Stork NE. Insect diversity: facts, fiction and speculation*. Biol J Linn Soc. 1988;35:321–37.
Article
Google Scholar
Stork NE, McBroom J, Gely C, Hamilton AJ. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. PNAS. 2015;112:7519–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weisser W, Siemann E. The various effects of insects on ecosystem functioning. In: Insects and Ecosystem Function. Springer Berlin Heidelberg; 2004. p. 3–24.
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. TREE. 2010;25:345–53.
PubMed
Google Scholar
Gallai N, Salles J-M, Settele J, Vaissière BE. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econom. 2009;68:810–21.
Article
Google Scholar
Zalucki MP, Shabbir A, Silva R, Adamson D, Shu-Sheng L, Furlong MJ. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? J Econ Entomol. 2012;105:1115–29.
Article
PubMed
Google Scholar
Dijkstra K-DB, Bechly G, Bybee SM, Dow RA, Dumont HJ, Fleck G, Garrison RW, Hämäläinen M, Kalkman VJ, Karube H. The classification and diversity of dragonflies and damselflies (Odonata). In: Zhang, Z.-Q.(Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa. 2013;3703:36–45.
Article
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7.
Article
CAS
PubMed
Google Scholar
Córdoba-Aguilar A. Dragonflies and damselflies. Model organisms for ecological and evolutionary research. Oxford: Oxford University Press; 2008.
Book
Google Scholar
Dijkstra K-DB, Monaghan MT, Pauls SU. Freshwater biodiversity and aquatic insect diversification. Ann Rev Entmol. 2014;59:143–63.
Article
CAS
Google Scholar
Cong Q, Borek D, Otwinowski Z, Grishin NV. Tiger swallowtail genome reveals mechanisms for speciation and caterpillar chemical defense. Cell Rep. 2015;10:910–9.
Article
CAS
Google Scholar
Oxley PR, Ji L, Fetter-Pruneda I, McKenzie SK, Li C, Hu H, Zhang G, Kronauer DJ. The genome of the clonal raider ant Cerapachys biroi. Curr Biol. 2014;24:451–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grimmelikhuijzen CJ, Cazzamali G, Williamson M, Hauser F. The promise of insect genomics. Pest Manag Sci. 2007;63:413–6.
Article
CAS
PubMed
Google Scholar
Holmstrup M, Bindesbøl A-M, Oostingh GJ, Duschl A, Scheil V, Köhler H-R, Loureiro S, Soares AM, Ferreira AL, Kienle C. Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ. 2010;408:3746–62.
Article
CAS
PubMed
Google Scholar
Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, Bennison C, Ball AD, Beckerman AP, Slate J. Adaptation genomics: the next generation. TREE. 2010;25:705–12.
PubMed
Google Scholar
Savolainen O, Lascoux M, Merila J. Ecological genomics of local adaptation. Nat Rev Gen. 2013;14:807–20.
Article
CAS
Google Scholar
Tagu D, Colbourne J, Negre N. Genomic data integration for ecological and evolutionary traits in non-model organisms. BMC Genomics. 2014;15:490.
Article
PubMed
PubMed Central
Google Scholar
Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity. 2011;107:1–15.
Article
CAS
PubMed
Google Scholar
Bybee SM, Ogden TH, Branham MA, Whiting MF. Molecules, morphology and fossils: a comprehensive approach to odonate phylogeny and the evolution of the odonate wing. Cladistics. 2008;24:477–514.
Article
Google Scholar
Dijkstra KD, Kalkman VJ, Dow RA, Stokvis FR, Van Tol J. Redefining the damselfly families: a comprehensive molecular phylogeny of Zygoptera (Odonata). Syst Entomol. 2014;39:68–96.
Article
Google Scholar
Ware J, May M, Kjer K. Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): An exploration of the most speciose superfamily of dragonflies. Mol Phylogenet Evol. 2007;45:289–310.
Article
CAS
PubMed
Google Scholar
Blanke A, Greve C, Wipfler B, Beutel RG, Holland BR, Misof B. The identification of concerted convergence in insect heads corroborates Palaeoptera. Syst Biol. 2013;62:250–63.
Article
CAS
PubMed
Google Scholar
Carle FL, Kjer KM, May ML. A molecular phylogeny and classification of Anisoptera (Odonata). 2015.
