Mayr E, Provine WB. The evolutionary synthesis: perspectives on the unification of biology: Harvard University Press; 1998.
Schlichting CD, Pigliucci M. Phenotypic evolution: a reaction norm perspective. Sinauer Associates Incorporated; 1998.
Google Scholar
Whitman DW, Agrawal AA. What is phenotypic plasticity and why is it important. Phenotypic plasticity of insects: Mechanisms and Consequences. 2009:1–63.
Kelly SA, Panhuis TM, Stoehr AM. Phenotypic plasticity: molecular mechanisms and adaptive significance. Comp Physiol. 2012;2:1417–39.
Google Scholar
Piersma T, Van Gils JA. The flexible phenotype: a body-centered integration of ecology, physiology, and behaviour: Oxford University Press; 2011.
Fordyce JA. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J Exp Biol. 2006;209:2377–83.
Article
PubMed
Google Scholar
Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, Grossart H-P, Philippot L, Bodelier PL. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol. 2014;5:251.
Article
PubMed
PubMed Central
Google Scholar
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. Let the concept of trait be functional. Oikos. 2007;116:882–92.
Article
Google Scholar
Bjørnstad ON, Hansen TF. Individual variation and population dynamics. Oikos. 1994;69:167–71.
Article
Google Scholar
Grant P, Price T. Population variation in continuously varying traits as an ecological genetics problem. Ame Zool. 1981;21:795–811.
Article
Google Scholar
Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VH, Schreiber SJ, Urban MC, Vasseur DA. Why intraspecific trait variation matters in community ecology. Trends Ecol Evol. 2011;26:183–92.
Article
PubMed
PubMed Central
Google Scholar
Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML. The ecology of individuals: incidence and implications of individual specialization. Am Nat. 2002;161:1–28.
Article
PubMed
Google Scholar
Pachepsky E, Bown JL, Eberst A, Bausenwein U, Millard P, Squire GR, Crawford JW. Consequences of intraspecific variation for the structure and function of ecological communities part 2: linking diversity and function. Ecol Model. 2007;207:277–85.
Article
Google Scholar
Wood CM, McKinney ST, Loftin CS. Intraspecific functional diversity of common species enhances community stability. Ecol Evol. 2017;7:1553–60.
Article
PubMed
PubMed Central
Google Scholar
Berg MP, Ellers J. Trait plasticity in species interactions: a driving force of community dynamics. Evo Ecol. 2010;24:617–29.
Article
Google Scholar
Malerba ME, Heimann K, Connolly SR. Nutrient utilization traits vary systematically with intraspecific cell size plasticity. Funct Ecol. 2016;30:1745–55.
Article
Google Scholar
Pascacio-Villafán C, Williams T, Birke A, Aluja M. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect. Sci Rep 2016; 6:srep29413.
Raubenheimer D, Lee K, Simpson S. Does Bertrand's rule apply to macronutrients? Proc R Soc Lond B. 2005;272:2429–34.
Article
CAS
Google Scholar
Simpson SJ, Raubenheimer D. The hungry locust. Advances in the study of behavior. Volume 29: Elsevier. 2000:1–44.
Simpson SJ, Raubenheimer D. The nature of nutrition: a unifying framework from animal adaptation to human obesity: Princeton University Press; 2012.
Wetzel WC, Kharouba HM, Robinson M, Holyoak M, Karban R. Variability in plant nutrients reduces insect herbivore performance. Nature. 2016;539:425.
Article
CAS
PubMed
Google Scholar
Gibert JP, Allen RL, Hruska RJ, DeLong JP. The ecological consequences of environmentally induced phenotypic changes. Ecol Lett. 2017;20:997–1003.
Article
PubMed
Google Scholar
Liang D, Silverman J. “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the argentine ant, Linepithema humile. Naturwissenschaften. 2000;87:412–6.
Article
CAS
PubMed
Google Scholar
Lee KP, Jang T, Ravzanaadii N, Rho MS. Macronutrient balance modulates the temperature-size rule in an ectotherm. Am Nat. 2015;186:212–22.
Article
PubMed
Google Scholar
DeMott WR. Utilization of a cyanobacterium and a phosphorus-deficient green alga as complementary resources by daphnids. Ecology. 1998;79:2463–81.
Article
Google Scholar
Boersma M, Elser JJ. Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology. 2006;87:1325–30.
Article
PubMed
Google Scholar
Lefcheck JS, Whalen MA, Davenport TM, Stone JP, Duffy JE. Physiological effects of diet mixing on consumer fitness: a meta-analysis. Ecology. 2013;94:565–72.
