Wolff JN, Ladoukakis ED, Enríquez JA, Dowling DK. Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos Trans R Soc Lond B Biol Sci. 2014;369(1646):20130443. https://doi.org/10.1098/rstb.2013.0443.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hill GE. Mitonuclear ecology. Oxford University Press; 2019.
Book
Google Scholar
Saccone C, Lanave C, De Grassi A. Metazoan OXPHOS gene families: evolutionary forces at the level of mitochondrial and nuclear genomes. BBA-Bioenergetics. 2006;1757(9–10):1171–8. https://doi.org/10.1016/j.bbabio.2006.04.021.
Article
CAS
PubMed
Google Scholar
Hill GE. Mitonuclear compensatory coevolution. Trends Genet. 2020;36(6):403–14. https://doi.org/10.1016/j.tig.2020.03.002.
Article
CAS
PubMed
Google Scholar
Bar-Yaacov D, Blumberg A, Mishmar D. Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochim Biophys Acta. 2012;1819(9–10):1107–11. https://doi.org/10.1016/j.bbagrm.2011.10.008.
Article
CAS
PubMed
Google Scholar
Rand DM, Haney RA, Fry AJ. Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol. 2004;19(12):645–53. https://doi.org/10.1016/j.tree.2004.10.003.
Article
PubMed
Google Scholar
Dowling DK, Friberg U, Lindell J. Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol. 2008;23(10):546–54. https://doi.org/10.1016/j.tree.2008.05.011.
Article
PubMed
Google Scholar
Barreto FS, Watson ET, Lima TG, Willett CS, Edmands S, Li W, et al. Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nat Ecol Evol. 2018;2(8):1250–7. https://doi.org/10.1038/s41559-018-0588-1.
Article
PubMed
Google Scholar
Healy TM, Burton RS. Strong selective effects of mitochondrial DNA on the nuclear genome. Proc Natl Acad Sci U S A. 2020;117(12):6616–21. https://doi.org/10.1073/pnas.1910141117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rank NE, Mardulyn P, Heidl SJ, Roberts KT, Zavala NA, Smiley JT, et al. Mitonuclear mismatch alters performance and reproductive success in naturally introgressed populations of a montane leaf beetle. Evolution. 2020;74(8):1724–40. https://doi.org/10.1111/evo.13962.
Article
CAS
PubMed
Google Scholar
Burton RS, Pereira RJ, Barreto FS. Cytonuclear genomic interactions and hybrid breakdown. Annu Rev Ecol Evol Syst. 2013;44:281–302. https://doi.org/10.1146/annurev-ecolsys-110512-135758.
Article
Google Scholar
Burton RS, Barreto FS. A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Mol Ecol. 2012;21(20):4942–57. https://doi.org/10.1111/mec.12006.
Article
CAS
PubMed
Google Scholar
Ma H, Gutierrez NM, Morey R, Van Dyken C, Kang E, Hayama T, et al. Incompatibility between nuclear and mitochondrial genomes contributes to an interspecies reproductive barrier. Cell Metab. 2016;24(2):283–94. https://doi.org/10.1016/j.cmet.2016.06.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobelmann J, Alexander A, Baty JW, Gemmell NJ, Gruber MAM, Quinn O, et al. The association between mitochondrial genetic variation and reduced colony fitness in an invasive wasp. Mol Ecol. 2019;28(14):3324–38. https://doi.org/10.1111/mec.15159.
Article
CAS
PubMed
Google Scholar
Lee HY, Chou JY, Cheong L, Chang NH, Yang SY, Leu JY. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell. 2008;135(6):1065–73. https://doi.org/10.1016/j.cell.2008.10.047.
Article
CAS
PubMed
Google Scholar
Crespi B, Nosil P. Conflictual speciation: species formation via genomic conflict. Trends Ecol Evol. 2013;28(1):48–57. https://doi.org/10.1016/j.tree.2012.08.015.
Article
PubMed
Google Scholar
Hill GE. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol Evol. 2016;6(16):5831–42. https://doi.org/10.1002/ece3.2338.
