopes Júnior CA, Vieira Júnior GM. Proteins from Rhinella jimi parotoid gland secretion: a comprehensive analytical approach. Toxicon. 2021;192:32–9. https://doi.org/10.1016/j.toxicon.2021.01.005.
Huo Y, Xv R, Ma H, Zhou J, Xi X, Wu Q, Duan J, Zhou M, Chen T. Identification of <10KD peptides in the water extraction of Venenum Bufonis from Bufo gargarizans using nano LC-MS/MS and de novo sequencing. J Pharm Biomed Anal. 2018;157:156–64. https://doi.org/10.1016/j.jpba.2018.05.027.
Kowalski K, Marciniak P, Rychlik L. Individual variation in cardiotoxicity of parotoid secretion of the common toad, Bufo bufo, depends on body size—first results. Zoology. 2020;142:125822. https://doi.org/10.1016/j.zool.2020.125822.
Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteom. 2005;4:1265–72. https://doi.org/10.1074/mcp.M500061-MCP200.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:607–13. https://doi.org/10.1093/nar/gky1131.
Mazein A, Watterson S, Hsieh WY, Griffiths WJ, Ghazal P. A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway. Biochem Pharmacol. 2013;86:56–66. https://doi.org/10.1016/j.bcp.2013.03.021.
Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol biosynthesis: a mechanistic overview. Biochemistry. 2016;55:5483–506. https://doi.org/10.1021/acs.biochem.6b00342.
Siperstein MD, Murray AW, Titus E. Biosynthesis of cardiotonic sterols from cholesterol in the toad, Bufo marinus. Arch Biochem Biophys. 1957;67:154–60. https://doi.org/10.1016/0003-9861(57)90254-0.
Porto AM, Gros EG. Biosynthesis of the bufadienolide marinobufagin in toads Bufo paracnemis from cholesterol-20–14C. Experientia. 1971;27:506.
Garraffo HM, Gros EG. Biosynthesis of bufadienolides in toads, VI: experiments with [1,2–3H]cholesterol, [21–14C]coprostanol, and 5 beta-[21–14C]pregnanolone in the toad Bufo arenarum. Steroids. 1986;48:251–7. https://doi.org/10.1016/0039-128X(86)90008-5.
Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13:397–406. https://doi.org/10.1074/mcp.M113.035600.
Usal M, Veyrenc S, Darracq M, Regnault C, Sroda S, Fini JB, Canlet C, Tremblay-Franco M, Raveton M, Reynaud S. Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis. Environ Pollut. 2021;269:116109. https://doi.org/10.1016/j.envpol.2020.116109.
Brodie ED Jr, Gibson LS. Defensive behavior and skin glands of the Northwestern salamander, Ambystoma gracile. Herpetologica. 1969;25:187–94.
Brizzi R, Delfino G, Jantra S, Alvarez BB, Sever DM. The amphibian cutaneous glands: some aspects of their structure and adaptive role. In: Lymberakis P, Valakos E, Pafilis P, Mylonas M, editors. Herpetologia Candiana. Crete: National Museum of Crete; 2001.
Almeida PG, Felsemburgh FA, Azevedo RA, Brito-Gitirana L. Morphological re-evaluation of the parotoid glands of Bufo ictericus (Amphibia, Anura, Bufonidae). Contrib Zool. 2007;76:145–52. https://doi.org/10.1163/18759866-07603001.
Blennerhassett RA, Bell-Anderson K, Shine R, Brown GP. The cost of chemical defence: the impact of toxin depletion on growth and behaviour of cane toads (Rhinella marina). Proc R Soc B. 2019;286:20190867. https://doi.org/10.1098/rspb.2019.0867.
Hattori T, Takei N, Mizuno Y, Kato K, Kohsaka S. Neurotrophic and neuroprotective effects of neuron-specific enolase on cultured neurons from embryonic rat brain. Neurosci Res. 1995;21:191–8. https://doi.org/10.1016/0168-0102(94)00849-B.
Vizin T, Kos J. Gamma-enolase: a well-known tumour marker, with a less-known role in cancer. Radiol Oncol. 2015;49:217–26. https://doi.org/10.1515/raon-2015-0035.
Bärtsch P, Haeberli A, Straub PW. Blood coagulation after long distance running: Antithrombin III prevents fibrin formation. Thromb Haemost. 1990;63:430–4. https://doi.org/10.1055/s-0038-1645060.
Butenas S, Mann KG. Blood coagulation. Biochem Mosc. 2002;67:3–12. https://doi.org/10.1023/A:1013985911759.
Constam DB, Tobler AR, Rensing-Ehl A, Kemler I, Hersh LB, Fontana A. Puromycin-sensitive aminopeptidase. Sequence analysis, expression, and functional characterization. J Biol Chem. 1995;270:26931–9. https://doi.org/10.1074/jbc.270.45.26931.
Tanahashi N, Kawahara H, Murakami Y, Tanaka K. The proteasome-dependent proteolytic system. Mol Biol Rep. 1999;26:3–9. https://doi.org/10.1023/A:1006909522731.
