Shoemaker CR. Observations on the amphipod genus Parhyale. Proc U S Natl Mus. 1956;106:345–58.
Article
Google Scholar
Tararam AS, Wakabara Y, Leite FPP. Notes on Parhyale hawaiensis (Dana). Crustacea-Amphipoda Bull Mar Sci. 1978;28:782–6.
Google Scholar
LeCroy SE. An illustrated identification guide to the nearshore marine and estuarine gammaridean Amphipoda of Florida. Vol. 4. Families Anamixidae, Eusiridae, Hyalellidae, Hyalidae, Iphimediidae, Ischyroceridae, Lysianassidae, Megaluropidae and Melphidippidae. Tallahassee, Florida: Florida Department of Environmental Protection; 2007.
Google Scholar
Martin-Smith KM. Short-term dynamics of tropical macroalgal epifauna: patterns and processes in recolonisation of Sargassum fissifolium. Mar Ecol Prog Ser. 1994;110:177–85.
Article
Google Scholar
Dana JD. Crustacea. Part II U S Explor Exped. 1853;17:689–1618.
Google Scholar
Valério-Berardo MT, Flynn MN. Composition and seasonality of an amphipod community assoiated to the algae Bryocladia trysigera. Braz J Biol. 2002;62:735–42.
Article
PubMed
Google Scholar
Alegretti L, de Aragão Umbuzeiro G, Flynn MN. Population Dynamics of Parhyale hawaiensis (Dana, 1853) (Amphipoda: Hyalidae) Associated with an Intertidal Algal Belt in Southeastern Brazil. J Crustac Biol. 2016;36:785–91.
Alegretti L, de Aragão Umbuzeiro G, Flynn MN. Biologia populacional de Parhyale hawaiensis associada ao fital, Itanhém, São Paulo. Rev Intertox Toxicol Risco Ambient E Soc. 2015;8:36–49.
Google Scholar
Sainte-Marie B. A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. In: Watling L, editor. VIIth Int Colloq Amphipoda proc VIIth Int Colloq Amphipoda held Walpole Maine USA 14–16 sept 1990. Dordrecht: Springer Netherlands; 1991. p. 189–227.
Chapter
Google Scholar
Poovachiranon S, Boto K, Duke N. Food preference studies and ingestion rate measurements of the mangrove amphipod Parhyale hawaiensis (Dana). J Exp Mar Biol Ecol. 1986;98:129–40.
Article
Google Scholar
Artal MC, dos Santos a, Henry TB, de Aragão Umbuzeiro G. Development of an acute toxicity test with the tropical marine amphipod Parhyale hawaiensis. Ecotoxicology. 2018;27:103–8.
Article
PubMed
CAS
Google Scholar
Rehm EJ, Hannibal RL, Chaw RC, Vargas-Vila MA, Patel NH. The Crustacean Parhyale hawaiensis: A New Model for Arthropod Development. Cold Spring Harb Protoc. 2009;2009:pdb.emo114.
Article
PubMed
Google Scholar
Stamataki E, Pavlopoulos A. Non-insect crustacean models in developmental genetics including an encomium to Parhyale hawaiensis. Curr Opin Genet Dev. 2016;39:149–56.
Article
CAS
PubMed
Google Scholar
Browne WE, Price AL, Gerberding M, Patel NH. Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis. 2005;42:124–49.
Article
PubMed
Google Scholar
Gerberding M, Browne WE, Patel NH. Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates. Development. 2002;129:5789–801.
Article
CAS
PubMed
Google Scholar
Alwes F, Hinchen B, Extavour CG. Patterns of cell lineage, movement, and migration from germ layer specification to gastrulation in the amphipod crustacean Parhyale hawaiensis. Dev Biol. 2011;359:110–23.
Article
CAS
PubMed
Google Scholar
Rehm EJ, Hannibal RL, Chaw RC, Vargas-Vila MA, Patel NH. Fixation and Dissection of Parhyale hawaiensis Embryos. Cold Spring Harb Protoc. 2009;2009:pdb.prot5127.