Google Scholar
Dumont HJ, Vierstraete A, Vanfleteren JR. A revised molecular phylogeny of the Calopterygidae (Zygoptera: Calopterigidae). Odonatologica. 2007;36:365–72.
Google Scholar
Ballare EF, Ware JL. Dragons fly, biologists classify: an overview of molecular odonate studies, and our evolutionary understanding of dragonfly and damselfly (Insecta: Odonata) behavior. Int J Odonatol. 2011;14:137–47.
Article
Google Scholar
Davis RB, Nicholson DB, Saunders EL, Mayhew PJ. Fossil gaps inferred from phylogenies alter the apparent nature of diversification in dragonflies and their relatives. BMC Evol Biol. 2011;11:252.
Article
PubMed
PubMed Central
Google Scholar
Ferreira S, Lorenzo-Carballa MO, Torres-Cambas Y, Cordero-Rivera A, Thompson DJ, Watts PC. New EPIC nuclear DNA sequence markers to improve the resolution of phylogeographic studies of coenagrionids and other odonates. Int J Odonatol. 2014;17:135–47.
Article
Google Scholar
Lemmon AR, Emme SA, Lemmon EM. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol. 2012;61(5):727–44.
Article
CAS
PubMed
Google Scholar
Kawahara AY, Breinholt JW. Phylogenomics provides strong evidence for relationships of butterflies and moths. Proc R Soc Lond B. 2014;281:20140970.
Article
Google Scholar
Kalkman VJ, Clausnitzer V, Dijkstra K-DB, Orr AG, Paulson DR, van Tol J. Global diversity of dragonflies (Odonata) in freshwater. Hydrobiologia. 2008;595:351–63.
Article
Google Scholar
Dijkstra K-DB, Kipping J, Meziere N. Sixty new dragonfly and damselfly species from Africa (Odonata). Odonatologica. 2015;44:447–678.
Google Scholar
Büsse S, Helmker B, Hörnschemeyer T. The thorax morphology of Epiophlebia (Insecta: Odonata) nymphs – including remarks on ontogenesis and evolution. Sci Rep. 2015;5:12835.
Article
PubMed
PubMed Central
CAS
Google Scholar
Raupach MJ, Amann R, Wheeler QD, Roos C. The application of “-omics” technologies for the classification and identification of animals. Organ Divers Evol. 2015;16:1–12.
Article
Google Scholar
Kukalová-Peck J. Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera). Palaeodiversity. 2009;2:169–98.
Google Scholar
Bechly G. New fossil dragonflies from thel lower Cretaceous, Crato formation of North-East Brazil (Insecta: Odonata). Stuttgart: Staatliches Museum für Naturkunde; 1998.
Nel A, Bechly G, Prokop J, Béthoux O, Fleck G. Systematics and evolution of paleozoic and mesozoic damselfly-like odonatoptera of the ‘protozygopteran’ grade. J Paleontol. 2012;86:81–104.
Article
Google Scholar
Shubin N, Tabin C, Carroll S. Fossils, genes and the evolution of animal limbs. Nature. 1997;388:639–48.
Article
CAS
PubMed
Google Scholar
Gregory TR. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot. 2005;95:133–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett M, Leitch I. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot. 2005;95:45–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregory TR. The evolution of the genome. San Diego and London: Elsevier Academic Press; 2011.
Ardila-Garcia AM, Gregory TR. An exploration of genome size diversity in dragonflies and damselflies (Insecta: Odonata). J Zool. 2009;278:163–73.
Article
Google Scholar
Garrison RW, von Ellenrieder N, Louton JA. Dragonfly genera of the New World: an illustrated and annotated key to the Anisoptera. Baltimore: JHU Press; 2006.
Garrison RW, von Ellenrieder N, Louton JA. Damsefly genera of the New World: an illustrated and annotated key to the zygoptera. Baltimore: JHU Press; 2010.
Dijkstra KD, Lewington R. Field guide to the dragonflies of Britain and Europe. Oxford: British Wildlife Publishing Ltd; 2006.
Google Scholar
Dijkstra KDB, Kalkman VJ. Phylogeny, classification and taxonomy of European dragonflies and damselflies (Odonata): a review. Organ Divers Evol. 2012;12:209–27.