Article
PubMed
Google Scholar
Senior AM, Nakagawa S, Lihoreau M, Simpson SJ, Raubenheimer D. An overlooked consequence of dietary mixing: a varied diet reduces interindividual variance in fitness. Am Nat. 2015;186:649–59.
Article
PubMed
Google Scholar
Bunning H, Bassett L, Clowser C, Rapkin J, Jensen K, House CM, Archer CR, Hunt J. Dietary choice for a balanced nutrient intake increases the mean and reduces the variance in the reproductive performance of male and female cockroaches. Ecol Evol. 2016;6:4711–30.
Article
PubMed
PubMed Central
Google Scholar
Han CS, Dingemanse NJ. You are what you eat: diet shapes body composition. personality and behavioral stability BMC Evol Biol. 2017;17:8.
Article
PubMed
Google Scholar
Sterner RW, Elser JJ. Ecological stoichiometry: the biology of elements from molecules to the biosphere: Princeton University Press; 2002.
Heethoff M, Bergmann P, Laumann M, Norton RA. The 20th anniversary of a model mite: a review of current knowledge about Archegozetes longisetosus (Acari, Oribatida). Acarologia. 2013;53:353–68.
Article
Google Scholar
Bergmann P, Laumann M, Norton RA, Heethoff M. Cytological evidence for automictic thelytoky in parthenogenetic oribatid mites (Acari, Oribatida): Synaptonemal complexes confirm meiosis in Archegozetes longisetosus. Acarologia. 2018;58:342–56.
Google Scholar
Woltereck R. Weitere experimentelle Untersuchungen über Artveränderung, speziell über des Wesen quantitativer Artunterschiede bei Daphniden. Ver Deutsche Zool Gesell. 1909;19:110–72.
Google Scholar
Stearns SC. Trade-offs in life-history evolution. Funct Ecol. 1989;3:259–68.
Article
Google Scholar
Scharloo W. Developmental and physiological aspects of reaction norms. Bioscience. 1989;39:465–71.
Article
Google Scholar
Norton RA. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In: Houck MA, editor. Mites: ecological and evolutionary analyses of life-history patterns. Chapman & Hall edition. New York: Chapman & Hall; 1994. p. 99–135.
Chapter
Google Scholar
Heethoff M, Raspotnig G. Triggering chemical defense in an oribatid mite using artificial stimuli. Exp Appl Acarol. 2012;56:287–95.
Article
CAS
PubMed
Google Scholar
Raspotnig G. Chemical alarm and defence in the oribatid mite Collohmannia gigantea (Acari: Oribatida). Exp Appl Acarol. 2006;39:177–94.
Article
CAS
PubMed
Google Scholar
Heethoff M, Koerner L, Norton RA, Raspotnig G. Tasty but protected-first evidence of chemical defense in oribatid mites. J Chem Ecol. 2011;37:1037–43.
Article
CAS
PubMed
Google Scholar
Heethoff M, Rall BC. Reducible defence: chemical protection alters the dynamics of predator–prey interactions. Chemoecology. 2015;25:53–61.
Article
Google Scholar
Peschel K, Norton RA, Scheu S, Maraun M. Do oribatid mites live in enemy-free space? Evidence from feeding experiments with the predatory mite Pergamasus septentrionalis. Soil Biol Biochem. 2006;38:2985–9.
Article
CAS
Google Scholar
Jeffries M, Lawton J. Enemy free space and the structure of ecological communities. Biol J Linnean Soc. 1984;23:269–86.
Article
Google Scholar
Brückner A, Heethoff M. The ontogeny of oil gland chemistry in the oribatid mite Archegozetes longisetosus Aoki (Oribatida, Trhypochthoniidae). Int J Acarol. 2017;43:337–42.
Article
Google Scholar
Heethoff M. Regeneration of complex oil-gland secretions and its importance for chemical defense in an oribatid mite. J Chem Ecol. 2012;38:1116–23.
Article
CAS
PubMed
Google Scholar
Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6:241–52.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289–300.
Google Scholar
Anderson MJ. Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci. 2001;58:626–39.
Article
Google Scholar
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94.
Article
PubMed
PubMed Central
Google Scholar
Nakagawa S, Poulin R, Mengersen K, Reinhold K, Engqvist L, Lagisz M, Senior AM. Meta-analysis of variation: ecological and evolutionary applications and beyond. Methods Ecol Evol. 2015;6:143–52.
Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2016.
Google Scholar
Fox J, Weisberg S. An R companion to applied regression: Sage Publications; 2011.
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Soft. 2015;67:1–48.
Article
Google Scholar
Pohlert T. The pairwise multiple comparison of mean ranks package (PMCMR). R package. 2014:2004–6.
