Darwin C. On the origin of species by means of natural selection. London: Murray; 1859.
Google Scholar
Darwin C. The descent of man and selection in relation to sex. London: Murray; 1871.
Book
Google Scholar
Berns CM. The evolution of sexual dimorphism: understanding mechanisms of sexual shape differences. In: Moriyama H, editor. Sexual dimorphism. Rijeka: InTech; 2013. p. 1–16.
Google Scholar
Loyau A, Saint Jalme M, Cagniant C, Sorci G. Multiple sexual advertisements honestly reflect health status in peacocks. Behav Ecol Sociobiol. 2005;58:552–7.
Article
Google Scholar
Mathieu JM. Mating behavior of five species of Lucanidae (Coleoptera: Insecta). Can Entomol. 1969;101:1054–62.
Article
Google Scholar
Goss RJ. Deer antlers: regeneration, function, and evolution. New York: Academic Press; 1983.
Google Scholar
Servedio MR, Boughman JW. The role of sexual selection in local adaptation and speciation. Annu Rev Ecol Evol Syst. 2017;48:85–109.
Article
Google Scholar
West-Eberhard MJ. Sexual selection, social competition and speciation. Q Rev Biol. 1983;58:155–83.
Article
Google Scholar
Panhuis TM, Butlin R, Zuk M, Tregenza T. Sexual selection and speciation. Trends Ecol Evol. 2001;16:364–71.
Article
PubMed
Google Scholar
Ritchie MG. Sexual selection and speciation. Annu Rev Ecol Evol Syst. 2007;38:79–102.
Article
Google Scholar
Shine R. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Q Rev Biol. 1989;64:419–61.
Article
CAS
PubMed
Google Scholar
Voight JR. Sexual dimorphism and niche divergence in a mid-water octopod (Cephalopoda: Bolitaenidae). Biol Bull. 1995;189:113–9.
Article
CAS
PubMed
Google Scholar
Hedrick AV, Temeles EJ. The evolution of sexual dimorphism in animals: hypotheses and tests. Trends Ecol Evol. 1989;4:136–8.
Article
CAS
PubMed
Google Scholar
Head G. Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (Class Araneae). Evolution. 1995;49:776–81.
Article
PubMed
Google Scholar
Hormiga G, Scharff N, Coddington JA. The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae). Syst Biol. 2000;49:435–62.
Article
CAS
PubMed
Google Scholar
Vollrath F. Zur Ökologie und Biologie von kleptoparasitischen Argyrodes elevatus und synöken Argyrodes-Arten (Araneae, Theridiidae) [Doctoral Thesis]. University of Freiburg; 1977.
Knoflach B. Diversity in the copulatory behaviour of comb-footed spiders (Araneae, Theridiidae). In: Thaler K, editor. Diversity and Biology of Spiders, Scorpions and other Arachnids. Denisia (Linz); 2004. p. 161–256.
Huber BA, Eberhard WG. Courtship, copulation, and genital mechanics in Physocyclus globosus (Araneae, Pholcidae). Can J Zool. 1997;75:905–18.
Article
Google Scholar
Vanacker D, Borre JV, Jonckheere A, Maes L, Pardo S, Hendrickx F, et al. Dwarf spiders (Erigoninae, Linyphiidae, Araneae): good candidates for evolutionary research. Belg J Zool. 2003;133:143–9.
Google Scholar
Uhl G, Maelfait J-P. Male head secretion triggers copulation in the dwarf spider Diplocephalus permixtus. Ethology. 2008;114:760–7.
Article
Google Scholar
Kunz K, Garbe S, Uhl G. The function of the secretory cephalic hump in males of the dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae). Anim Behav. 2012;83:511–7.
Article
Google Scholar
Maes L, Vanacker D, Sylvia P, Maelfait JP. Comparative study of courtship and copulation in five Oedothorax species. Belg J Zool. 2004;134:29–35.
Google Scholar
Vahed K. The function of nuptial feeding in insects: a review of empirical studies. Biol Rev. 1998;73:43–78.
Article
Google Scholar
Vahed K. All that glisters is not gold: sensory bias, sexual conflict and nuptial feeding in insects and spiders. Ethology. 2007;113:105–27.
