Broussard DR, Robertson JL, Evans TJ, Faucher GK, Semanik MG, Heideman PD. Age-related decline in reproductive sensitivity to inhibition by short photoperiod in Peromyscus Leucopus. J Mammal. 2009;90(1):32–9.
Article
Google Scholar
Kaseloo PA, Crowell MG, Jones JJ, Heideman PD. Variation in basal metabolic rate and activity in relation to reproductive condition and photoperiod in white-footed mice (Peromyscus leucopus). Can J Zool. 2012;90(5):602–15.
Article
Google Scholar
Kaseloo PA, Crowell MG, Heideman PD. Heritable variation in reaction norms of metabolism and activity across temperatures in a wild-derived population of white-footed mice (Peromyscus leucopus). J Comp Physiol B. 2014;184(4):525–34.
Article
CAS
PubMed
Google Scholar
Hoffmann K. The influence of photoperiod and melatonin on testis size, body weight and pelage colour in the Djungarian hamster. J Comp Physiol. 1973;85:267–82.
Article
CAS
Google Scholar
Moffatt CA, Devries AC, Nelson RJ. Winter adaptations of male deer mice (Peromyscus-Maniculatus) and prairie voles (Microtus-Ochrogaster) that vary in reproductive responsiveness to photoperiod. J Biol Rhythm. 1993;8(3):221–32.
Article
CAS
Google Scholar
Bernard DJ, Losee-Olson S, Turek FW. Age-related changes in the photoperiodic response of Siberian hamsters. Biol Reprod. 1997;57(1):172–7.
Article
CAS
PubMed
Google Scholar
Freeman DA, Goldman BD. Evidence that the circadian system mediates photoperiodic nonresponsiveness in Siberian hamsters: the effect of running wheel access on photoperiodic responsiveness. J Biol Rhythm. 1997;12(2):100–9.
Article
CAS
Google Scholar
Freeman DA, Goldman BD. Photoperiod nonresponsive Siberian hamsters: effect of age on the probability of nonresponsiveness. J Biol Rhythm. 1997;12(2):110–21.
Article
CAS
Google Scholar
Hart JS. Seasonal changes in insulation of the fur. Can J Zool. 1965;34:53–7.
Article
Google Scholar
Kuhlmann MT, Clemen G, Schlatt S. Molting in the Djungarian hamster (Phodopus sungorus Pallas): seasonal or continuous process? J Exp Zool A Comp Exp Biol. 2003;295(2):160–71.
Article
PubMed
Google Scholar
Lynch GR, Puchalski W. Effect of prolonged short day exposure on thermoregulation in the djungarian hamster (Phodopus sungorus). Living in the Cold: Physiological and Biochemical Adaptations. New York: Elsevier Sciensce Publishing; 1986.
Google Scholar
Geiser F, Ruf T. Hibernation versus daily torpor in mammals and birds - physiological variables and classification of torpor patterns. Physiol Zool. 1995;68(6):935–66.
Article
Google Scholar
Przybylska AS, Wojciechowski MS, Jefimow M. Physiological differences between winter phenotypes of Siberian hamsters do not correlate with their behaviour. Anim Behav. 2019;147:105–14.
Article
Google Scholar
Goldman SL, Dhandapani K, Goldman BD. Genetic and environmental influences on short-day responsiveness in Siberian hamsters (Phodopus sungorus). J Biol Rhythm. 2000;15(5):417–28.
Article
CAS
Google Scholar
Goldman SL, Goldman BD. Early photoperiod history and short-day responsiveness in Siberian hamsters. J Exp Zool A Comp Exp Biol. 2003;296(1):38–45.
Article
PubMed
Google Scholar
Gorman MR, Freeman DA, Zucker I. Photoperiodism in hamsters: abrupt versus gradual changes in day length differentially entrain morning and evening circadian oscillators. J Biol Rhythm. 1997;12(2):122–35.
Article
CAS
Google Scholar
Gorman MR, Zucker I. Environmental induction of photononresponsiveness in the Siberian hamster, Phodopus sungorus. Am J Physiol. 1997;272(3 Pt 2):R887–95.
CAS
PubMed
Google Scholar
Zimova M, Mills LS, Nowak JJ. High fitness costs of climate change-induced camouflage mismatch. Ecol Lett. 2016;19(3):299–307.
Article
PubMed
Google Scholar
Mills LS, Bragina EV, Kumar AV, Zimova M, Lafferty DJR, Feltner J, et al. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science. 2018;359(6379):1033–6.
