Tattersall GJ, Ultsch GR. Physiological ecology of aquatic overwintering in ranid frogs. Biol Rev. 2008;83:119–40.
Article
PubMed
Google Scholar
St-Pierre J, Brand MD, Boutilier RG. The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs. J Exp Biol. 2000;203:1469–76.
Article
CAS
PubMed
Google Scholar
Boutilier RG, Donohoe PH, Tattersall GJ, West TG. Hypometabolic homeostasis in overwintering aquatic amphibians. J Exp Biol. 1997;200:387–400.
Article
CAS
PubMed
Google Scholar
Pinder AW, Storey KB, Ultsch GR. Estivation and hibernation. In: Feder ME, Burggren WW, editors. Environmental physiology of the amphibians. University of Chicago Press. 1992. p. 250–74.
Google Scholar
Layne JR, Jones AL. Freeze tolerance in the gray treefrog: cryoprotectant mobilization and organ dehydration. J Exp Zool. 2001;290:1–5.
Article
PubMed
Google Scholar
Costanzo JP, Lee RE. Cryoprotection by urea in a terrestrially hibernating frog. J Exp Biol. 2005;208:4079–89.
Article
PubMed
Google Scholar
Churchill TA, Storey KB. Dehydration tolerance in wood frogs: a new perspective on development of amphibian freeze tolerance. Am J Physiol Regul Integr Comp Physiol. 1993;265:R1324-32.
Article
CAS
Google Scholar
Storey KB, Storey JM. Molecular physiology of freeze tolerance in vertebrates. Physiol Rev. 2017;97:623–65.
Article
CAS
PubMed
Google Scholar
Storey KB, Storey JM. Freeze tolerance and intolerance as strategies of winter survival in terrestrially-hibernating amphibians. Comp Biochem Physiol A. 1986;83:613–7.
Article
CAS
PubMed
Google Scholar
Storey KB, Storey JM. Molecular biology of freezing tolerance. Comp Physiol. 2013;3:1283–308.
Article
Google Scholar
Jackson DC, Ultsch GR. Physiology of hibernation under the ice by turtles and frogs. J Exp Zool A. 2010;313:311–27.
Article
CAS
Google Scholar
Boutilier RG. Mechanisms of metabolic defense against hypoxia in hibernating frogs. Respir Physiol. 2001;128:365–77.
Article
CAS
PubMed
Google Scholar
Storey KB, Storey JM. Mitochondria, metabolic control and microRNA: advances in understanding amphibian freeze tolerance. BioFactors. 2020;46:220–8.
Article
CAS
PubMed
Google Scholar
Costanzo JP. Overwintering adaptations and extreme freeze tolerance in a subarctic population of the wood frog, Rana sylvatica. J Comp Physiol B. 2019;189:1–15.
Article
PubMed
Google Scholar
Finegold L. Molecular and biophysical aspects of adaptation of life to temperatures below the freezing point. Adv Space Res. 1996;18:87–95.
Article
CAS
Google Scholar
Reynolds AM, Lee RE, Costanzo JP. Membrane adaptation in phospholipids and cholesterol in the widely distributed, freeze-tolerant wood frog, Rana sylvatica. J Comp Physiol B. 2014;184:371–83.
Article
CAS
PubMed
Google Scholar
Storey KB, Storey JM. Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev. 2004;79:207–33.
Article
PubMed
Google Scholar
Guderley H, St-Pierre J. Going with the flow or life in the fast lane: contrasting mitochondrial responses to thermal change. J Exp Biol. 2002;205:2237–49.
Article
PubMed
Google Scholar
Zhu W, Zhang H, Li X, Meng Q, Shu R, Wang M, Zhou G, Wang H, Miao L, Zhang J. Cold adaptation mechanisms in the ghost moth Hepialus xiaojinensis: metabolic regulation and thermal compensation. J Insect Physiol. 2016;85:76–85.
Article
CAS
PubMed
Google Scholar
Rocha PL, Branco LG. Seasonal changes in the cardiovascular, respiratory and metabolic responses to temperature and hypoxia in the bullfrog Rana catesbeiana. J Exp Biol. 1998;201:761–8.
Article
CAS
PubMed
Google Scholar
Fromm PO, Johnson RE. The respiratory metabolism of frogs as related to season. J Cell Comp Physiol. 1955;45:343–59.
Article
CAS
PubMed
Google Scholar
Trzcionka M, Withers K, Klingenspor M, Jastroch M. The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus. J Exp Biol. 2008;211:1911–8.
Article
CAS
PubMed
Google Scholar
Naya DE, Veloso C, Sabat P, Bozinovic F. The effect of short-and long-term fasting on digestive and metabolic flexibility in the Andean toad, Bufo spinulosus. J Exp Biol. 2009;212:2167–75.