Article
Google Scholar
World Spider Catalog (2021). World Spider Catalog. Version 22.0. Natural History Museum Bern, online at http://wsc.nmbe.ch. Accessed on 10.April.2021. 10.24436/2
Hormiga G. Higher level phylogenetics of erigonine spiders (Araneae, Linyphiidae, Erigoninae). Smithson Contrib Zool. 2000;609:1–160.
Article
Google Scholar
Hormiga G. Cephalothoracic sulci in linyphiine spiders (Araneae, Linyphiidae, Linyphiinae). J Arachnol. 1999;27:94–102.
Google Scholar
Lin S-W, Lopardo L, Haase M, Uhl G. Taxonomic revision of the dwarf spider genus Shaanxinus Tanasevitch, 2006 (Araneae, Linyphiidae, Erigoninae), with new species from Taiwan and Vietnam. Org Divers Evol. 2019;19:211–76.
Article
Google Scholar
Lin S-W, Lopardo L, Uhl G. Evolution of nuptial-gift-related male prosomal structures: taxonomic revision and cladistic analysis of the dwarf spider genus Oedothorax Bertkau, 1883 (Araneae, Linyphiidae, Erigoninae). Zool J Linn Soc. 2021 (in press).
Wiehle H. Spinnentiere oder Arachnoidea, XI: Micryphantidae-Zwergspinnen. Tierwelt Deutschlands. 1960;47:1–620.
Google Scholar
Miller JA. Review of erigonine spider genera in the neotropics (Araneae: Linyphiidae, Erigoninae). Zool J Linn Soc. 2007;149:1–263.
Article
Google Scholar
Lopez A. Présence de glandes tégumentaires prosomatiques chez les mâles de deux Erigonidae (Araneae). C R Acad Sci. 1976;282:365–7.
Google Scholar
Blest AD, Taylor HH. The clypeal glands of Mynoglenes and of some other linyphiid spiders. J Zool. 1977;183:473–93.
Article
Google Scholar
Lopez A, Emerit M. Le dimorphisme sexuel prosomatique de Walckenaeria acuminata BLACKWALL, 1833 (Araneae, Erigonidae). Bull de la Soc Zool de France. 1981;106:125–31.
Google Scholar
Schaible U, Gack C, Paulus HF. Zur Morphologie, Histologie und biologischen Bedeutung der Kopfstrukturen männlicher Zwergspinnen (Linyphiidae: Erigoninae). Zoologische Jahrbücher (Systematik). 1986;113:389–408.
Google Scholar
Michalik P, Uhl G. Cephalic modifications in dimorphic dwarf spiders of the genus Oedothorax (Erigoninae, Linyphiidae, Araneae) and their evolutionary implications. J Morphol. 2011;272:814–32.
Article
PubMed
Google Scholar
Bristowe WS. The mating habits of spiders: a second supplement, with the description of a new thomisid from Krakatau. Proc Zool Soc Lond. 1931;4:1401–12.
Google Scholar
Schlegelmilch B. Zur biologischen Bedeutung der Kopffortsätze bei Zwergspinnenmännchen (Microphantidae). Diplomarbeit: Univ. Freiburg; 1974.
Google Scholar
Lopez A. Glandular aspects of sexual biology. In: Nentwig W, editor. Ecophysiology of Spiders [Internet]. Berlin: Springer; 1987. p. 121–32. https://doi.org/10.1007/978-3-642-71552-5_9
Schaible U, Gack C. Zur Morphologie, Histologie und biologischen Bedeutung der Kopfstrukturen einiger Arten der Gattung Diplocephalus (Araneida, Linyphiidae, Erigoninae). Verhandlungen des naturwissenschaftlichen Vereins in Hamburg. 1987;29:171–80.
Google Scholar
Kunz K, Michalik P, Uhl G. Cephalic secretion release in the male dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae): an ultrastructural analysis. Arthropod Struct Dev. 2013;42:477–82.
Article
PubMed
Google Scholar
Frick H, Nentwig W, Kropf C. Progress in erigonine spider phylogeny-the Savignia-group is not monophyletic (Araneae: Linyphiidae). Org Divers Evol. 2010;10:297–310.
Article
Google Scholar
Miller JA, Hormiga G. Clade stability and the addition of data: A case study from erigonine spiders (Araneae : Linyphiidae, Erigoninae). Cladistics. 2004;20:385–442.
