Watanabe M. Anhydrobiosis in invertebrates. Appl Entomol Zool. 2006;41(1):15–31. https://doi.org/10.1303/aez.2006.15.
Article
CAS
Google Scholar
Rebecchi L. Dry up and survive: the role of antioxidant defences in anhydrobiotic organisms. J Limnol. 2013;72(Suppl. 1):62–72. https://doi.org/10.4081/jlimnol.2013.s1.e8.
Google Scholar
Arakawa K, Blaxter M. Life without water. Biochemist. 2017;39(6):14–7. https://doi.org/10.1042/BIO03906014.
Article
CAS
Google Scholar
Kaczmarek Ł, Roszkowska M, Fontaneto D, Jezierska M, Pietrzak B, Wieczorek R, et al. Staying young and fit? Ontogenetic and phylogenetic consequences of animal anhydrobiosis. J Zool. 2019;309(1):1–11. https://doi.org/10.1111/jzo.12677.
Article
Google Scholar
Alpert P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol. 2006;209(9):1575–84. https://doi.org/10.1242/jeb.02179.
Article
PubMed
Google Scholar
Schill RO, Mali B, Dandekar T, Schnolzer M, Reuter D, Frohme M. Molecular mechanisms of tolerance in tardigrades: new perspectives for preservation and stabilization of biological material. Biotechnol Adv. 2009;27(4):348–52. https://doi.org/10.1016/j.biotechadv.2009.01.011.
Article
CAS
PubMed
Google Scholar
Guidetti R, Rizzo AM, Altiero T, Rebecchi L. What can we learn from the toughest animals of the earth? Water bears (tardigrades) as multicellular model organisms in order to perform scientific preparations for lunar exploration. Planet Space Sci. 2012;74(1):97–102. https://doi.org/10.1016/j.pss.2012.05.021.
Article
Google Scholar
Ono F, Mori Y, Takarabe K, Fujii A, Saigusa M, Matsushima Y, et al. Effect of ultra-high pressure on small animals, tardigrades and Artemia. Cogent Phys. 2016;3(1):1. https://doi.org/10.1080/23311940.2016.1167575.
Article
Google Scholar
Crowe JH. The physiology of cryptobiosis in tardigrades. Mem Ist Ital Idrobiol. 1975;32(Suppl.):37–59.
Wright JC, Westh P, Ramløv H. Cryptobiosis in Tardigrada. Biol Rev. 1992;67(1):1–29. https://doi.org/10.1111/j.1469-185X.1992.tb01657.x.
Article
Google Scholar
Bertolani R, Guidetti R, Jönsson KI, Altiero T, Boschini D, Rebecchi L. Experiences with dormancy in tardigrades. J Limnol. 2004;63(1s):16–25. https://doi.org/10.4081/jlimnol.2004.s1.16.
Article
Google Scholar
Rebecchi L, Altiero T, Guidetti R. Anhydrobiosis: the extreme limit of desiccation tolerance. ISJ- Invert Surviv J. 2007;4:65–81.
Google Scholar
Nelson DR, Guidetti R, Rebecchi L. Phylum Tardigrada. In: Thorp J, Rogers DC, editors. Ecology and General Biology: Thorp and Covich's Freshwater Invertebrates. Academic Press: Cambridge; 2015. p. 347–80. https://doi.org/10.1016/B978-0-12-385026-3.00017-6.
Chapter
Google Scholar
Nelson N, Bartels PJ, Guil N. In: Schill RO, editor. Water Bears: the biology of tardigrades. Springer: Berlin; 2018. p. 163–210. https://doi.org/10.1007/978-3-319-95702-9.
Chapter
Google Scholar
Schill RO, Hengherr S. Environmental adaptations: desiccation tolerance. In: Schill OR, editor. Water Bears: the biology of tardigrades. Springer: Berlin; 2018. p. 273–94. https://doi.org/10.1007/978-3-319-95702-9.
Chapter
Google Scholar
Møbjerg N, Jørgensen A, Kristensen RM, Neves RC. In: Schill RO, editor. Water Bears: the biology of tardigrades. Springer: Berlin; 2018. p. 57–94. https://doi.org/10.1007/978-3-319-95702-9.
