Funayama S, Cordell G. Introduction. In: Alkaloids A Treasury of Poisons and Medicines. Elsevier; 2015. p. 1–20.
Daly JW, Myers CW, Whittaker N. Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon. 1987;25(10):1023–95.
Article
CAS
PubMed
Google Scholar
Daly JW. Biodiversity of alkaloids in amphibian skin: A dietary arthropod source. Phuket: Iupac International Conference on Biodiversity and Bioresources: Conservation and Utilization; 1999. p. 1–5.
Google Scholar
Dossey AT. Chemical defenses of insects: a rich resource for chemical biology in the tropics. In: Vivanco JM, Weir T, editors. Chemical biology of the tropics. Berlin, Heidelberg: Springer-Verlag; 2011. p. 27–57.
Chapter
Google Scholar
Hantak MM, Grant T, Reinsch S, Mcginnity D, Loring M, Toyooka N, et al. Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid uptake in Melanophryniscus stelzneri (Bufonidae). J Chem Ecol. 2013;39(11–12):1400–6.
Article
CAS
PubMed
Google Scholar
Rodríguez A, Poth D, Schulz S, Vences M. Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biol Lett. 2011;7(3):414–8.
Article
PubMed
CAS
Google Scholar
Daly JW, Garraffo HM, Hall GSE, Cover JF. Absence of skin alkaloids in captive-raised madagascan mantelline frogs (Mantella) and sequestration of dietary alkaloids. Toxicon. 1997;35(7):1131–5.
Article
CAS
PubMed
Google Scholar
Smith BP, Tyler MJ, Kaneko T, Garraffo HM, Spande TF, Daly JW. Evidence for biosynthesis of pseudophrynamine alkaloids by an Australian myobatrachid frog (Pseudophryne) and for sequestration of dietary pumiliotoxins. J Nat Prod. 2002;65(4):439–47.
Article
CAS
PubMed
Google Scholar
Daly J, Martin Garraffo H, Spande TF, Jaramillo C, Stanley RA. Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? J Chem Ecol. 1994;20(4):943–55.
Article
CAS
PubMed
Google Scholar
Daly JW, Spande TF, Garraffo HM. Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod. 2005;68(10):1556–75.
Article
CAS
PubMed
Google Scholar
Garraffo HM, Andriamaharavo NR, Vaira M, Quiroga MF, Heit C, Spande TF. Alkaloids from single skins of the Argentinian toad Melanophryniscus rubriventris (Anura, Bufonidae): an unexpected variability in alkaloid profiles and a profusion of new structures. Springerplus. 2012;1(1):51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saporito RA, Donnelly MA, Spande TF, Garraffo HM. A review of chemical ecology in poison frogs. Chemoecology. 2012;22(3):159–68.
Article
CAS
Google Scholar
Daly J, Gusovsky F, Myers CW, Yotsu-Yamashita M, Yasumoto T. First occurrence of tetrodotoxin in a dendrobatid frog (Colostethus inguinalis), with further reports for the bufonid genus Atelopus. Toxicon. 1994;32(3):279–85.
Article
CAS
PubMed
Google Scholar
Grant T. On the identities of Colostethus inguinalis (cope, 1868) and C. panamensis (Dunn, 1933), with comments on C. latinasus (cope, 1863) (Anura: Dendrobatidae). Am Mus Novit. 2004;3444(3444):1–24.
Article
Google Scholar
Daly JW. Thirty years of discovering arthopod alkaloids in amphibian skins. J Nat Prod. 1998;61(1):162–72.
Article
CAS
PubMed
Google Scholar
Daly JW, Garraffo HM, Spande TF, Clark VC, Ma J, Ziffer H, et al. Evidence for an enantioselective pumiliotoxin 7-hydroxylase in dendrobatid poison frogs of the genus Dendrobates. Proc Natl Acad Sci U S A. 2003;100(19):11092–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takada W, Sakata T, Shimano S, Enami Y, Mori N, Nishida R, et al. Scheloribatid mites as the source of pumiliotoxins in dendrobatid frogs. J Chem Ecol. 2005;31(10):2403–15.
Article
CAS
PubMed
Google Scholar
Saporito RA, Garraffo HM, Donnelly MA, Edwards AL, Longino JT, Daly JW. Formicine ants: an arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proc Natl Acad Sci. 2004;101(21):8045–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saporito RA, Donnelly MA, Hoffman RL, Garraffo HM, Daly JW. A siphonotid millipede (Rhinotus) as the source of spiropyrrolizidine oximes of dendrobatid frogs. J Chem Ecol. 2003;29(12):2781–6.