Article
PubMed
Google Scholar
Tanisako A, Hori A, Okumura A, Miyata C, Kuzuryu C, Obi T, et al. Micro-CT of Pseudocneorhinus bifasciatus by projection X-ray microscopy. J Electron Microsc. 2005;54:379–83.
Google Scholar
Betz O, Wegst U, Weide D, Heethoff M, Helfen L, Lee W, et al. Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J Microsc. 2007;227:51–71.
Mizutani R, Takeuchi A, Hara T, Uesugi K, Suzuki Y. Computed tomography imaging of the neuronal structure of Drosophila brain. J Synchrotron Rad. 2007;14:282–7.
Article
CAS
Google Scholar
Beutel RG, Friedrich F, Whiting MF. Head morphology of Caurinus (Boreidae, Mecoptera) and its phylogenetic implications. Arthropod Struct Dev. 2008;37:418–33.
Article
PubMed
Google Scholar
Friedrich F, Beutel RG. Micro-computer tomography and a renaissance of insect morphology. Proc SPIE. 2008;7078:70781U1–6.
Mizutani R, Takeuchi A, Uesugi K, Takekoshi S, Osamura RY, Suzuki Y. X-ray microtomographic imaging of three-dimensional structure of soft tissues. Tissue Eng Part C Methods. 2008;14:359–63.
Article
PubMed
Google Scholar
Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9:11.
Article
PubMed
PubMed Central
Google Scholar
Sombke A, Lipke E, Michalik P, Uhl G, Harzsch S. Potential and limitations of X-Ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey. J Comp Neurol. 2015;523:1281–95.
Article
PubMed
PubMed Central
Google Scholar
Steinhoff POM, Uhl G. Taxonomy and nomenclature of some mainland SE-Asian Coeliccia species (Odonata, Platycnemididae) using micro-CT analysis. Zootaxa. 2015;4059:257–76.
Article
PubMed
Google Scholar
Sentenská L, Müller CH, Pekár S, Uhl G. Neurons and a sensory organ in the pedipalps of male spiders reveal that it is not a numb structure. Sci Rep. 2017;7:12209.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhandari K, Crisp P, Keller MA. The oesophageal diverticulum of Dirioxa pornia studied through micro-CT scan, dissection and SEM studies. BMC Biotechnol. 2019;19:89.
Article
PubMed
PubMed Central
Google Scholar
Palmgren P. On the muscular anatomy of spiders. Acta Zool Fenn. 1978;155:1–41.
Google Scholar
Palmgren P. Some comments on the anatomy of spiders. Ann Zool Fenn. 1980;17:161–73.
Google Scholar
Wood HM, Parkinson DY. Comparative morphology of cheliceral muscles using high resolution X-ray microcomputed-tomography in palpimanoid spiders (Araneae, Palpimanoidea). J Morphol. 2019;280:232–43.
Article
PubMed
Google Scholar
Foelix RF. Biology of Spiders. 3rd ed. New York: Oxford University Press; 2011. p. 419.
Google Scholar
Pollard SD. The feeding strategy of a crab spider, Diaea sp. indet. (Araneae: Thomisidae): post‐capture decision rules. J Zool. 1990;222:601–15.
Vanacker D, Maelfait JP, Baert L. The male dimorphism in the dwarf spider Oedothorax gibbosus (Blackwall, 1841) (Erigoninae, Linyphiidae, Araneae): Results of laboratory rearing experiments. Belg J Zool. 2001;131:39–44.
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:671–5.
Article
CAS
Google Scholar
Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics. 2008;24:774–86.
Article
Google Scholar
Goloboff PA, Mattoni CI, Quinteros AS. Continuous characters analyzed as such. Cladistics. 2006;22:589–601.
Article
PubMed
Google Scholar
Goloboff PA. Estimating character weights during tree-search. Cladistics. 1993;9:83–91.
Article
PubMed
Google Scholar
Nixon K. Winclada, program and documentation. 2002. Available from: www.cladistics.com. Assessed 9 Feb 2020.
Arnedo MA, Hormiga G, Scharff N. Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics. 2009;25:231–62.