Article
PubMed
Google Scholar
Rehm EJ, Hannibal RL, Chaw RC, Vargas-Vila MA, Patel NH. In Situ Hybridization of Labeled RNA Probes to Fixed Parhyale hawaiensis Embryos. Cold Spring Harb Protoc. 2009;2009:pdb.prot5130.
Article
PubMed
Google Scholar
Rehm EJ, Hannibal RL, Chaw RC, Vargas-Vila MA, Patel NH. Antibody Staining of Parhyale hawaiensis Embryos. Cold Spring Harb Protoc. 2009;2009:pdb.prot5129.
Article
PubMed
Google Scholar
Pavlopoulos A, Averof M. Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis. Proc Natl Acad Sci. 2005;102:7888–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pavlopoulos A, Kontarakis Z, Liubicich DM, Serano JM, Akam M, Patel NH, et al. Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci. 2009;106:13897–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kontarakis Z, Pavlopoulos A, Kiupakis A, Konstantinides N, Douris V, Averof M. A versatile strategy for gene trapping and trap conversion in emerging model organisms. Development. 2011;138:2625–30.
Article
CAS
PubMed
Google Scholar
Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, et al. Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci. 2009;106:13892–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Özhan-Kizil G, Havemann J, Gerberding M. Germ cells in the crustacean Parhyale hawaiensis depend on vasa protein for their maintenance but not for their formation. Dev Biol. 2009;327:230–9.
Article
PubMed
CAS
Google Scholar
Vargas-Vila MA, Hannibal RL, Parchem RJ, Liu PZ, Patel NH. A prominent requirement for single-minded and the ventral midline in patterning the dorsoventral axis of the crustacean Parhyale hawaiensis. Development. 2010;137:3469–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin A, Serano JM, Jarvis E, Bruce HS, Wang J, Ray S, et al. CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution. Curr Biol. 2016;26:14–26.
Article
CAS
PubMed
Google Scholar
Zeng V, Villanueva KE, Ewen-Campen BS, Alwes F, Browne WE, Extavour CG. De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis. BMC Genomics. 2011;12:581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blythe MJ, Malla S, Everall R, Shih Y, Lemay V, Moreton J, et al. High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies. PLoS One. 2012;7:e33784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nestorov P, Battke F, Levesque MP, Gerberding M. The maternal transcriptome of the crustacean Parhyale hawaiensis is inherited asymmetrically to invariant cell lineages of the ectoderm and mesoderm. PLoS One. 2013;8:e56049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, et al. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife. 2016;5:e20062.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alwes F, Enjolras C, Averof M. Live imaging reveals the progenitors and cell dynamics of limb regeneration. eLife. 2016;5:e19766.
Article
PubMed
PubMed Central
Google Scholar
Wolff C, Tinevez J-Y, Pietzsch T, Stamataki E, Harich B, Guignard L, et al. Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. eLife. 2018;7:e34410.
Article
PubMed
PubMed Central
Google Scholar
Ramos AP, Gustafsson O, Labert N, Salecker I, Nilsson DE, Averof M. The visual system of the genetically tractable crustacean Parhyale hawaiensis: diversification of eyes and visual circuits associated with low-resolution vision. bioRxiv. 2019:527564.
Sandeman DC, Kenning M, Harzsch S. Adaptive trends in malacostracan brain form and function related to behavior. In: Derby C, Thiel M, editors. Crustac Nerv Syst their control Behav Nat Hist Crustac. Oxford: Oxford University Press; 2014. p. 11–48.
Google Scholar
Stegner MEJ, Fritsch M, Richter S. The central complex in Crustacea. In: Wägele JW, Bartolomaeus T, editors. Deep metazoan phylogeny backbone tree life. Berlin, Boston: De Gruyter; 2014. p. 361–84.