Article
CAS
PubMed
Google Scholar
Daly JW, Garrafo M. Alkaloids common to microsympatric myrmicine ants and dendrobatid frogs. J Chem Ecol. 2000;26(1):73–85.
Article
CAS
Google Scholar
Neuwirth M, Daly JW, Myers CW, Tice LW. Morphology of the granular secretory glands in skin of poison-dart frogs (Dendrobatidae). Tissue Cell. 1979;11(4):755–71.
Article
CAS
PubMed
Google Scholar
Santos JC, Tarvin RD, O’Connell LA. A review of chemical defense in poison frogs (Dendrobatidae): ecology, pharmacokinetics, and autoresistance. In: Schulte BA, Goodwin TE, Ferkin MH, editors. Chemical signals in vertebrates 13. Cham: Springer International Publishing; 2016. p. 305–37.
Chapter
Google Scholar
Grant T, Rada M, Anganoy-Criollo M, Batista A, Dias PH, Jeckel AM, et al. Phylogenetic systematics of dart-poison frogs and their relatives revisited (Anura: Dendrobatoidea). South Am J Herpetol. 2017;12(s1):S1–90.
Article
Google Scholar
Grant T, Frost DR, Caldwell JP, Gagliardo R, Haddad CFB, Kok PJR, et al. Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull Am Mus Nat Hist. 2006;299(299):1–262.
Article
Google Scholar
Protti-Sánchez F, Quirós-Guerrero L, Vásquez V, Willink B, Pacheco M, León E, et al. Toxicity and alkaloid profiling of the skin of the Golfo Dulcean poison frog Phyllobates vittatus (Dendrobatidae). J Chem Ecol. 2019;45:914–25.
Article
PubMed
CAS
Google Scholar
Myers CW, Paolillo A, Daly JW. Discovery of a defensively malodorous and nocturnal frog in the family Dendrobatidae : phylogenetic significance of a new genus and species from the Venezuelan Andes. Am Mus Novit. 1991;3002(3002):1–33.
Google Scholar
Smith BPC, Hayasaka Y, Tyler MJ, Williams BD. β-Caryophyllene in the skin secretion of the Australian green tree frog, Litoria caerulea: an investigation of dietary sources. Aust J Zool. 2004;52(5):521–30.
Article
CAS
Google Scholar
Poth D, Wollenberg KC, Vences M, Schulz S. Volatile amphibian pheromones: macrolides from mantellid frogs from Madagascar. Angew Chem Int Ed. 2012;51(9):2187–90.
Article
CAS
Google Scholar
Starnberger I, Poth D, Peram PS, Schulz S, Vences M, Knudsen J, et al. Take time to smell the frogs: vocal sac glands of reed frogs (Anura: Hyperoliidae) contain species-specific chemical cocktails. Biol J Linn Soc. 2013;110(4):828–38.
Article
Google Scholar
Brunetti AE, Merib J, Carasek E, Caramão EB, Barbará J, Zini CA, et al. Frog volatile compounds: application of in vivo SPME for the characterization of the odorous secretions from two species of Hypsiboas treefrogs. J Chem Ecol. 2015;41(4):360–72.
Article
CAS
PubMed
Google Scholar
Brunetti AE, Lyra ML, Melo WGP, Andrade LE, Palacios-Rodríguez P, Prado BM, et al. Symbiotic skin bacteria as a source for sex-specific scents in frogs. Proc Natl Acad Sci U S A. 2019;116(6):2124–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rojas B, Burdfield-Steel E, De Pasqual C, Gordon S, Hernández L, Mappes J, et al. Multimodal aposematic signals and their emerging role in mate attraction. Front Ecol Evol. 2018;6(93):1–24.
Google Scholar
Toledo LF, Haddad CFB. Colors and some morphological traits as defensive mechanisms in anurans. Int J Zool. 2009;2009:1–12.
Grant. A new, toxic species of Colostethus from the Cordillera Central of Colombia. Zootaxa. 2007;51:39–51.
Article
Google Scholar
Amézquita A, Ramos Ó, González MC, Rodríguez C, Medina I, Simões PI, et al. Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: the pan-Amazonian frog Allobates femoralis. Evolution (N Y). 2017;71(4):1039–50.