Shringarpure R, Grune T, Davies KJA. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. CMLS Cell Mol Life Sci. 2001;58:1442–50. https://doi.org/10.1007/PL00000787.
Jansen RS, Addie R, Merkx R, Fish A, Mahakena S, Bleijerveld OB, Altelaar M, IJlst L, Wanders RJ, Borst P, van de Wetering K. N-lactoyl-amino acids are ubiquitous metabolites that originate from CNDP2-mediated reverse proteolysis of lactate and amino acids. PNAS. 2015;112:6601–6. https://doi.org/10.1073/pnas.1424638112.
Winder SJ, Walsh MP. Calponin: thin filament-linked regulation of smooth muscle contraction. Cell Signal. 1993;5:677–86.
Allen BG, Walsh MP. The biochemical basis of the regulation of smooth-muscle contraction. Trends Biochem Sci. 1994;19:362–8.
Matyushenko AM, Shchepkin DV, Kopylova GV, Bershitsky SY, Levitsky DI. Unique functional properties of slow skeletal muscle tropomyosin. Biochimie. 2020;174:1–8. https://doi.org/10.1016/j.biochi.2020.03.013.
Cheung WY. Calmodulin. Sci Am. 1982;246:62–72.
Wright SC, Schellenberger U, Ji L, Wang H, Larrick JW. Calmodulin-dependent protein kinase II mediates signal transduction in apoptosis. FASEB J. 1997;11:825–921. https://doi.org/10.1096/fasebj.11.11.9285482.
Hu J, Shi D, Ding M, Huang T, Gu R, Xiao J, Xian CJ, Dong J, Wang L, Liao H. Calmodulin-dependent signalling pathways are activated and mediate the acute inflammatory response of injured skeletal muscle. J Physiol. 2019;597:5161–77. https://doi.org/10.1113/JP278478.
Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T, Glabe C, Hyman BT, McLean PJ. Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J. 2011;25:326–36. https://doi.org/10.1096/fj.10-164624.
Levine SD, Kachadorian WA, Levin DN, Schlondorff D. Effects of trifluoperazine on function and structure of toad urinary bladder. Role of calmodulin vasopressin-stimulation of water permeability. J Clin Invest. 1981;67:662–72. https://doi.org/10.1172/JCI110081.
Crespo CA, Medina MF, Ramos I, Fernández SN. Homeostasis and secretion of calcium in the oviductal mucosa of toad Rhinella arenarum. J Exp Zool A. 2014;321:432–41.
Torda C. Illumination dependent hyperpolarization of the photoreceptor outer segment membrane (role of calcium, cyclic GMP and calmodulin). Int J Neurosci. 1981;14:153–61. https://doi.org/10.3109/00207458108985828.
Smith DG, Rogers DC, Chamley-Campbell J, Campbell GR. The mechanism of blood flow redistribution within the carotid labyrinth of the toad, Bufo marinus. J Exp Zool. 1981;216:387–94.
Bulbul U, Kutrup B. Interspecific differences in molecular weights of skeletal myosin, actin, troponin C and tropomyosin in the frogs Hyla japonica and Xenopus tropicalis. Biol Bratisl. 2007;62:781–5. https://doi.org/10.2478/s11756-007-0136-y.
Cruetz CE. The annexins and exocytosis. Science. 1992;258:924–31. https://doi.org/10.1126/science.1439804.
Futter CE, White IJ. Annexins and endocytosis. Traffic. 2007;8:951–8. https://doi.org/10.1111/j.1600-0854.2007.00590.x.
Kragelund BB, Knudsen J, Poulsen FM. Acyl-coenzyme A binding protein (ACBP). Biochim Biophys Acta Bioenerg. 1999;1441:150–61.
Zhang Y, Yu G, Wang Y, Zhang J, Wei S, Lee W, Zhang Y. A novel annexin A2 protein with platelet aggregation-inhibiting activity from amphibian Bombina maxima skin. Toxicon. 2010;56:458–65. https://doi.org/10.1016/j.toxicon.2010.04.015.
Xiao XH, Miao HM, Xu YG, Zhang JY, Chai LH, Xu JJ. Analysis of skin and secretions of Dybowski’s frogs (Rana dybowskii) exposed to Staphylococcus aureus or Escherichia coli identifies immune response proteins. Vet J. 2014;200:127–32. https://doi.org/10.1016/j.tvjl.2014.01.011.
Geng X, Wei H, Shang H, Zhou M, Chen B, Zhang F, Zang X, Li P, Sun J, Che J, Zhang Y, Xu C. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). J Proteomics. 2015;119:196–208. https://doi.org/10.1016/j.jprot.2015.02.008.
Barra D, Simmaco M. Amphibian skin: a promising resource for antimicrobial peptides. Trends Biotechnol. 1995;13:205–9. https://doi.org/10.1016/S0167-7799(00)88947-7.
Rinaldi AC. Antimicrobial peptides from amphibian skin: an expanding scenario: commentary. Curr Opin Chem Biol. 2002;6:799–804. https://doi.org/10.1016/S1367-5931(02)00401-5.