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M. The vegan package. Com Ecol Pack. 2007;10:631–7.
Google Scholar
Fox J, Andronic L, Ash M, Boye T, Calza S, Chang A, Grosjean P, Heiberger R, Kerns G, Lancelot R. Rcmdr: R Commander. R package version. 2009;1:5–4.
Google Scholar
Lynch M. Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Q Rev Biol. 1984;59:257–90.
Article
Google Scholar
Zehnder CB, Hunter MD. More is not necessarily better: the impact of limiting and excessive nutrients on herbivore population growth rates. Ecol Entomol. 2009;34:535–43.
Article
Google Scholar
Van Amelsvoort P, Usher M. Egg production related to food quality in Folsomia candida (Collembola: Isotomidae): effects on life history strategies. Pedobiologia. 1989;33:61–6.
Google Scholar
Bertrand G. On the role of trace substances in agriculture. Eighth Int Congr Appl Chem. 1912;28:30–40.
Google Scholar
Reger J, Lind MI, Robinson MR, Beckerman AP. Predation drives local adaptation of phenotypic plasticity. Nature Ecol Evol. 2018;2:100.
Article
Google Scholar
Draghi JA, Whitlock MC. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution. 2012;66:2891–902.
Article
PubMed
Google Scholar
Forsman A, Wennersten L. Inter-individual variation promotes ecological success of populations and species: evidence from experimental and comparative studies. Ecography. 2016;39:630–48.
Article
Google Scholar
Price TD, Qvarnström A, Irwin DE. The role of phenotypic plasticity in driving genetic evolution. Proc R Soc Lond B. 2003;270:1433–40.
Article
Google Scholar
Forsman A. Rethinking phenotypic plasticity and its consequences for individuals. populations and species Heredity. 2015;115:276.
Article
CAS
PubMed
Google Scholar
Blum MS. Chemical defenses of arthropods. New York: Academic Press, Inc.; 1981.
Google Scholar
Eisner T, Meinwald J. Defensive secretions of arthropods. Science. 1966;153:1341–50.
Article
CAS
PubMed
Google Scholar
Pasteels JM, Grégoire J-C, Rowell-Rahier M. The chemical ecology of defense in arthropods. Annu Rev Entomol. 1983;28:263–89.
Article
CAS
Google Scholar
Spencer KC. Chemical mediation of coevolution. San Diego, California. USA: Academic Press, Inc.; 1988.
Google Scholar
Baldwin IT, Dusenbery DB, Eisner T. Squirting and refilling: dynamics of p-benzoquinone production in defensive glands of Diploptera punctata. J Chem Ecol. 1990;16:2823–34.
Article
CAS
PubMed
Google Scholar
Fescemyer HW, Mumma RO. Regeneration and biosynthesis of dytiscid defensive agents (Coleoptera: Dytiscidae). J Chem Ecol. 1983;9:1449–64.
Article
CAS
PubMed
Google Scholar
Stearns SC, Kawecki TJ. Fitness sensitivity and the canalization of life-history traits. Evolution. 1994;48:1438–50.
Article
PubMed
Google Scholar
Brey T, Hain S. Growth, reproduction and production of Lissarca notorcadensis (Bivalvia: Philobryidae) in the Weddell Sea. Antarctica Marine Ecology Progress Series. 1992:219–26.
Article
Google Scholar
Thessalou-Legaki M, Kiortsis V. Estimation of the reproductive output of the burrowing shrimp Callianassa tyrrhena: a comparison of three different biometrical approaches. Mar Biol. 1997;127:435–42.
Article
Google Scholar
Brose U, Berlow EL, Martinez ND. Scaling up keystone effects from simple to complex ecological networks. Ecol Lett. 2005;8:1317–25.
Article
Google Scholar
Jennings S, Mackinson S. Abundance–body mass relationships in size-structured food webs. Ecol Lett. 2003;6:971–4.
Article
Google Scholar
Yodzis P, Innes S. Body size and consumer-resource dynamics. Am Nat. 1992;139:1151–75.
Article
Google Scholar
Burns J, Di Nardo P, Rodd F. The role of predation in variation in body shape in guppies Poecilia reticulata: a comparison of field and common garden phenotypes. J Fish Biol. 2009;75:1144–57.
Article
CAS
PubMed
Google Scholar
Sánchez-Hernández J, Vieira-Lanero R, Servia MJ, Cobo F. Feeding habits of four sympatric fish species in the Iberian Peninsula: keys to understanding coexistence using prey traits. Hydrobiologia. 2011;667:119–32.
Article
Google Scholar