Google Scholar
de Lima Barros A, Lima AP, Fachin-Espinar MT, Nunez CV. Evaluation of benzocaine-based anesthetic gel in anuran skins extracts: A case study using the frog Lithodytes lineatus (Anura: Leptodactylidae). PLoS One. 2020;15(12):e0243654.
Saporito RA, Grant T. Comment on Amézquita et al. (2017) “Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis.”. Evolution (N Y). 2018;72(4):1009–14.
CAS
Google Scholar
Fitch RW, Spande TF, Garraffo HM, Yeh HJC, Daly JW. Phantasmidine: an epibatidine congener from the ecuadorian poison frog Epipedobates anthonyi. J Nat Prod. 2010;73(3):331–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daly JW, Myers CW. Toxicity of panamanian poison frogs (Dendrobates): some biological and chemical aspects. Science. 1967;156(3777):970–3.
Article
CAS
PubMed
Google Scholar
Daly JW, Witkop B, Bommer P, Biemann K. Batrachotoxin. The active principle of the Colombian arrow poison frog, Phyllobates bicolor. J Am Chem Soc. 1965;87(1):124–6.
Article
CAS
PubMed
Google Scholar
Tokuyama T, Daly J, Witkop B, Karle IL, Karle J. The structure of batrachotoxinin a, a novel steroidal alkaloid from the Colombian arrow poison frog, Phyllobates aurotaenia. J Am Chem Soc. 1968;90(7):1917–8.
Article
CAS
PubMed
Google Scholar
Daly JW, Witkop B, Tokuyama T, Nishikawa T, Karle IL. Gephyrotoxins, Histrionicotoxins and Pumiliotoxins from the Neotropical frog Dendrobates histrionicus. Helv Chim Acta. 1977;60(3):1128–40.
Article
CAS
PubMed
Google Scholar
Daly JW, Brown GB, Mensah-Dwumah M, Myers CW. Classification of skin alkaloids from neotropical poison-dart frogs (Dendrobatidae). Toxicon. 1978;16(2):163–88.
Article
CAS
PubMed
Google Scholar
Daly JW, Tokuyama T, Fujiwara T, Highet RJ, Karleld IL. A new class of indolizidine alkaloids from the poison frog, Dendrobates tricolor. X-ray analysis of 8-hydroxy-8-methyl-6-(2′-methylhexylidene)-1-azabicyclo [4.3.0] nonane. J Am Chem Soc. 1980;102(2):830–6.
Article
CAS
Google Scholar
Daly JW, Ware N, Saporito RA, Spande TF, Garraffo HM. N -Methyldecahydroquinolines: an unexpected class of alkaloids from Amazonian poison frogs (Dendrobatidae). J Nat Prod. 2009;72(6):1110–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mebs D, Yotsu-Yamashita M, Pogoda W, Vargas Alvarez J, Ernst R, Köhler G, et al. Lack of alkaloids and tetrodotoxin in the neotropical frogs Allobates spp. (Aromobatidae) and Silverstoneia flotator (Dendrobatidae). Toxicon. 2018;152:103–5.
Article
CAS
PubMed
Google Scholar
Poulin B, Lefebvre G, Ibánez R, Jaramillo C, Hernández C, Rand AS. Avian predation upon lizards and frogs in a neotropical forest understorey. J Trop Ecol. 2001;17(1):21–40.
Article
Google Scholar
Santos JC, Cannatella DC. Phenotypic integration emerges from aposematism and scale in poison frogs. Proc Natl Acad Sci. 2011;108(15):6175–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bittremieux W, Chen C, Dorrestein PC, Schymanski EL, Schulze T, Neumann S, et al. Universal MS/MS visualization and retrieval with the Metabolomics Spectrum Resolver Web Service. bioRxiv 2020;2020.05.09.086066. Available from: https://www.biorxiv.org/content/10.1101/2020.05.09.086066v2.
Garraffo HM, Caceres J, Daly JW, Spande TF, Andriamaharavo NR, Andriantsiferana M. Alkaloids in madagascan frogs (Mantella): Pumiliotoxins, indolizidines, quinolizidines, and pyrrolizidines. J Nat Prod. 1993;56(7):1016–38.
Article
CAS
PubMed
Google Scholar
Garraffo HM, Spande TF, Daly JW, Baldessari A, Gros EG. Alkaloids from bufonid toads (Melanophryniscus): Decahydroquinolines, pumiliotoxins and homopumiliotoxins, indolizidines, pyrrolizidines, and quinolizidines. J Nat Prod. 1993;56(3):357–73.