Article
CAS
PubMed
Google Scholar
Atmeh K, Andruszkiewicz A, Zub K. Climate change is affecting mortality of weasels due to camouflage mismatch. Sci Rep. 2018;8(1):7648.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hut RA, Dardente H, Riede SJ. Seasonal timing: how does a hibernator know when to stop hibernating? Curr Biol. 2014;24(13):R602–5.
Article
CAS
PubMed
Google Scholar
Dardente H, Wood S, Ebling F, Saenz de Miera C. An integrative view of mammalian seasonal neuroendocrinology. J Neuroendocrinol. 2019;31(5):e12729.
Article
PubMed
CAS
Google Scholar
Dardente H, Hazlerigg DG, Ebling FJ. Thyroid hormone and seasonal rhythmicity. Front Endocrinol (Lausanne). 2014;5:19.
Article
Google Scholar
Korf HW. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol. 2018;258:236–43.
Article
CAS
PubMed
Google Scholar
Johnston JD, Ebling FJ, Hazlerigg DG. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus). Eur J Neurosci. 2005;21(11):2967–74.
Article
PubMed
Google Scholar
Murphy M, Jethwa PH, Warner A, Barrett P, Nilaweera KN, Brameld JM, et al. Effects of manipulating hypothalamic triiodothyronine concentrations on seasonal body weight and torpor cycles in Siberian hamsters. Endocrinology. 2012;153(1):101–12.
Article
CAS
PubMed
Google Scholar
Ebling FJ. On the value of seasonal mammals for identifying mechanisms underlying the control of food intake and body weight. Horm Behav. 2014;66(1):56–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huck UW, Labov JB, Lisk RD. Food restricting young hamsters (Mesocricetus auratus) affects sex ration and growth of subsequent offspring. Biol Reprod. 1986;35:592–8.
Article
CAS
PubMed
Google Scholar
Mitchell GW, Guglielmo CG, Wheelwright NT, Freeman-Gallant CR, Norris DR. Early life events carry over to influence pre-migratory condition in a free-living songbird. PLoS One. 2011;6(12):e28838.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helle H, Koskela E, Mappes T. Life in varying environments: experimental evidence for delayed effects of juvenile environment on adult life history. J Anim Ecol. 2012;81(3):573–82.
Article
PubMed
Google Scholar
Searcy CA, Gray LN, Trenham PC, Shaffer HB. Delayed life history effects, multilevel selection, and evolutionary trade-offs in the California tiger salamander. Ecology. 2014;95(1):68–77.
Article
PubMed
Google Scholar
Rogovin KA, Bushuev AV, Khruscheva AM, Vasilieva NY. Resting metabolic rate, stress, testosterone, and induced immune response in spring- and fall-born males of Campbell’s dwarf hamsters: maintenance in long-day conditions. Biol Bull Rev. 2014;4(3):181–91.
Article
Google Scholar
Butler MP, Trumbull JJ, Turner KW, Zucker I. Timing of puberty and synchronization of seasonal rhythms by simulated natural photoperiods in female Siberian hamsters. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R413–20.
Article
CAS
PubMed
Google Scholar
Ergon T, Lambin X, Stenseth NC. Life-history traits of voles in a fluctuating population repsond to immediate environment. Nature. 2001;411:1043–5.
Article
CAS
PubMed
Google Scholar
Butler MP, Zucker I. Seasonal pelage changes are synchronized by simulated natural photoperiods in Siberian hamsters (Phodopus sungorus). J Exp Zool A Ecol Genet Physiol. 2009;311(7):475–82.
Article
PubMed
Google Scholar
Clutton-Brock TH, Major M, Albon SD, Guinness FE. Early development and population dynamics in Red Deer. I. Density-dependent effects on juvenile survival. J Anim Ecol. 1987;56(1):53–67.
Article
Google Scholar
Rose KE, Clutton-Brock TH, Guinness FE. Cohort variation in male survival and lifetime breeding success in red deer. J Anim Ecol. 1998;67(6):979–86.
Article
CAS
PubMed
Google Scholar
Plard F, Gaillard JM, Coulson T, Hewison AJM, Douhard M, Klein F, et al. The influence of birth date via body mass on individual fitness in a long-lived mammal. Ecology. 2015;96(6):1516–28.