Chapter
Google Scholar
Hengherr S, Brummer F, Schill RO. Anhydrobiosis in tardigrades and its effects on longevity traits. J Zool. 2008;275(3):216–20. https://doi.org/10.1111/j.1469-7998.2008.00427.x.
Article
Google Scholar
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of desiccation tolerance: themes and variations in brine shrimp, roundworms, and tardigrades. Front Physiol. 2020;11:592016. https://doi.org/10.3389/fphys.2020.592016.
Article
PubMed
PubMed Central
Google Scholar
Hesgrove C, Boothby TC. The biology of tardigrade disordered proteins in extreme stress tolerance. Cell Commun Signal. 2020;18(1):178. https://doi.org/10.1186/s12964-020-00670-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamilari M, Jørgensen A, Schiøtt M, Møbjerg N. Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages. BMC Genomics. 2019;20(1):607. https://doi.org/10.1186/s12864-019-5912-x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bemm FM, Burleigh L, Foerster F, Schmucki R, Ebeling M, Janzen C, et al. Draft genome of the eutardigrade Milnesium tardigradum sheds light on ecdysozoan evolution. bioRxiv. 2017. https://doi.org/10.1101/122309.
Halberg KA, Jørgensen A, Møbjerg N. Desiccation tolerance in the tardigrade Richtersius coronifer relies on muscle mediated structural reorganization. PLoS One. 2013;8(12):e85091. https://doi.org/10.1371/journal.pone.0085091.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pigoń A, Węglarska B. Rate of metabolism in tardigrades during active life and anabiosis. Nature. 1955;176(4472):121–2. https://doi.org/10.1038/176121b0.
Article
PubMed
Google Scholar
Jönsson KI, Rebecchi L. Experimentally induced anhydrobiosis in the tardigrade Richtersius coronifer: phenotypic factors affecting survival. J Exp Zool. 2002;293(6):578–84. https://doi.org/10.1002/jez.10186.
Article
PubMed
Google Scholar
Tanaka S, Tanaka J, Miwa Y, Horikawa DD, Katayama T, Arakawa K, et al. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic tardigrade improve osmotic tolerance of human cells. PLoS One. 2015;10(2):e0118272. https://doi.org/10.1371/journal.pone.0118272.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rogov AG, Zvyagilskaya RA. Physiological role of alternative oxidase (from yeasts to plants). Biochem Mosc. 2015;80(4):400–7. https://doi.org/10.1134/S0006297915040021.
Article
CAS
Google Scholar
Vanlerberghe GC, Martyn GD, Dahal K. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress. Physiol Plant. 2016;57(3):322–37. https://doi.org/10.1111/ppl.12451.
Article
CAS
Google Scholar
McDonald AE, Gospodaryov DV. Alternative NAD(P) H dehydrogenase and alternative oxidase: proposed physiological roles in animals. Mitochondrion. 2019;45:7–17. https://doi.org/10.1016/j.mito.2018.01.009.
Article
CAS
PubMed
Google Scholar
Weaver RJ. Hypothesized evolutionary consequences of the alternative oxidase (AOX) in animal mitochondria. Integr Comp Biol. 2019;59(4):994–1004. https://doi.org/10.1093/icb/icz015.
Article
CAS
PubMed
Google Scholar
Moore AL, Albury MS. Further insights into the structure of the alternative oxidase: from plants to parasites. Biochem Soc Trans. 2008;36(5):1022–6. https://doi.org/10.1042/bst0361022.
Article
CAS
PubMed
Google Scholar
Szibor M, Gainutdinov T, Fernandez-Vizarra E, Dufour E, Gizatullina Z, Debska-Vielhaber, et al. Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET. BBA-Bioenergetics. 2020;1861(2):148137. https://doi.org/10.1016/j.bbabio.2019.148137.
Article
CAS
PubMed
Google Scholar
McDonald AE, Vanlerberghe GC, Staples JF. Alternative oxidase in animals: unique characteristics and taxonomic distribution. J Exp Biol. 2009;212(16):2627–34. https://doi.org/10.1242/jeb.032151.