Article
CAS
PubMed
Google Scholar
Daly JW. The chemistry of poisons in amphibian skin. Proc Natl Acad Sci U S A. 1995;92(1):9–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aronstam RS, Daly JW, Spande TF, Narayanan TK, Albuquerque EX. Interaction of gephyrotoxin and indolizidine alkaloids with the nicotinic acetylcholine receptorion channel complex of torpedo electroplax. Neurochem Res. 1986;11(8):1227–40.
Article
CAS
PubMed
Google Scholar
Daly JW, Martin Garraffo H, Spande TF. Alkaloids from amphibian skins. In: Pelletier W, editor. Alkaloids: chemical & biological perspectives volume 13. Oxford: Elsevier Science Ltd; 1999. p. 1–161.
Google Scholar
McGugan JR, Byrd GD, Roland AB, Caty SN, Kabir N, Tapia EE, et al. Ant and mite diversity drives toxin variation in the little devil poison frog. J Chem Ecol. 2016;42(6):537–51.
Article
CAS
PubMed
Google Scholar
Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW. Oribatid mites as a major dietary source for alkaloids in poison frogs. Proc Natl Acad Sci. 2007;104(21):8885–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones T, Gorman J. Further alkaloids common to ants and frogs: Decahydroquinolines and a quinolizidine. J Chem Ecol. 1999;25(5):1179–93.
Article
CAS
Google Scholar
Toft CA. Feeding ecology of Panamanian litter anurans: patterns in diet and foraging mode. J Herpetol. 1981;15(2):139–44.
Article
Google Scholar
Ibáñez R, Smith EM. Systematic Status of Colostethus flotator and C . nubicola (Anura : Dendrobatidae) in Panama. Copeia. 1995;1995(2):446–56.
Article
Google Scholar
Saporito RA, Donnelly MA, Garraffo HM, Spande TF, Daly JW. Geographic and seasonal variation in alkaloid-based chemical defenses of Dendrobates pumilio from Bocas del Toro, Panama. J Chem Ecol. 2006;32(4):795–814.
Article
CAS
PubMed
Google Scholar
Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF. Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J Nat Prod. 2010;73(3):317–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mina AE, Ponti AK, Woodcraft NL, Johnson EE, Saporito RA. Variation in alkaloid-based microbial defenses of the dendrobatid poison frog Oophaga pumilio. Chemoecology. 2015;25(4):169–78.
Article
CAS
Google Scholar
Speed MP, Ruxton GD, Broom M. Automimicry and the evolution of discrete prey defences. Biol J Linn Soc. 2006;87(3):393–402.
Article
Google Scholar
Spande TF, Garraffo HM, Edwards MW, Yeh HJC, Pannell L, Daly JW. Epibatidine: a novel (Chloropyridyl) azabicycloheptane with potent analgesic activity from an Ecuadoran poison frog. J Am Chem Soc. 1992;114(9):3475–8.
Article
CAS
Google Scholar
Cipriani I, Rivera M. Detección de alcaloides en la piel de cuatro especies de anfibios ecuatorianos (Anura: Dendrobatidae). Rev Ecuat Med Cienc Biol. 2009;30(1–2):42–9.
Google Scholar
Fitch RW, Sturgeon GD, Patel SR, Spande TF, Garraffo HM, Daly JW, et al. Epiquinamide: a poison that wasn’t from a frog that was. J Nat Prod. 2009;72(2):243–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santos JC, Baquero M, Barrio-Amorós C, Coloma LA, Erdtmann LK, Lima AP, et al. Aposematism increases acoustic diversification and speciation in poison frogs. Proc R Soc B Biol Sci. 2014;281(20141761):1–9.
Tarvin RD, Powell EA, Santos JC, Ron SR, Cannatella DC. The birth of aposematism: high phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol Phylogenet Evol. 2017;109:283–95.
Article
PubMed
Google Scholar
Myers CW, Burrowes P. a. a new poison frog (Dendrobates) from Andean Colombia, with notes on a lowland relative. Am Mus Novit. 1987;2899(2899):1–17.
Google Scholar
Darst CR, Cummings ME, Cannatella DC. A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. Proc Natl Acad Sci U S A. 2006;103(15):5852–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang IJ. Inversely related aposematic traits: reduced conspicuousness evolves with increased toxicity in a polymorphic poison-dart frog. Evolution (N Y). 2011;65(6):1637–49.