Chapter
Google Scholar
Schmidt M. Malacostraca. In: Schmidt-Rhaesa A, Harzsch S, Purschke G, editors. Struct Evol Invertebr Nerv Syst. Oxford: Oxford University Press; 2016. p. 529–82.
Google Scholar
Harzsch S, Krieger J. Crustacean olfactory systems: a comparative review and a crustacean perspective on olfaction in insects. Prog Neurobiol. 2018;161:23–60.
Article
CAS
PubMed
Google Scholar
Gräber H. Über die Gehirne der Amphipoden und Isopoden. Z Für Morphol Ökol Tiere. 1933;26:334–71.
Article
Google Scholar
Hanström B. The brain, the sense organs, and the incretory organs of the head in the Crustacea Malacostraca. K Fysiogr Sällsk Lund Handl. 1947;58:1–45.
Google Scholar
MacPherson BR, Steele VJ. Microanatomy of the central nervous system of Gammarus setosus Dementieva: the Suboesophageal ganglion and ventral ganglion chain. Crustac Suppl. 1980:108–11.
MacPherson BR, Steele VJ. Microanatomy of the central nervous system of Gammarus setosus Dementieva (Amphipoda). The supraoesophageal ganglion (brain). Crustaceana. 1980:113–20.
Helluy S, Thomas F. Effects of Microphallus papillorobustus (Platyhelminthes: Trematoda) on serotonergic immunoreactivity and neuronal architecture in the brain of Gammarus insensibilis (Crustacea: Amphipoda). Proc R Soc B Biol Sci. 2003;270:563–8.
Article
CAS
Google Scholar
Madsen N. The brain of the amphipod Orchestia platensis Krøyer. Crustaceana. 1960;1:173–8.
Article
Google Scholar
Ramm T, Scholtz G. No sight, no smell? – brain anatomy of two amphipod crustaceans with different lifestyles. Arthropod Struct Dev. 2017;46:537–51.
Article
PubMed
Google Scholar
Divakaran O. Nervous system of Parhyale hawaiensis Dana (Crustacea: Amphipoda). Proc Indian Natl Sci Acad B Biol Sci. 1982;2:218–24.
Google Scholar
Mulisch M, Welsch U. Romeis - Mikroskopische Technik. Springer-Verlag; 2015.
Richter KN, Revelo NH, Seitz KJ, Helm MS, Sarkar D, Saleeb RS, et al. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J. 2018;37:139–59.
Article
CAS
PubMed
Google Scholar
Moffett JR, Namboodiri AMA. Expression of N-Acetylaspartate and N-Acetylaspartylglutamate in the Nervous System. In: Moffett JR, Tieman SB, Weinberger DR, Coyle JT, Namboodiri AMA, editors. N-Acetylaspartate. Springer US; 2006. p. 7–26.
Sombke A, Harzsch S, Hansson BS. Organization of Deutocerebral Neuropils and Olfactory Behavior in the centipede Scutigera coleoptrata (Linnaeus, 1758) (Myriapoda: Chilopoda). Chem Senses. 2011;36:43–61.
Article
PubMed
Google Scholar
Sombke A, Lipke E, Michalik P, Uhl G, Harzsch S. Potential and limitations of X-Ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey: micro-CT in arthropod neuroanatomy. J Comp Neurol. 2015;523:1281–95.
Article
PubMed
PubMed Central
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
Article
CAS
PubMed
Google Scholar
Hörnig MK, Sombke A, Haug C, Harzsch S, Haug JT. What nymphal morphology can tell us about parental investment–a group of cockroach hatchlings in Baltic Amber documented by a multi-method approach. Palaeontol Electron. 2016;19:1–20.
Google Scholar
Saalfeld S, Fetter R, Cardona A, Tomancak P. Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat Methods. 2012;9:717–20.
Article
CAS
PubMed
Google Scholar
Sandeman D, Sandeman R, Derby C, Schmidt M. Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull. 1992;183:304–26.
Article
CAS
PubMed
Google Scholar
Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, et al. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool. 2010;7:29.