Article
CAS
PubMed
Google Scholar
Wen B, Jin S, Chen Z, Gao J. Physiological responses to cold stress in the gills of discus fish (Symphysodon aequifasciatus) revealed by conventional biochemical assays and GC-TOF-MS metabolomics. Sci Total Environ. 2018;640:1372–81.
Article
PubMed
CAS
Google Scholar
Lin CY, Viant MR, Tjeerdema RS. Metabolomics. methodologies and applications in the environmental sciences. J Pestic Sci. 2006;31:245–51.
Article
CAS
Google Scholar
Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK. Metabolomics of temperature stress. Physiol Plant. 2008;132:220–35.
CAS
PubMed
Google Scholar
Lankadurai BP, Nagato EG, Simpson MJ. Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ Rev. 2013;21:180–205.
Article
CAS
Google Scholar
Shi Y, Chi Q, Liu W, Fu H, Wang D. Environmental metabolomics reveal geographic variation in aerobic metabolism and metabolic substrates in Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol D. 2015;14:42–52.
CAS
Google Scholar
Fiehn O. Metabolomics—the link between genotypes and phenotypes. In: Town C, editor. Functional genomics. Dordrecht, Netherlands: Springer; 2002. p. 155–71.
Zhu W, Zhang H, Meng Q, Wang M, Zhou G, Li X, Wang H, Miao L, Qin Q, Zhang J. Metabolic insights into the cold survival strategy and overwintering of the common cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). J Insect Physiol. 2017;100:53–64.
Article
CAS
PubMed
Google Scholar
Potts LJ, Koštál V, Simek P, Teets NM. Energy balance and metabolic changes in an overwintering wolf spider, Schizocosa stridulans. J Insect Physiol. 2020;126:104112.
Article
CAS
PubMed
Google Scholar
Nelson CJ, Otis JP, Carey HV. Global analysis of circulating metabolites in hibernating ground squirrels. Comp Biochem Physiol D. 2010;5:265–73.
Google Scholar
Nelson CJ, Otis JP, Martin SL, Carey HV. Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver. Physiol Genomics. 2009;37:43–51.
Article
CAS
PubMed
Google Scholar
D’Alessandro A, Nemkov T, Bogren LK, Martin SL, Hansen KC. Comfortably numb and back: plasma metabolomics reveals biochemical adaptations in the hibernating 13-lined ground squirrel. J Proteome Res. 2017;16:958–69.
Article
PubMed
CAS
Google Scholar
Gonzalez-Riano C, León-Espinosa G, Regalado-Reyes M, García A, DeFelipe J, Barbas C. Metabolomic study of hibernating syrian hamster brains: in search of neuroprotective agents. J Proteome Res. 2019;18:1175–90.
Article
CAS
PubMed
Google Scholar
Zhang L, Ma X, Jiang J, Lu X. Stronger condition dependence in female size explains altitudinal variation in sexual size dimorphism of a Tibetan frog. Biol J Linn Soc. 2012;107:558–65.
Article
Google Scholar
Wang G, Zhang B, Zhou W, Li Y, Jin J, Shao Y, Yang H, Liu Y, Yan F, Chen H. Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri. Proc Natl Acad Sci USA. 2018;115:E5056-65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Xiong Z, Xiang X, Liu S, Zhou W, Tu X, Zhong L, Wang L, Wu D, Zhang B. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci USA. 2015;112:E1257-62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, You Z, Yu P, Ruan Q, Chen W. The first complete mitochondrial genome sequence of Nanorana parkeri and Nanorana ventripunctata (Amphibia: Anura: Dicroglossidae), with related phylogenetic analyses. Ecol Evol. 2018;8:6972–87.
Article
PubMed
PubMed Central
Google Scholar
Niu Y, Cao W, Zhao Y, Zhai H, Zhao Y, Tang X, Chen Q. The levels of oxidative stress and antioxidant capacity in hibernating Nanorana parkeri. Comp Biochem Physiol A. 2018;219:19–27.
Article
CAS
Google Scholar
Niu Y, Cao W, Storey K, He J, Wang J, Zhang T, Tang X, Chen Q. Metabolic characteristics of overwintering by the high-altitude dwelling Xizang plateau frog, Nanorana parkeri. J Comp Physiol B. 2020;190:433–44.
Article
PubMed
Google Scholar
Niu Y, Cao W, Wang J, He J, Storey KB, Ding L, Tang X, Chen Q. Freeze tolerance and the underlying metabolite responses in the Xizang plateau frog, Nanorana parkeri. J Comp Physiol B. 2021;191:173–84.
Article
CAS
PubMed
Google Scholar
Zhu Z, Schultz AW, Wang J, Johnson CH, Yannone SM, Patti GJ, Siuzdak G. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc. 2013;8:451–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87.