Article
Google Scholar
Gorman MR, Zucker I. Seasonal adaptations of Siberian hamsters. II. Pattern of change in day length controls annual testicular and body weight rhythms. Biol Reprod. 1995;53:116–25.
Article
CAS
PubMed
Google Scholar
Butler MP, Turner KW, Park JH, Butler JP, Trumbull JJ, Dunn SP, et al. Simulated natural day lengths synchronize seasonal rhythms of asynchronously born male Siberian hamsters. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R402–12.
Article
CAS
PubMed
Google Scholar
Ross PD. Phodopus sungorus. Mamm Species. 1998;595:1–9.
Google Scholar
Ingram DL, Mandl AM, Zuckerman S. The influence of age on litter-size. J Endocrinol. 1958;17(3):280–5.
Article
CAS
PubMed
Google Scholar
O'Riain MJ, Jarvis JUM. The dynamics of growth in naked mole-rats: the effects of litter order and changes in social structure. J Zool. 1998;246:49–60.
Article
Google Scholar
Przybylska AS, Wojciechowski MS, Jefimow M. Photoresponsiveness affects life history traits but not oxidative status in a seasonal rodent. Front Zool. 2019;16(1):11.
Article
PubMed
PubMed Central
Google Scholar
Koketsu Y, Tani S, Iida R. Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds. Porcine Health Manag. 2017;3:1.
Article
PubMed
PubMed Central
Google Scholar
Rieger JF. Body size, litter size, timing of reproduction, and juvenile survival in the Uinta ground squirrel, Spermophilus armatus. Oecologia. 1996;107(4):463–8.
Article
PubMed
Google Scholar
Rodel HG, Prager G, Stefanski V, von Holst D, Hudson R. Separating maternal and litter-size effects on early postnatal growth in two species of altricial small mammals. Physiol Behav. 2008;93(4–5):826–34.
Article
PubMed
CAS
Google Scholar
Milligan BN, Fraser D, Kramer DL. Within-litter birth weight variation in the domestic pig and its relation to pre-weaning survival, weight gain, and variation in weaning weights. Livest Prod Sci. 2002;76(1–2):181–91.
Article
Google Scholar
Myers P, Master LL. Reproduction by Peromyscus-Maniculatus - size and compromise. J Mammal. 1983;64(1):1–18.
Article
Google Scholar
Prendergast BJ, Kriegsfeld LJ, Nelson RJ. Photoperiodic polyphenisms in rodents: neuroendocrine mechanisms, costs, and functions. Q Rev Biol. 2001;76(3):293–325.
Article
CAS
PubMed
Google Scholar
Boratyński JS, Jefimow M, Wojciechowski MS. Phenotypic flexibility of energetics in acclimated Siberian hamsters has a narrower scope in winter than in summer. J Comp Physiol B. 2016;186(3):387–402.
Article
PubMed
PubMed Central
Google Scholar
Mahlert B, Gerritsmann H, Stalder G, Ruf T, Zahariev A, Blanc S, et al. Implications of being born late in the active season for growth, fattening, torpor use, winter survival and fecundity. Elife. 2018;7:e31255.
Sadowska J, Gębczyński AK, Paszko K, Konarzewski M. Milk output and composition in mice divergently selected for basal metabolic rate. J Exp Biol. 2015;218(Pt 2):249–54.
PubMed
Google Scholar
Fischbeck KL, Rasmussen KM. Effect of repeated reproductive cycles on maternal nutritional status, lactational performance and litter growth in ad libitum-fed and chronically food-restricted rats. J Nutr. 1987;117(11):1967–75.
Article
CAS
PubMed
Google Scholar
Havelka MA, Millar JS. Maternal age drives seasonal variation in litter size of Peromyscus leucopus. J Mammal. 2004;85(5):940–7.
Article
Google Scholar
Fuchs S. Optimality of parental investment - the influence of nursing on reproductive success of mother and female young house mice. Behav Ecol Sociobiol. 1982;10(1):39–51.
Article
Google Scholar
Edwards HE, Tweedie CJ, Terranova PF, Lisk RD, Wynne-Edwards KE. Reproductive aging in the Djungarian hamster, Phodopus campbelli. Biol Reprod. 1998;58(3):842–8.
Article
CAS
PubMed
Google Scholar
Lim JN, Senior AM, Nakagawa S. Heterogeneity in individual quality and reproductive trade-offs within species. Evolution. 2014;68(8):2306–18.