Article
PubMed
PubMed Central
Google Scholar
Loesel R, Wolf H, Kenning M, Harzsch S, Sombke A. Architectural Principles and Evolution of the Arthropod Central Nervous System. In: Minelli A, Boxshall G, Fusco G, editors. Arthropod Biol Evol. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 299–342.
Chapter
Google Scholar
Kenning M, Müller C, Wirkner CS, Harzsch S. The Malacostraca (Crustacea) from a neurophylogenetic perspective: new insights from brain architecture in Nebalia herbstii leach, 1814 (Leptostraca, Phyllocarida). Zool Anz J Comp Zool. 2013;252:319–36.
Article
Google Scholar
Wirkner CS, Richter S. Comparative analysis of the circulatory system in Amphipoda (Malacostraca, Crustacea). Acta Zool. 2007;88:159–71.
Article
Google Scholar
Hanström B. Neue Untersuchungen über Sinnesorgane und Nervensysteme der Crustceen. II. Zool Jahrb Abt Anat Ontog Tiere. 1932;56:387–520.
Google Scholar
Homberg U. Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct Dev. 2008;37:347–62.
Article
PubMed
Google Scholar
Hanström B. Neue Untersuchungen über Sinnesorgane und Nervensystem der Crustaceen. I Z Für Morphol Ökol Tiere. 1931;23:80–236.
Article
Google Scholar
Strausfeld NJ. Arthropod brains. Evolution, functional elegance, and historical significance. Cambridge: Belknap; 2012.
Book
Google Scholar
Sztarker J, Strausfeld NJ, Tomsic D. Organization of optic lobes that support motion detection in a semiterrestrial crab. J Comp Neurol. 2005;493:396–411.
Article
PubMed
PubMed Central
Google Scholar
Strausfeld NJ, Nässel DR. Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum H, editor. Handb Sens Physiol. Berlin: Springer Verlag; 1981. p. 1–132.
Google Scholar
Sombke A, Harzsch S. Immunolocalization of histamine in the optic neuropils of Scutigera coleoptrata (Myriapoda: Chilopoda) reveals the basal organization of visual systems in Mandibulata. Neurosci Lett. 2015;594:111–6.
Article
CAS
PubMed
Google Scholar
Derby CD, Weissburg MJ. The chemical senses and cheomsensory ecology of crustaceans. In: Derby CD, Thiel M, editors. Nat Hist Crustac Nerv Syst Control Behav. Oxford: Oxford University Press; 2014. p. 263–292.
Stegner ME, Stemme T, Iliffe TM, Richter S, Wirkner CS. The brain in three crustaceans from cavernous darkness. BMC Neurosci. 2015;16:19.
Article
PubMed
PubMed Central
Google Scholar
Stemme T, Eickhoff R, Bicker G. Olfactory projection neuron pathways in two species of marine Isopoda (Peracarida, Malacostraca, Crustacea). Tissue Cell. 2014;46:260–3.
Article
PubMed
Google Scholar
Blaustein DN, Derby CD, Simmons RB, Beall AC. Structure of the brain and medulla terminalis of the spiny lobster Panulirus argus and the crayfish Procambarus clarkii, with an emphasis on olfactory centers. J Crustac Biol. 1988;8:493–519.
Article
Google Scholar
Harzsch S, Hansson BS. Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci. 2008;9:58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Krieger J, Sandeman RE, Sandeman DC, Hansson BS, Harzsch S. Brain architecture of the largest living land arthropod, the Giant robber crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front Zool. 2010;7:25.
Article
PubMed
PubMed Central
Google Scholar
Sullivan JM, Beltz BS. Evolutionary changes in the olfactory projection neuron pathways of eumalacostracan crustaceans. J Comp Neurol. 2004;470:25–38.
Article
PubMed
Google Scholar
Meth R, Wittfoth C, Harzsch S. Brain architecture of the Pacific white shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input? Cell Tissue Res. 2017;369:255–71.