Article
PubMed
PubMed Central
Google Scholar
Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol. 2017;26(8):2212–36. https://doi.org/10.1111/mec.13959.
Article
PubMed
PubMed Central
Google Scholar
Bar-Yaacov D, Hadjivasiliou Z, Levin L, Barshad G, Zarivach R, Bouskila A, et al. Mitochondrial involvement in vertebrate speciation? The case of mitonuclear genetic divergence in chameleons. Genome Biol Evol. 2015;7(12):3322–36. https://doi.org/10.1093/gbe/evv226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baris TZ, Wagner DN, Dayan DI, Du X, Blier PU, Pichaud N, et al. Evolved genetic and phenotypic differences due to mitochondrial–nuclear interactions. PLoS Genet. 2017;13(3): e1006517. https://doi.org/10.1371/journal.pgen.1006517.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morales HE, Pavlova A, Amos N, Major R, Kilian A, Greening C, et al. Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat Ecol Evol. 2018;2(8):1258–67. https://doi.org/10.1038/s41559-018-0606-3.
Article
PubMed
Google Scholar
Zaidi AA, Makova KD. Investigating mitonuclear interactions in human admixed populations. Nat Ecol Evol. 2019;3(2):213–22. https://doi.org/10.1038/s41559-018-0766-1.
Article
PubMed
PubMed Central
Google Scholar
Streicher JW, Day JJ. The toad’s warts: discordance creates bumpy expectations of mitochondrial-nuclear evolution between species. Mol Ecol. 2020;29(18):3400–2. https://doi.org/10.1111/mec.15568.
Article
PubMed
Google Scholar
Lee-Yaw JA, Jacobs CGC, Irwin DE. Individual performance in relation to cytonuclear discordance in a northern contact zone between long-toed salamander (Ambystoma macrodactylum) lineages. Mol Ecol. 2014;23(18):4590–602. https://doi.org/10.1111/mec.12878.
Article
PubMed
Google Scholar
Mossman JA, Biancani LM, Zhu CT, Rand DM. Mitonuclear epistasis for development time and its modification by diet in Drosophila. Genetics. 2016;203(1):463–84. https://doi.org/10.1534/genetics.116.187286.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mossman JA, Tross JG, Li N, Wu Z, Rand DM. Mitochondrial-nuclear interactions mediate sex-specific transcriptional profiles in Drosophila. Genetics. 2016;204(2):613–30. https://doi.org/10.1534/genetics.116.192328.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mossman JA, Ge JY, Navarro F, Rand DM. Mitochondrial DNA fitness depends on nuclear genetic background in Drosophila. G3 Genes Genom Genet. 2019;9(4):1175–88. https://doi.org/10.1534/g3.119.400067.
Article
CAS
Google Scholar
Flight PA, Nacci D, Champlin D, Whitehead A, Rand DM. The effects of mitochondrial genotype on hypoxic survival and gene expression in a hybrid population of the killifish, Fundulus heteroclitus. Mol Ecol. 2011;20(21):4503–20. https://doi.org/10.1111/j.1365-294X.2011.05290.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Healy TM, Bryant HJ, Schulte PM. Mitochondrial genotype and phenotypic plasticity of gene expression in response to cold acclimation in killifish. Mol Ecol. 2017;26(3):814–30. https://doi.org/10.1111/mec.13945.
Article
CAS
PubMed
Google Scholar
Meiklejohn CD, Holmbeck MA, Siddiq MA, Abt DN, Rand DM, Montooth KL. An incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila. PLoS Genet. 2013;9(1): e1003238. https://doi.org/10.1371/journal.pgen.1003238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barreto FS, Burton RS. Evidence for compensatory evolution of ribosomal proteins in response to rapid divergence of mitochondrial rRNA. Mol Biol Evol. 2013;30(2):310–4. https://doi.org/10.1093/molbev/mss228.
Article
CAS
PubMed
Google Scholar
Immonen E, Rönn J, Watson C, Berger D, Arnqvist G. Complex mitonuclear interactions and metabolic costs of mating in male seed beetles. J Evol Biol. 2016;29(2):360–70. https://doi.org/10.1111/jeb.12789.