PubMed
Google Scholar
Cameron H, Monro K, Malerba M, Munch S, Marshall D. Why do larger mothers produce larger offspring? A test of classic theory. Ecology. 2016;97(12):3454–9.
Article
Google Scholar
Monaghan P. Early growth conditions, phenotypic development and environmental change. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1497):1635–45.
Article
Google Scholar
Prevot-Julliard AC, Henttonens H, Yoccoz NG, Stenseth NC. Delayed maturation in female bank voles: optimal decision or social constraint? J Anim Ecol. 1999;68:684–97.
Article
Google Scholar
Stumpfel S, Bieber C, Blanc S, Ruf T, Giroud S. Differences in growth rates and pre-hibernation body mass gain between early and late-born juvenile garden dormice. J Comp Physiol B. 2017;187(1):253–63.
Article
PubMed
Google Scholar
Michel ES, Demarais S, Strickland BK, Wang G. Birth date promotes a tortoise or hare tactic for body mass development of a long-lived male ungulate. Oecologia. 2018;186(1):117–28.
Article
PubMed
Google Scholar
Metcalfe NB, Monaghan P. Compensation for a bad start: grow now, pay later? Trends Ecol Evol. 2001;16(5):254–60.
Article
PubMed
Google Scholar
Bertram DF, Chambers RC, Leggett WC. Negative correlations between larval and juvenile growth-rates in winter flounder - implications of compensatory growth for variation in size-at-age. Mar Ecol Prog Ser. 1993;96(3):209–15.
Article
Google Scholar
Auer SK, Arendt JD, Chandramouli R, Reznick DN. Juvenile compensatory growth has negative consequences for reproduction in Trinidadian guppies (Poecilia reticulata). Ecol Lett. 2010;13(8):998–1007.
PubMed
Google Scholar
Newkirk KD, McMillan HJ, Wynne-Edwards KE. Length of delay to birth of a second litter in dwarf hamsters (Phodopus): evidence for post-implantation embryonic diapause. J Exp Zool. 1997;278(2):106–14.
Article
CAS
PubMed
Google Scholar
Blumstein DT, Arnold W. Ecology and Social Behavior of Golden Marmots (Marmota caudata aurea). J Mammal. 1998;79(3):873–86.
Heldmaier G, Steinlechner S. Seasonal control of energy requirements for thermoregulation in the Djungarian hamster (Phodopus sungorus), living in natural photoperiod. J Comp Physiol. 1981;142(4):429–37.
Article
Google Scholar
Scholander PF, Hock R, Walters V, Irving L. Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol Bull. 1950;99(2):259–71.
Article
CAS
PubMed
Google Scholar
Ben-Jonathan N, Hugo ER, Brandebourg TD, LaPensee CR. Focus on prolactin as a metabolic hormone. Trends Endocrinol Metab. 2006;17(3):110–6.
Article
CAS
PubMed
Google Scholar
Yahata T., Kuroshima A. Role of prolactin in brown adipose tissue thermogenic activity. In: Milton A.S. (eds) Temperature Regulation. Advances in Pharmacological Sciences. Basel: Birkhäuser; 1994.
Heldmaier G, Steinlechner S. Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus. Oecologia. 1981;48(2):265–70.
Article
PubMed
Google Scholar
Kirsch R, Ouarour A, Pevet P. Daily torpor in the Djungarian hamster (Phodopus sungorus): photoperiodic regulation, characteristics and circadian organization. J Comp Physiol A. 1991;168(1):121–8.
Article
CAS
PubMed
Google Scholar
Ruf T, Heldmaier G. The impact of daily torpor on energy-requirements in the Djungarian hamster, Phodopus-Sungorus. Physiol Zool. 1992;65(5):994–1010.
Article
Google Scholar
Cubuk C, Bank JH, Herwig A. The chemistry of cold: mechanisms of torpor regulation in the Siberian hamster. Physiology (Bethesda). 2016;31(1):51–9.
CAS
Google Scholar
Ruf T, Stieglitz A, Steinlechner S, Blank JL, Heldmaier G. Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). J Exp Zool. 1993;267(2):104–12.
Article
CAS
PubMed
Google Scholar
Lynch GR, Wichman HA. Reproduction and thermoregulation in peromyscus: effects of chronic short days. Physiol Behav. 1981;26(2):201–5.
Article
CAS
PubMed
Google Scholar
Hoffmann K, Illnerova H. Photoperiodic effects in the Djungarian hamster. Rate of testicular regression and extension of pineal melatonin pattern depend on the way of change from long to short photoperiods. Neuroendocrinology. 1986;43(3):317–21.