Article
CAS
PubMed
Google Scholar
Pennisi R, Salvi D, Brandi V, Angelini R, Ascenzi P, Polticelli F. Molecular evolution of alternative oxidase proteins: a phylogenetic and structure modeling approach. J Mol Evol. 2016;82(4-5):207–18. https://doi.org/10.1007/s00239-016-9738-8.
Article
CAS
PubMed
Google Scholar
Morek W, Suzuki A, Schill RO, Georgiev D, Yankova M, Marley N, et al. Redescription of Milnesium alpigenum Ehrenberg, 1853 (Tardigrada: Apochela) and a description of Milnesium inceptum sp. nov., a tardigrade laboratory model. Zootaxa. 2019;4586:35–64. https://doi.org/10.11646/zootaxa.4586.1.2.
Article
Google Scholar
Galganska H, Budzinska M, Wojtkowska M, Kmita H. Redox regulation of protein expression in Saccharomyces cerevisiae mitochondria: possible role of VDAC. Arch Biochem Biophys. 2008;479(1):39–45. https://doi.org/10.1016/j.abb.2008.08.010.
Article
CAS
PubMed
Google Scholar
Daum G, Gasse SM, Schatz G. Import of proteins into mitochondria. Energy-dependent, two-step processing of the intermembrane space enzyme cytochrome b2 by isolated yeast mitochondria. J Biol Chem. 1982;257(21):13075–80. https://doi.org/10.1016/S0021-9258(18)33624-X.
Article
CAS
PubMed
Google Scholar
Dastych H. Niesporczaki (Tardigrada) Tatrzańskiego Parku Narodowego. Monogr Fauny Pol. 1980;9:1–232.
Google Scholar
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94. https://doi.org/10.1093/genetics/77.1.71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zar JH. Biostatistical analysis. 5th ed. Prentice Hall: Northern Illinois University; 1999.
Google Scholar
Sokal RR, Rohlp FJ. Biometry: the principles and practice of statistics in biological research. 3rd ed. New York: WH Freeman and Company; 1995.
Google Scholar
R Core Team R. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. http://www.R-project.org/
Google Scholar
Robertson A, Schaltz K, Neimanis K, Staples JF, AE MD. Heterologous expression of the Crassostrea gigas (Pacific oyster) alternative oxidase in the yeast Saccharomyces cerevisiae. J Bioenerg Biomembr. 2016;48(5):509–20. https://doi.org/10.1007/s10863-016-9685-5.
Article
CAS
PubMed
Google Scholar
Przychodzen W, Nycz JE, Nam Y-J, Lee D-U. Cytotoxic and antioxidant activities of benzohydroxamic acid analogues. Bull Kor Chem Soc. 2013;34:1. https://doi.org/10.5012/bkcs.2013.34.10.XXX.
Article
CAS
Google Scholar
Adewuyi A, Otuechere CA, Oteglolade ZO, Bankole O, Unuabonah EI. Evaluation of the safety profile and antioxidant activity of fatty hydroxamic acid from underutilized seed oil of Cyperus esculentus. J Acute Dis. 2015;4:230–5. https://doi.org/10.1016/j.joad.2015.04.010.
Article
Google Scholar
Fernandez-Ayala DJ, Sanz A, Vartiainen S, Kemppainen KK, Babusiak M, Mustalahti E, et al. Expression of the C. intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab. 2009;9(5):449–60. https://doi.org/10.1016/j.cmet.2009.03.004.
Article
CAS
PubMed
Google Scholar
El-Khoury R, Dufour E, Rak M, Ramanantsoa N, Grandchamp N, Csaba Z, et al. Alternative oxidase expression in the mouse enables bypassing cytochrome c oxidase blockade and limits mitochondrial ROS overproduction. PLoS Genet. 2013;9(1):e1003182. https://doi.org/10.1371/journal.pgen.1003182.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szibor M, Dhandapani PK, Dufour E, Holmström KM, Zhuang Y, Salwig I, et al. Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology. Dis Model Mech. 2017;10(2):163–71. https://doi.org/10.1242/dmm.027839.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemppainen KK, Rinne J, Sriram A, Lakanmaa M, Zeb A, Tuomela T, et al. Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency. Hum Mol Genet. 2014;23(8):2078–93. https://doi.org/10.1093/hmg/ddt601.