Article
CAS
PubMed
Google Scholar
Thomas SP, Suthers RA. The physiology and energetics of bat flight. J Exp Biol. 1972;57(2):317–35. https://doi.org/10.1242/jeb.57.2.317.
Article
Google Scholar
Mao XG, Zhu GJ, Zhang SY, Rossiter SJ. Pleistocene climatic cycling drives intra-specific diversification in the intermediate horseshoe bat (Rhinolophus affinis) in Southern China. Mol Ecol. 2010;19(13):2754–69. https://doi.org/10.1111/j.1365-294X.2010.04704.x.
Article
CAS
PubMed
Google Scholar
Mao X, He G, Hua P, Jones G, Zhang S, Rossiter SJ. Historical introgression and the persistence of ghost alleles in the intermediate horseshoe bat (Rhinolophus affinis). Mol Ecol. 2013;22(44):1035–50. https://doi.org/10.1111/mec.12154.
Article
CAS
PubMed
Google Scholar
Mao X, Zhu G, Zhang L, Zhang S, Rossiter SJ. Differential introgression among loci across a hybrid zone of the intermediate horseshoe bat (Rhinolophus affinis). BMC Evol Biol. 2014;14(1):1–13. https://doi.org/10.1186/1471-2148-14-154.
Article
Google Scholar
Mao XG, Rossiter SJ. Genome-wide data reveal discordant mitonuclear introgression in the intermediate horseshoe bat (Rhinolophus affinis). Mol Phylogenet Evol. 2020;150: 106886. https://doi.org/10.1016/j.ympev.2020.106886.
Article
PubMed
Google Scholar
Rand DM, Mossman JA, Zhu L, Biancani LM, Ge JY. Mitonuclear epistasis, genotype-by-environment interactions, and personalized genomics of complex traits in Drosophila. IUBMB Life. 2018;70(12):1275–88. https://doi.org/10.1002/iub.1954.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cocco T, Sgobbo P, Clemente M, Lopriore B, Grattagliano I, Di Paola M, et al. Tissue-specific changes of mitochondrial functions in aged rats: effect of a long-term dietary treatment with N-acetylcysteine. Free Radical Biol Med. 2005;38(6):796–805. https://doi.org/10.1016/j.freeradbiomed.2004.11.034.
Article
CAS
Google Scholar
Sun HJ, Chen WL, Wang JY, Zhang LB, Rossiter SJ, Mao XG. Echolocation call frequency variation in horseshoe bats: molecular basis revealed by comparative transcriptomics. P Roy Soc B-Biol Sci. 1934;2020(287):20200875. https://doi.org/10.1098/rspb.2020.0875.
Article
Google Scholar
Mao X, Zhang J, Zhang S, Rossiter SJ. Historical male-mediated introgression in horseshoe bats revealed by multilocus DNA sequence data. Mol Ecol. 2010;19(7):1352–66. https://doi.org/10.1111/j.1365-294X.2010.04560.x.
Article
CAS
PubMed
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. https://doi.org/10.1093/molbev/mst197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2007;81(3):559–75. https://doi.org/10.1086/519795.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93. https://doi.org/10.1093/bioinformatics/btr509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38(6):1358–70. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x.
Article
CAS
PubMed
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8. https://doi.org/10.1093/bioinformatics/btr330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proceed Nat Acad Sci. 2010;107(19):8666–71. https://doi.org/10.1073/pnas.0912613107.
Article
Google Scholar
Ding Y, Chen W, Mao X. The complete mitochondrial genome of Rhinolophus affinis himalayanus. Mitochondrial DNA B. 2021;6(1):164–5. https://doi.org/10.1080/23802359.2020.1856011.
Article
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30. https://doi.org/10.1093/bioinformatics/btt656.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croux C, Filzmoserb P, Oliveirac MR. Algorithms for projection-pursuit robust principal component analysis. Chemometr Intell Lab. 2007;87(2):218–25. https://doi.org/10.1016/j.chemolab.2007.01.004.