Article
CAS
PubMed
Google Scholar
Heideman PD, Bronson FH. Characteristics of a genetic polymorphism for reproductive photoresponsiveness in the white-footed mouse (Peromyscus leucopus). Biol Reprod. 1991;44(6):1189–96.
Article
CAS
PubMed
Google Scholar
Kliman RM, Lynch GR. Evidence for independence of circadian characters and extent of photoresponsiveness in the Djungarian hamster, Phodopus sungorus. J Biol Rhythms. 1991;6(2):159–66.
Article
CAS
PubMed
Google Scholar
Nelson RJ. Photoperiod-nonresponsive morphs: a possible variable in microtine population-density fluctuations. Am Nat. 1987;130(3):350–69.
Article
Google Scholar
Ford EB. Polymorphism. Biol Rev Camb Philos Soc. 1945;20(2):73–88.
Article
Google Scholar
Wynne-Edwards KE. Evolution of parental care in Phodopus: conflict between adaptations for survival and adaptations for rapid reproduction. Am Zool. 1998;38(1):238–50.
Article
Google Scholar
Lynch EWJ, Coyle CS, Stevenson TJ. Photoperiodic and ovarian steroid regulation of histone deacetylase 1, 2, and 3 in Siberian hamster (Phodopus sungorus) reproductive tissues. Gen Comp Endocrinol. 2017;246:194–9.
Article
CAS
PubMed
Google Scholar
Banks R, Delibegovic M, Stevenson TJ. Photoperiod- and Triiodothyronine-dependent regulation of reproductive neuropeptides, Proinflammatory cytokines, and peripheral physiology in Siberian hamsters (Phodopus sungorus). J Biol Rhythm. 2016;31(3):299–307.
Article
CAS
Google Scholar
Boratyński JS, Jefimow M, Wojciechowski MS. Individual differences in the phenotypic flexibility of basal metabolic rate in Siberian hamsters are consistent on short- and long-term timescales. Physiol Biochem Zool. 2017;90(2):139–52.
Article
PubMed
Google Scholar
Wade GN, Bartness TJ. Effects of photoperiod and gonadectomy on food intake, body weight, and body composition in Siberian hamsters. Am J Phys. 1984;246(1 Pt 2):R26–30.
CAS
Google Scholar
Bartness TJ, Clein MR. Effects of food deprivation and restriction, and metabolic blockers on food hoarding in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol. 1994;266:1111–7.
Article
Google Scholar
Boratyński JS, Jefimow M, Wojciechowski MS. Melatonin attenuates phenotypic flexibility of energy metabolism in a photoresponsive mammal, the Siberian hamster. J Exp Biol. 2017;220(Pt 17):3154–61.
PubMed
Google Scholar
Figala J, Hoffmann K, Goldau G. Zur Jahresperiodik beim Dsungarischen Zwerghamster Phodopus sungorus Pallas. Oecologia. 1973;12:89–118.
Article
CAS
PubMed
Google Scholar
Jefimow M, Przybylska-Piech AS, Wojciechowski MS. Predictive and reactive changes in antioxidant defence system in a heterothermic rodent. J Comp Physiol B. 2020;190(4):479–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutowski JP, Wojciechowski MS, Jefimow M. Diet affects resting, but not basal metabolic rate of normothermic Siberian hamsters acclimated to winter. Comp Biochem Physiol A Mol Integr Physiol. 2011;160(4):516–23.
Article
CAS
PubMed
Google Scholar
Lighton JRB, Bartholomew GA, Feener DH. Energetics of locomotion and load carriage and a model of the energy-cost of foraging in the leaf-cutting ant Atta-Colombica Guer. Physiol Zool. 1987;60(5):524–37.
Article
Google Scholar
Koteja P. Measuring energy metabolism with open-flow Respirometric systems: which design to choose? Funct Ecol. 1996;10:675–7.
Article
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1).
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020. https://www.R-project.org/. Accessed Sept 2020.
Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.6. ed: CRAN; 2020. p. https://CRAN.R-project.org/package=emmeans. Accessed September 2020.
Goodenough AE, Hart AG, Stafford R. Regression with empirical variable selection: description of a new method and application to ecological datasets. PLoS One. 2012;7(3):e34338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartoń K. MuMIn: Multi-Model Inference R package version 1.43.17; 2020.
Google Scholar