Article
PubMed
Google Scholar
Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K. Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem. 1998;5:11–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolff GH, Thoen HH, Marshall J, Sayre ME, Strausfeld NJ. An insect-like mushroom body in a crustacean brain. eLife. 2017;6:e29889.
Article
PubMed
PubMed Central
Google Scholar
Hanström B. Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere unter Berücksichtigung seiner Funktion. Berlin: Julius Springer Verlag; 1928.
Google Scholar
Andersson A. The organ of Bellonci in Ostracodes: an ultrastructural study of the rod-shaped, or frontal. Organ Acta Zool. 1977;58:197–204.
Article
Google Scholar
Dahl E. Main evolutionary lines among recent Crustacea. In: Wittington HB, Rolfe WDI, editors. Phylogeny Evol Crustac. Cambridge, Massachusetts: Museum of Comparative Zoology; 1963. p. 1–15.
Google Scholar
Kauri T. The organ of Bellonci [doctoral thesis]: University of Lund; 1976.
Fritsch M, Kaji T, Olesen J, Richter S. The development of the nervous system in Laevicaudata (Crustacea, Branchiopoda): insights into the evolution and homologies of branchiopod limbs and ‘frontal organs’. Zoomorphology. 2013;132:163–81.
Article
Google Scholar
Elofsson R, Hallberg E, Nilsson HL. The juxtaposed compound eye and organ of Bellonci in Haploops tubicola (Crustacea: Amphipoda) ? The fine structure of the organ of Bellonci. Zoomorphology. 1980;96:255–62.
Article
Google Scholar
Chaigneau J, Chataigner JP. The connections of the sensory organ of Bellonci with the brain in isopoda (Crustacea). Cell Tissue Res. 1977;182:61–72.
Article
CAS
PubMed
Google Scholar
Steele VJ. Morphology and ultrastructure of the organ of Bellonci in the marine amphipod Gammarus setosus. J Morphol. 1984;182:97–131.
Article
Google Scholar
Chaigneau J. Les organes des sens autres que ceux de la vision. In: Forest J, editor. Traité Zool Anat Systématique Biol Crustac. Paris: Masson; 1994. p. 345–410.
Google Scholar
Hallberg E, Kauri T. Evidence of a non-photoreceptive function of the sensory units of the organ of Bellonci in Macrobrachium rosenbergii (Decapoda, Caridea). Crustaceana. 1992;62:137–41.
Article
Google Scholar
Chaigneau J. L’organe de Bellonci des crustacés. Historique et état actuel des connaissances. Arch Zool Expérimentale Générale. 1978;119:185–99.
Google Scholar
Loesel R, Nässel DR, Strausfeld NJ. Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev. 2002;31:77–91.
Article
PubMed
Google Scholar
Utting M, Sandeman R, Sandeman D. Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol. 2000;416:245–61.
Article
CAS
PubMed
Google Scholar
Schmidt M, Ache B. Antennular projections to the midbrain of the spiny lobster. II. Sensory innervation of the olfactory lobe. J Comp Neurol. 1992;318:291–303.
Article
CAS
PubMed
Google Scholar
Hanström B. Das Deutocerebrum der Crustaceen. Zool Jahrb Abt Anat Ontog Tiere. 1929;51:535–48.
Google Scholar
Schachtner J, Schmidt M, Homberg U. Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda). Arthropod Struct Dev. 2005;34:257–99.
Article
Google Scholar
Sombke A, Lipke E, Kenning M, Müller CH, Hansson BS, Harzsch S. Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci. 2012;13:1.
Article
PubMed
PubMed Central
Google Scholar
Polanska MA, Tuchina O, Agricola H, Hansson BS, Harzsch S. Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab. Mol Brain. 2012;5:29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt M, Ache BW. Immunocytochemical analysis of glomerular regionalization and neuronal diversity in the olfactory deutocerebrum of the spiny lobster. Cell Tissue Res. 1997;287:541–63.