Article
CAS
PubMed
Google Scholar
Rajendran J, Purhonen J, Tegelberg S, Smolander OP, Mörgelin M, Rozman J, et al. Alternative oxidase-mediated respiration prevents lethal mitochondrial cardiomyopathy. EMBO Mol Med. 2019;11:e9456. https://doi.org/10.15252/emmm.201809456.
Article
PubMed
CAS
Google Scholar
Sussarellu R, Dudognon T, Fabioux C, Soudant P, Moraga D, Kraffe E. Rapid mitochondrial adjustments in response to short-term hypoxia and re-oxygenation in the Pacific oyster, Crassostrea gigas. J Exp Biol. 2013;216(9):1561–9. https://doi.org/10.1242/jeb.075879.
Article
CAS
PubMed
Google Scholar
de Vries D, Marres CA. The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim Biophys Acta. 1987;895(3):205–39. https://doi.org/10.1016/s0304-4173(87)80003-4.
Article
PubMed
Google Scholar
Srinivasan S, Avadhani NG. Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med. 2012;53(6):1252–63. https://doi.org/10.1016/j.freeradbiomed.2012.07.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jönsson KI. Radiation tolerance in tardigrades: current knowledge and potential applications in medicine. Cancers (Basel). 2019;11:1333. https://doi.org/10.3390/cancers11091333.
Article
CAS
Google Scholar
Saari S, Garcia GS, Bremer K, Chioda MM, Andjelković A, Debes PV, et al. Alternative respiratory chain enzymes: therapeutic potential and possible pitfalls. Biochim Biophys Acta Mol basis Dis. 1865;2019(4):854–66. https://doi.org/10.1016/j.bbadis.2018.10.012.
Article
CAS
Google Scholar
Rizzo AM, Altiero T, Corsetto PA, Montorfano G, Guidetti R, Rebecchi L. Space flight effects on antioxidant molecules in dry tardigrades: the TARDIKISS experiment. Biomed Res Int. 2015. https://doi.org/10.1155/2015/167642; 2015:1–7.
Hermes-Lima M, Storey KB. Role of antioxidant defenses in the tolerance of severe dehydration by anurans. The case of the leopard frog Rana pipiens. Mol Cell Biochem. 1998;189(1/2):79–89. https://doi.org/10.1023/A:1006868208476.
Article
CAS
PubMed
Google Scholar
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.
Article
CAS
Google Scholar
Guidetti R, Jönsson KI. Long-term anhydrobiotic survival in semi-terrestrial micrometazoans. J Zool (Lond). 2002;257(2):181–7. https://doi.org/10.1017/S095283690200078X.
Article
Google Scholar
Neumann S, Reuner A, Brümmer F, Schill RO. DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol. 2009;153(4):425–9.
Article
PubMed
CAS
Google Scholar
Wright JC. Desiccation tolerance and water-retentive mechanisms in tardigrades. J Exp Biol. 1989;142:267–92.
Google Scholar
Crowe J, Clegg J. Anhydrobiosis. Stroudsburg: Hutchinson & Ross; 1973.
Google Scholar
Kayes SM, Cramp RL, Hudson NJ, Franklin CE. Surviving the drought: burrowing frogs save energy by increasing mitochondrial coupling. J Exp Biol. 2009;212(14):2248–53.
Article
PubMed
Google Scholar
Storey KB, Storey JM. Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev Camb Philos Soc. 2004;79(1):207–33. https://doi.org/10.1017/s1464793103006195.
Article
PubMed
Google Scholar
Letendre J, Leboulenger F, Durand F. Oxidative challenge and redox sensing in mollusks: effects of natural and anthropic stressors. In: Farooqui T, Farooqui AA, editors. Oxidative stress in vertebrates and invertebrates: Molecular aspects of cell signaling. New Jersey: Wiley-Blackwell; 2012. p. 361–76. https://doi.org/10.1002/9781118148143.ch7.
Google Scholar