Google Scholar
Fritz G, Rand AS, DePamphilis CW. The aposematically colored frog, Dendrobates pumilo, is distasteful to the large, predatory ant, Paraponera clavata. Biotropica. 1981;13(2):158.
Article
Google Scholar
Bolton SK, Dickerson K, Saporito RA. Variable alkaloid defenses in the dendrobatid poison frog Oophaga pumilio are perceived as differences in palatability to arthropods. J Chem Ecol. 2017;43(3):273–89.
Article
CAS
PubMed
Google Scholar
Jeckel AM, Kocheff S, Saporito RA, Grant T. Geographically separated orange and blue populations of the Amazonian poison frog Adelphobates galactonotus (Anura, Dendrobatidae) do not differ in alkaloid composition or palatability. Chemoecology. 2019;29:225–34.
Article
Google Scholar
Stynoski JL, Torres-Mendoza Y, Sasa-Marin M, Saporito RA. Evidence of maternal provisioning of alkaloid-based chemical defenses in the strawberry poison frog Oophaga pumilio. Ecology. 2014;95(3):587–93.
Article
PubMed
Google Scholar
Ivarsson P, Henrikson B-I, Stenson JAE. Volatile substances in the pygidial secretion of gyrinid beetles (Coleoptera: Gyrinidae). Chemoecology. 1996;7(4):191–3.
Article
CAS
Google Scholar
Burger BV, Munro Z, Röth M, Geertsema H, Habich A. The chemical nature of the adult defensive secretion of the tip wilter, Elasmopoda valga. Insect Biochem. 1986;16(4):687–90.
Article
CAS
Google Scholar
Deml R, Dettner K. Biogenic amines and phenolics characterize the defensive secretion of saturniid caterpillars (Lepidoptera: Saturniidae): a comparative study. J Comp Physiol B. 1993;163(2):123–32.
Article
CAS
Google Scholar
Burger BV, Marx B, Le Roux M, Oelofsen BW. Characterization of dog repellent factor from cuticular secretion of female yellow dog tick, Haemaphysalis leachi. J Chem Ecol. 2006;32(1):125–36.
Article
CAS
PubMed
Google Scholar
Kraus B. Effects of honey-bee alarm pheromone compounds on the behaviour of Varroa jacobsoni. Apidologie. 1990;21(2):127–34.
Article
CAS
Google Scholar
Ruano F, Hefetz A, Lenoir A, Francke W, Tinaut A. Dufour’s gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. J Insect Physiol. 2005;51(10):1158–64.
Article
CAS
PubMed
Google Scholar
Smolanoff J, Kluge AF, Meinwald J, McPhail RW, Miller A, Hicks K, et al. Polyzonimine: a novel terpenoid insect repellent produced by a milliped. Science. 1975;188(4189):734–6.
Article
CAS
PubMed
Google Scholar
Guilford T, Nicol C, Rothschild M, Moore B. The biological roles of pyrazines: evidence for a warning odour function. Biol J Linn Soc. 1987;31(2):113–28.
Article
Google Scholar
Camazine S. Olfactory aposematism - association of food toxicity with naturally occurring odor. J Chem Ecol. 1985;11(9):1289–95.
Article
CAS
PubMed
Google Scholar
Smith B, Williams C, Tyler M, Williams B. A survey of frog odorous secretions, their possible functions and phylogenetic significance. Appl Herpetol. 2004;2(1):47–82.
Article
Google Scholar
Williams CR, Smith BPC, Best SM, Tyler MJ. Mosquito repellents in frog skin. Biol Lett. 2006;2(2):242–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knudsen JT, Eriksson R, Gershenzon J, Ståhl B. Diversity and distribution of floral scent. Bot Rev. 2006;72(1):1–120.
Article
Google Scholar
Pino JA, Mesa J, Muñoz Y, Martí MP, Marbot R. Volatile components from mango (Mangifera indica L.) cultivars. J Agric Food Chem. 2005;53(6):2213–23.
Article
CAS
PubMed
Google Scholar
Korpi A, Järnberg J, Pasanen AL. Microbial volatile organic compounds. Crit Rev Toxicol. 2009;39(2):139–93.