Article
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Article
Google Scholar
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. https://doi.org/10.1038/s41467-019-09234-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6(7): e21800. https://doi.org/10.1371/journal.pone.0021800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang CC, Rodriguez J, Ross J. Mitochondrial–nuclear epistasis impacts fitness and mitochondrial physiology of interpopulation Caenorhabditis briggsae hybrids. G3 Genes Genom Genet. 2015;6(1):209–19. https://doi.org/10.1534/g3.115.022970.
Article
CAS
Google Scholar
Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21(16):3907–30. https://doi.org/10.1111/j.1365-294X.2012.05664.x.
Article
CAS
PubMed
Google Scholar
Hill GE. Reconciling the mitonuclear compatibility species concept with rampant mitochondrial introgression. Integr Comp Biol. 2019;59(4):912–24. https://doi.org/10.1093/icb/icz019.
Article
CAS
PubMed
Google Scholar
Sarver BA, Herrera ND, Sneddon D, Hunter SS, Settles ML, Kronenberg Z, Demboski JR, Good JM, Sullivan J. Diversification, introgression, and rampant cytonuclear discordance in Rocky Mountains Chipmunks (Sciuridae: Tamias). Syst Biol. 2021. https://doi.org/10.1093/sysbio/syaa085.
Article
PubMed
PubMed Central
Google Scholar
Melo-Ferreira J, Vilela J, Fonseca MM, da Fonseca RR, Boursot P, Alves PC. The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression. Genome Biol Evol. 2014;6(4):886–96. https://doi.org/10.1093/gbe/evu059.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulkarni A, Anderson AG, Merullo DP, Konopka G. Beyond bulk: a review of single cell transcriptomics methodologies and applications. Curr Opin Biotechnol. 2019;58:129–36. https://doi.org/10.1016/j.copbio.2019.03.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serpas L, Chan RWY, Jiang P, Ni M, Sun K, Rashidfarrokhi A, et al. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. Proc Natl Acad Sci U S A. 2019;116(2):641–9. https://doi.org/10.1073/pnas.1815031116.
Article
CAS
PubMed
Google Scholar
Sisirak V, Sally B, D’Agati V, Martinez-Ortiz W, Özçakar ZB, David J, et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell. 2016;166(1):88–101. https://doi.org/10.1016/j.cell.2016.05.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi G, Abbott KN, Wu W, Salter RD, Keyel PA. Dnase1L3 regulates inflammasome-dependent cytokine secretion. Front Immunol. 2017;8:522. https://doi.org/10.3389/fimmu.2017.00522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung SS, Kim M, Youn BS, Lee NS, Park JW, Lee IK, et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor γ in human skeletal muscle cells. Mol Cell Biol. 2009;29(1):20–30. https://doi.org/10.1128/MCB.00544-08.
Article
CAS
PubMed
Google Scholar
Salinthone S, Tyagi M, Gerthoffer WT. Small heat shock proteins in smooth muscle. Pharmacol Ther. 2008;119(1):44–54. https://doi.org/10.1016/j.pharmthera.2008.04.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Zhao T, Huang W, Wang T, Qian J, Xu M, et al. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells. 2009;27(12):3021–31. https://doi.org/10.1002/stem.230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyynismaa H, Carroll CJ, Raimundo N, Ahola-Erkkilä S, Wenz T, Ruhanen H, et al. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet. 2010;19(20):3948–58. https://doi.org/10.1093/hmg/ddq310.
Article
CAS
PubMed
Google Scholar
Singh L, Arora SK, Bakshi DK, Majumdar S, Wig JD. Potential role of CXCL10 in the induction of cell injury and mitochondrial dysfunction. Int J Exp Pathol. 2010;91(3):210–23. https://doi.org/10.1111/j.1365-2613.2009.00697.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perng YC, Lenschow DJ. ISG15 in antiviral immunity and beyond. Nat Rev Microbiol. 2018;16(7):423–39. https://doi.org/10.1038/s41579-018-0020-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baldanta S, Fernández-Escobar M, Acín-Perez R, Albert M, Camafeita E, Jorge I, et al. ISG15 governs mitochondrial function in macrophages following vaccinia virus infection. PLoS Pathog. 2017;13(10): e1006651. https://doi.org/10.1371/journal.ppat.1006651.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tigano M, Vargas DC, Tremblay-Belzile S, Fu Y, Sfeir A. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature. 2021;591(7850):477–81. https://doi.org/10.1038/s41586-021-03269-w.