Article
CAS
PubMed
Google Scholar
Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 2015;43:W251-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teets NM, Peyton JT, Ragland GJ, Colinet H, Renault D, Hahn DA, Denlinger DL. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiol Genomics. 2012;44:764–77.
Article
CAS
PubMed
Google Scholar
Sulmon C, Van Baaren J, Cabello-Hurtado F, Gouesbet G, Hennion F, Mony C, Renault D, Bormans M, El Amrani A, Wiegand C. Abiotic stressors and stress responses: what commonalities appear between species across biological organization levels? Environ Pollut. 2015;202:66–77.
Article
CAS
PubMed
Google Scholar
St-Pierre J, Boutilier RG. Aerobic capacity of frog skeletal muscle during hibernation. Physiol Biochem Zool. 2001;74:390–7.
Article
CAS
PubMed
Google Scholar
Storey KB, Storey JM. Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol. 1990;65:145–74.
Article
CAS
PubMed
Google Scholar
Flanigan J, Withers P, Storey K, Guppy M. Changes in enzyme binding and activity during aestivation in the frog Neobatrachus pelobatoides. Comp Biochem Physiol B. 1990;96:67–71.
Article
CAS
PubMed
Google Scholar
Berman D, Leirikh A, Mikhailova E. Winter hibernation of the Siberian salamander Hynobius keyserlingi. J Evol Biochem Physiol. 1984;3:323–7.
Google Scholar
Layne JR. Freeze tolerance and cryoprotectant mobilization in the gray treefrog (Hyla versicolor). J Exp Zool. 1999;283:221–5.
Article
PubMed
Google Scholar
Storey JM, Storey KB. Adaptations of metabolism for freeze tolerance in the gray tree frog, Hyla versicolor. Can J Zool. 1985;63:49–54.
Article
CAS
Google Scholar
do Amaral MCF, Frisbie J, Goldstein DL, Krane CM. The cryoprotectant system of Cope’s gray treefrog, Dryophytes chrysoscelis: responses to cold acclimation, freezing, and thawing. J Comp Physiol B. 2018;188:611–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Irwin JT, Lee RE. Geographic variation in energy storage and physiological responses to freezing in the gray treefrogs Hyla versicolor and H. chrysoscelis. J Exp Biol. 2003;206:2859–67.
Article
PubMed
Google Scholar
Voituron Y, Hérold JP, Grenot C. Metabolic adaptations of overwintering European common lizards (Lacerta vivipara). Physiol Biochem Zool. 2000;73:264–70.
Article
CAS
PubMed
Google Scholar
Donohoe PH, Boutilier RG. The use of extracellular lactate as an oxidative substrate in the oxygen-limited frog. Respir Physiol. 1999;116:171–9.
Article
CAS
PubMed
Google Scholar
Jørgensen CB. Urea and amphibian water economy. Comp Biochem Physiol A. 1997;117:161–70.
Article
Google Scholar
Storey KB. Life in the slow lane: molecular mechanisms of estivation. Comp Biochem Physiol A. 2002;133:733–54.
Article
Google Scholar
Costanzo JP, do Amaral MCF, Rosendale AJ, Lee RE. Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J Exp Biol. 2013;216:3461–73.
Article
CAS
PubMed
Google Scholar
Wasser JS. Seasonal variations in plasma and tissue chemistry in water snakes, Nerodia sipedon. Copeia. 1990;1990(2):399–408. https://doi.org/10.2307/1446345.
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SH, Heider J, Bremer E. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes. 2018;9:177.
Article
PubMed Central
CAS
Google Scholar
Buenger J, Driller H. Ectoin: an effective natural substance to prevent UVA-induced premature photoaging. Skin Pharmacol Physiol. 2004;17:232–7.
Article
CAS
PubMed
Google Scholar
Storey KB, Storey JM, Brooks S, Churchill TA, Brooks RJ. Hatchling turtles survive freezing during winter hibernation. Proc Natl Acad Sci USA. 1988;85:8350–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Surai P. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 1. Worlds Poult Sci J. 2012;68:465–76.
Article
Google Scholar
Bendich A, Shapiro SS. Effect of β-carotene and canthaxanthin on the immune responses of the rat. J Nutr. 1986;116:2254–62.
Article
CAS
PubMed
Google Scholar
Nishizawa A, Yabuta Y, Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 2008;147:1251–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valavanidis A, Vlachogianni T, Fiotakis C. 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C. 2009;27:120–39.
Article
CAS
Google Scholar
Hellmann H, Mooney S. Vitamin B6: a molecule for human health? Molecules. 2010;15:442–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winberg LD, Badr MZ. Mechanism of phthalate-induced inhibition of hepatic mitochondrial β-oxidation. Toxicol Lett. 1995;76:63–9.
Article
CAS
PubMed
Google Scholar