Article
CAS
PubMed
Google Scholar
Fraser PJ. Interneurones in crab connectives (Carcinus Maenas (L.)): directional Statocyst Fibres. J Exp Biol. 1974;61:615–28.
Article
CAS
PubMed
Google Scholar
Yoshino M, Kondoh Y, Hisada M. Projection of statocyst sensory neurons associated with crescent hairs in the crayfish Procambarus clarkii Girard. Cell Tissue Res. 1983;230:37–48.
Article
CAS
PubMed
Google Scholar
Schmidt M, Ache B. Processing of antennular input in the brain of the spiny lobster, Panulirus argus. I. Non-olfactory chemosensory and mechanosensory pathway of the lateral and median antennular neuropils. J Comp Physiol A. 1996;178:579–604.
Article
Google Scholar
Maynard DM. Integration in crustacean ganglia. Symp Soc Exp Biol. 1966;20:111–49.
CAS
PubMed
Google Scholar
Schmidt M, Ache BW. Antennular projections to the midbrain of the spiny lobster. III. Central arborizations of motoneurons. J Comp Neurol. 1993;336:583–94.
Article
CAS
PubMed
Google Scholar
Derby CD, Fortier JK, Harrison PJH, Cate HS. The peripheral and central antennular pathway of the Caribbean stomatopod crustacean Neogonodactylus oerstedii. Arthropod Struct Dev. 2003;32:175–88.
Article
PubMed
Google Scholar
Tautz J, Müller-Tautz R. Antennal neuropile in the brain of the crayfish: morphology of neurons. J Comp Neurol. 1983;218:415–25.
Article
CAS
PubMed
Google Scholar
Sandeman DC, Scholtz G, Sandeman RE. Brain evolution in decapod Crustacea. J Exp Zool. 1993;265:112–33.
Article
Google Scholar
Krieger J, Sombke A, Seefluth F, Kenning M, Hansson BS, Harzsch S. Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura) with notes on other marine hermit crabs. Cell Tissue Res. 2012;348:47–69.
Article
PubMed
Google Scholar
Conlan KE. Precopulatory mating behavior and sexual dimorphism in the amphipod Crustacea. In: Watling L, editor. VIIth Int Colloq Amphipoda proc VIIth Int Colloq Amphipoda held Walpole Maine USA 14–16 sept 1990. Dordrecht: Springer Netherlands; 1991. p. 255–82.
Chapter
Google Scholar
Wolff C, Gerberding M. “Crustacea”: comparative aspects of early development. In: Wanninger A, editor. Evol Dev Biol Invertebr. Vienna: Springer; 2015. p. 39–61.
Chapter
Google Scholar
Borowsky B, Borowsky R. The reproductive behaviors of the amphipod crustacean Gammarus palustris (Bousfield) and some insights into the nature of their stimuli. J Exp Mar Biol Ecol. 1987;107:131–44.
Article
Google Scholar
Lowry JK. The callynophore, a eucaridan/peracaridan sensory organ prevalent among the Amphipoda (Crustacea). Zool Scr. 1986;15:333–49.
Article
Google Scholar
Hallberg E, Johansson KUI, Wallén R. Olfactory sensilla in crustaceans: morphology, sexual dimorphism, and distribution patterns. Int J Insect Morphol Embryol. 1997;26:173–80.
Article
Google Scholar
Johansson KU, Hallberg E. Male-specific structures in the olfactory system of mysids (Mysidacea; Crustacea). Cell Tissue Res. 1992;268:359–68.
Article
Google Scholar
Krieger J, Braun P, Rivera NT, Schubart CD, Müller CHG, Harzsch S. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): evidence for aerial olfaction? PeerJ. 2015;3:e1433.
Article
PubMed
PubMed Central
CAS
Google Scholar
Loesel R. Comparative morphology of the central neuropils in the brain of arthropods and its evolutionary and functional implications. Acta Biol Hung. 2004;55:39–51.
Article
CAS
PubMed
Google Scholar