Article
CAS
PubMed
Google Scholar
Filipiak W, Sponring A, Filipiak A, Baur M, Ager C, Wiesenhofer H, et al. In: Amann A, Smith D, editors. Volatile Organic Compounds (VOCs) released by pathogenic microorganisms in vitro: Potential breath biomarkers for early-stage diagnosis of disease: Volatile Biomarkers. Elsevier; 2013. p. 463–512.
Google Scholar
Wang C, Ke C, Wang X, Chi C, Guo L, Luo S, et al. Noninvasive detection of colorectal cancer by analysis of exhaled breath. Anal Bioanal Chem. 2014;406(19):4757–63.
Article
CAS
PubMed
Google Scholar
Saporito RA, Spande TF, Garraffo HM, Donnelly MA. Arthropod alkaloids in poison frogs: A review of the “dietary hypothesis.”. Heterocycles. 2009;79:277–97.
Article
CAS
Google Scholar
Savitzky AH, Mori A, Hutchinson DA, Saporito RA, Burghardt GM, Lillywhite HB, et al. Sequestered defensive toxins in tetrapod vertebrates: principles, patterns, and prospects for future studies. Chemoecology. 2012;22(3):141–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darst CR, Menéndez-Guerrero P. A, Coloma LA, Cannatella DC. Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. Am Nat. 2005;165(1):56–69.
Article
PubMed
Google Scholar
Zhang Q, Zhou L, Chen H, Wang C-Z, Xia Z, Yuan C-S. Solid-phase microextraction technology for in vitro and in vivo metabolite analysis. Trends Anal Chem. 2016;80:57–65.
Article
CAS
Google Scholar
Daly J, Secunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover JF. An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon. 1994;32(6):657–63.
Article
CAS
PubMed
Google Scholar
Mebs D, Alvarez JV, Pogoda W, Toennes SW, Köhler G. Poor alkaloid sequestration by arrow poison frogs of the genus Phyllobates from Costa Rica. Toxicon. 2014;80:73–7.
Article
CAS
PubMed
Google Scholar
Bojko B, Reyes-Garcés N, Bessonneau V, Goryński K, Mousavi F, Souza Silva EA, et al. Solid-phase microextraction in metabolomics. Trends Anal Chem. 2014;61:168–80.
Article
CAS
Google Scholar
Grant T, Myers CW. Review of the frog genus Silverstoneia, with descriptions of five new species from the Colombian Chocó (Dendrobatidae: Colostethinae). Am Mus Novit. 2013;3784(3784):1–58.
Article
Google Scholar
Bonat Celli G, Ghanem A, Su-Ling BM. Influence of freezing process and frozen storage on the quality of fruits and fruit products. Food Rev Int. 2016;32(3):280–304.
Article
CAS
Google Scholar
Hama JR, Strobel BW. Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in grassland. Sci Total Environ. 2021;755:142822.
Article
CAS
PubMed
Google Scholar
Modise DM. Does freezing and thawing affect the volatile profile of strawberry fruit (Fragaria × ananassa Duch.)? Postharvest Biol Technol. 2008;50(1):25–30.
Article
CAS
Google Scholar
Vandendriessche T, Nicolai BM, Hertog MLATM. Optimization of HS SPME fast GC-MS for high-throughput analysis of strawberry aroma. Food Anal Methods. 2013;6(2):512–20.
Article
Google Scholar
Zhao S, Baik OD, Choi YJ, Kim SM. Pretreatments for the efficient extraction of bioactive compounds from plant-based biomaterials. Crit Rev Food Sci Nutr. 2014;54(10):1283–97.
Article
CAS
PubMed
Google Scholar
Feunang YD, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. Aust J Chem. 2016;8(1):1–20.
Google Scholar
Sgorbini B, Cagliero C, Liberto E, Rubiolo P, Bicchi C, Cordero C. Strategies for accurate quantitation of volatiles from foods and plant-origin materials: a challenging task. J Agric Food Chem. 2019;67:1619–30.
Article
CAS
PubMed
Google Scholar
Cordero C, Guglielmetti A, Sgorbini B, Bicchi C, Allegrucci E, Gobino G, et al. Odorants quantitation in high-quality cocoa by multiple headspace solid phase micro-extraction: adoption of FID-predicted response factors to extend method capabilities and information potential. Anal Chim Acta. 2019;1052:190–201.
Article
CAS
PubMed
Google Scholar
Aksenov AA, Laponogov I, Zhang Z, Doran SLF, Belluomo I, Veselkov D, et al. Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nat Biotechnol. 2021;39(2):169–73.
Article
CAS
PubMed
Google Scholar