Article
PubMed
Google Scholar
Hormiga G. Cladistics and the comparative morphology of linyphiid spiders and their relatives (Araneae, Araneoidea, Linyphiidae). Zool J Linn Soc. 1994;111:1–71.
Article
Google Scholar
Wiens JJ. Widespread loss of sexually selected traits: how the peacock lost its spots. Trends Ecol Evol. 2001;16:517–23.
Article
Google Scholar
Burns KJ. A phylogenetic perspective on the evolution of sexual dichromatism in tanagers (Thraupidae): the role of female versus male plumage. Evolution. 1998;52:1219–24.
Article
PubMed
Google Scholar
Wiens JJ. Phylogenetic evidence for multiple losses of a sexually selected character in phrynosomatid lizards. Proc R Soc B. 1999;266:1529–35.
Article
PubMed Central
Google Scholar
Andersen NM. A phylogenetic analysis of the evolution of sexual dimorphism and mating systems in water striders (Hemiptera: Gerridae). Biol J Linn Soc. 1997;61:345–68.
Article
Google Scholar
Vanacker D, Maelfait JP, Hendrickx F. Survival differences of the two male morphs in the dwarf spider Oedothorax gibbosus Blackwall, 1841 (Erigoninae, Linyphiidae, Araneae). Neth J Zool. 2003;52:255–62.
Article
Google Scholar
Vanacker D, Hendrickx F, Maes L, Verraes P, Maelfait JP. Can multiple mating compensate for slower development and shorter adult life in a male dimorphic dwarf spider? Biol J Linn Soc. 2004;82:269–73.
Article
Google Scholar
Hendrickx F, Vanthournout B, Taborsky M. Selection for costly sexual traits results in a vacant mating niche and male dimorphism. Evolution. 2015;69:2105–17.
Article
PubMed
Google Scholar
Safran RJ, Scordato ESC, Symes LB, Rodríguez RL, Mendelson TC. Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends Ecol Evol. 2013;28:643–50.
Article
PubMed
Google Scholar
Kraaijeveld K, Kraaijeveld-Smit FJL, Maan ME. Sexual selection and speciation: the comparative evidence revisited. Biol Rev. 2011;86:367–77.
Article
PubMed
Google Scholar
Gage MJG, Parker GA, Nylin S, Wiklund C. Sexual selection and speciation in mammals, butterflies and spiders. Proc R Soc B. 2002;269:2309–16.
Article
PubMed
PubMed Central
Google Scholar
Williams GC. Adaptation and natural selection. Princeton: Princeton University Press; 1966.
Google Scholar
Hughes AL, Hughes MK. Paternal investment and sexual size dimorphism in North American passerines. Oikos. 1986;46:171–5.
Article
Google Scholar
Kuntner M, Coddington JA. Sexual size dimorphism: evolution and perils of extreme phenotypes in spiders. Annu Rev Entomol. 2020;65:57–80.
Article
CAS
PubMed
Google Scholar
Prenter J, Elwood RW, Montgomery WI. Sexual size dimorphism and reproductive investment by female spiders: a comparative analysis. Evolution. 1999;53:1987–94.
Article
PubMed
Google Scholar
Badyaev AV, Hill GE. Evolution of sexual dichromatism: contribution of carotenoids- versus melanin-based coloration. Biol J Linn Soc. 2000;69:153–72.
Article
Google Scholar
Cardoso GC, Mota PG. Speciational evolution of coloration in the genus Carduelis. Evolution. 2008;62:753–62.
Article
PubMed
Google Scholar
Servedio MR, Bürger R. The counterintuitive role of sexual selection in species maintenance and speciation. PNAS. 2014;111:8113–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodríguez RL, Boughman JW, Gray DA, Hebets EA, Höbel G, Symes LB. Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences. Ecol Lett. 2013;16:964–74.
Article
PubMed
PubMed Central
Google Scholar
Martin TE, Badyaev AV. Sexual dichromatism in birds: Importance of nest predation and nest location for females versus males. Evolution. 1996;50:2454–60.
Article
PubMed
Google Scholar
Nzigidahera B, Jocqué R. On the Afrotropical genus Holmelgonia (Araneae, Linyphiidae), with the description of three new species from the Albertine Rift. Eur J Taxon. 2014;77:1–18.
Google Scholar