Article
CAS
PubMed
Google Scholar
Sandy Z, da Costa IC, Schmidt CK. More than meets the ISG15: emerging roles in the DNA damage response and beyond. Biomolecules. 2020;10(11):1557. https://doi.org/10.3390/biom10111557.
Article
CAS
PubMed Central
Google Scholar
Liu Z, Gu S, Lu T, Wu K, Li L, Dong C, et al. IFI6 depletion inhibits esophageal squamous cell carcinoma progression through reactive oxygen species accumulation via mitochondrial dysfunction and endoplasmic reticulum stress. J Exp Clin Cancer Res. 2020;39(1):144. https://doi.org/10.1186/s13046-020-01646-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osanai M, Sawada N, Lee GH. Oncogenic and cell survival properties of the retinoic acid metabolizing enzyme, CYP26A1. Oncogene. 2010;29(8):1135–44. https://doi.org/10.1038/onc.2009.414.
Article
CAS
PubMed
Google Scholar
Skjørringe T, Møller LB, Moos T. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Front Pharmacol. 2012;25(3):169. https://doi.org/10.3389/fphar.2012.00169.
Article
CAS
Google Scholar
Monti DM, De Simone G, Langella E, Supuran CT, Di Fiore A, Monti SM. Insights into the role of reactive sulfhydryl groups of Carbonic Anhydrase III and VII during oxidative damage. J Enzyme Inhib Med Chem. 2017;32(1):5–12. https://doi.org/10.1080/14756366.2016.1225046.
Article
CAS
PubMed
Google Scholar
Zang W, Zheng X. Structure and functions of cellular redox sensor HSCARG/NMRAL1, a linkage among redox status, innate immunity, DNA damage response, and cancer. Free Radic Biol Med. 2020;160:768–74. https://doi.org/10.1016/j.freeradbiomed.2020.09.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobler R, Dowling DK, Morrow EH, Reinhardt K. A systematic review and meta-analysis reveals pervasive effects of germline mitochondrial replacement on components of health. Hum Reprod Update. 2018;24(5):519–34. https://doi.org/10.1093/humupd/dmy018.
Article
CAS
PubMed
Google Scholar
Innocenti P, Morrow EH, Dowling DK. Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science. 2011;332(6031):845–8. https://doi.org/10.1126/science.1201157.
Article
CAS
PubMed
Google Scholar
Dowling DK, Adrian RE. Challenges and prospects for testing the mother’s curse hypothesis. Integr Comp Biol. 2019;59(4):875–89. https://doi.org/10.1093/icb/icz110.
Article
CAS
PubMed
Google Scholar
Mossman JA, Tross JG, Jourjine NA, Li N, Wu Z, Rand DM. Mitonuclear interactions mediate transcriptional responses to hypoxia in Drosophila. Mol Biol Evol. 2017;34(2):447–66. https://doi.org/10.1093/molbev/msw246.
Article
CAS
PubMed
Google Scholar
Beck EA, Thompson AC, Sharbrough J, Brud E, Llopart A. Gene flow between Drosophila yakuba and Drosophila santomea in subunit V of cytochrome c oxidase: a potential case of cytonuclear cointrogression. Evolution. 2015;69(8):1973–86. https://doi.org/10.1111/evo.12718.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han KL, Barreto FS. Pervasive mitonuclear coadaptation underlies fast development in interpopulation hybrids of a marine crustacean. Genome Biol Evol. 2021;13(3):evab004. https://doi.org/10.1093/gbe/evab004.
Article
PubMed
PubMed Central
Google Scholar
Barreto FS, Pereira RJ, Burton RS. Hybrid dysfunction and physiological compensation in gene expression. Mol Biol Evol. 2015;32(3):613–22. https://doi.org/10.1093/molbev/msu321.
Article
CAS
PubMed
Google Scholar