Pukala TL, Bowie JH, Maselli VM, Musgrave IF, Tyler MJ. Host-defence peptides from the glandular secretions of amphibians: structure and activity. Nat Prod Rep. 2006;23:368–93. https://doi.org/10.1039/B512118N.
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem. 2015;97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040.
Barja de Quiroga G, Gil P, López-Torres M. Physiological significance of catalase and glutathione peroxidases, and in vivo peroxidation, in selected tissues of the toad Discoglossus pictus (Amphibia) during acclimation to normobaric hyperoxia. J Comp Physiol B. 1988;158:583–90.
Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW. Status and trends of amphibian declines and extinctions worldwide. Science. 2004;306(5702):1783–6. https://doi.org/10.1126/science.1103538.
Blaustein AR, Belden LK, Hatch AC, Kats LB, Hoffman PD, Hays JB, Marco A, Chivers DP, Kiesecker JM. Ultraviolet radiation and amphibians. In: Cockell CS, Blaustein AR, editors. Ecosystems, evolution, and ultraviolet radiation. New York: Springer; 2001. p. 63–79. https://doi.org/10.1007/978-1-4757-3486-7_3.
Licht LE, Grant KP. The effects of ultraviolet radiation on the biology of amphibians. Am Zool. 1997;37:137–45. https://doi.org/10.1093/icb/37.2.137.
Schuch AP, Lipinski VM, Santos MB, Santos CP, Jardim SS, Cechin SZ, Loreto ELS. Molecular and sensory mechanisms to mitigate sunlight-induced DNA damage in treefrog tadpoles. J Exp Biol. 2015;218:3059–67. https://doi.org/10.1242/jeb.126672.
Morimoto R, Santoro M. Stress–inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol. 1998;16:833–8. https://doi.org/10.1038/nbt0998-833.
Wang RE. Targeting heat shock proteins 70/90 and proteasome for cancer therapy. Curr Med Chem. 2011;18:4250–64. https://doi.org/10.2174/092986711797189574.
Storey JM, Storey KB. In defense of proteins: chaperones respond to freezing, anoxia, or dehydration stress in tissues of freeze tolerant wood frogs. J Exp Zool A. 2019;331:392–402. https://doi.org/10.1002/jez.2306.
Wu CW, Tessier SN, Storey KB. Dehydration stress alters the mitogen-activated-protein kinase signaling and chaperone stress response in Xenopus laevis. Comp Biochem Physiol B. 2020;246–247:110461. https://doi.org/10.1016/j.cbpb.2020.110461.
Acknowledgements
Not applicable.
Funding
The research was supported by the budgets of the Department of Systematic Zoology and Department of Animal Physiology and Developmental Biology (Faculty of Biology, Adam Mickiewicz University, Poznań).
Author information
Authors and Affiliations
Contributions
All authors conceived and designed the experiments. KK obtained permits and captured experimental animals. KK and PM performed the experiments and analyzed the data. KK drafted the manuscript. All authors edited the draft and prepared the manuscript for publication. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Trapping procedure, handling, housing of animals and all analyses were performed in accordance with licenses of the Regional Director for Environmental Protection in Poznań (decision # WPNII.6401.142.2013.AG), the General Director for Environmental Protection (decision # DOP-oz.6401.00.6.2013.JRO), and the Directive 2010/63/EU on the protection of animals used for scientific purposes. The study was carried out in compliance with the ARRIVE guidelines.
Consent for publication
Not applicable.
Competing interest
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Additional file 1
. Table A1. Peptide sequences identified in the extract from parotoids of the common toad Bufo bufo based on tandem mass spectrometry analysis
Additional file 2
. Figures A1-A5. Fig. A1 STRING protein-protein interaction network predicted for proteins identified in the extract from parotoids of the common toad Bufo bufo based on homology to Xenopus tropicalis. Red balls represent proteins involved in metabolic processes, while lines show interactions between proteins. The thicker the line, the stronger the interaction. Abbreviations within the balls represent protein labels. Full protein names and their labels are provided in Table A1 in Additional file 1. Fig. A2 Number of proteins involved in metabolic processes predicted based on the Gene ontology enrichment analysis of proteins identified in the extract from parotoids of the common toad Bufo bufo. Fig. A3 Molecular functions and number of proteins predicted based on the Gene ontology enrichment analysis of proteins identified in the extract from parotoids of the common toad Bufo bufo. Fig. A4 Number of proteins involved in signalling pathways predicted based on the KEGG analysis of proteins identified in the extract from parotoids of the common toad Bufo bufo. Fig. A5 Localisation of proteins identified in the extract from parotoids of the common toad Bufo bufo within the cell based on the Gene ontology component analysis
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
About this article
Cite this article
Kowalski, K., Marciniak, P. & Rychlik, L. Proteins from toad’s parotoid macroglands: do they play a role in gland functioning and chemical defence?. Front Zool 20, 21 (2023). https://doi.org/10.1186/s12983-023-00499-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s12983-023-00499-8