Article
Google Scholar
Fincke OM. Lifetime mating success in a natural population of the damselfly, Enallagma hageni (Walsh) (Odonata: Coenagrionidae). Behav Ecol Sociobiol. 1982;10:293–302.
Article
Google Scholar
Banks MJ, Thompson DJ. Lifetime reproductive success of females of the damselfly Coenagrion puella. J Anim Ecol. 1987;56:815–832.
Fincke OM, Hadrys H. Unpredictable offspring survivorship in the damselfly Megaloprepus coerulatus shapes parental strategies, constrains sexual selection, and challenges traditional fitness estimates. Evolution. 2001;55:762–72.
Article
CAS
PubMed
Google Scholar
Thompson DJ, Hassall C, Lowe CD, Watts PC. Field estimates of reproductive success in a model insect: behavioural surrogates are poor predictors of fitness. Ecol Lett. 2011;14:905–13.
Article
PubMed
Google Scholar
Wilbur HM. Complex life cycles. Ann Rev Ecol Syst. 1980;11:67–93.
Article
Google Scholar
Kingsolver JG, Woods HA, Buckley LB, Potter KA, MacLean HJ, Higgins JK. Complex life cycles and the responses of insects to climate change. Integr Comp Biol. 2011;51(5):719–32.
Article
PubMed
Google Scholar
Stoks R, Córdoba-Aguilar A. Evolutionary ecology of Odonata: a complex life cycle perspective. Ann Rev Entmol. 2012;57:249–65.
Article
CAS
Google Scholar
Johansson F, Sniegula S, Brodin T. Emergence patterns and latitudinal adaptations in development time of Odonata in north Sweden and Poland. Odonatologica. 2010;39:97–106.
Google Scholar
Moran NA. Adaptation and constraint in the complex life cycles of animals. Ann Rev Ecol Syst 1994;25:573–600.
Article
Google Scholar
Aguirre JD, Blows MW, Marshall DJ. The genetic covariance between life cycle stages separated by metamorphosis. Proc R Soc Lond B. 2014;281:20141091.
Article
Google Scholar
Watkins TB. A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the Pacific tree frog, Hyla regilla. Evolution. 2001;55:1668–77.
Article
CAS
PubMed
Google Scholar
Rifkin SA, Kim J, White KP. Evolution of gene expression in the Drosophila melanogaster subgroup. Nat Gen. 2003;33:138–44.
Article
CAS
Google Scholar
Fellous S, Lazzaro BP. Larval food quality affects adult (but not larval) immune gene expression independent of effects on general condition. Mol Ecol. 2010;19:1462–8.
Article
CAS
PubMed
Google Scholar
Johnston PR, Rolff J. Immune- and wound-dependent differential gene expression in an ancient insect. Dev Comp Immunol. 2013;40:320–4.
Article
CAS
PubMed
Google Scholar
De Block M, Stoks R. Fitness effects from egg to reproduction: bridging the life history transition. Ecology. 2005;86:185–97.
Article
Google Scholar
Mukherjee K, Fischer R, Vilcinskas A. Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection. Front Zool. 2012;9:25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clobert J, Baguette M, Benton TG, Bullock JM, Ducatez S. Dispersal Ecology and Evolution. Oxford: Oxford University Press; 2012.
Hanski IA. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly. PNAS. 2011;108:14397–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol. 2008;17:1636–47.
Article
CAS
PubMed
Google Scholar
Hanski I, Saccheri I. Molecular-level variation affects population growth in a butterfly metapopulation. PLoS Biol. 2006;4:e129.
Article
PubMed
PubMed Central
CAS
Google Scholar
Niitepõld K, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Marden JH, Ovaskainen O, Hanski I. Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field. Ecology. 2009;90:2223–32.
Article
PubMed
Google Scholar
Kallioniemi E, Hanski I. Interactive effects of Pgi genotype and temperature on larval growth and survival in the Glanville fritillary butterfly. Funct Ecol. 2011;25:1032–9.
Article
Google Scholar
Watts PC, Rousset F, Saccheri IJ, Leblois R, Kemp SJ, Thompson DJ. Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: analysis of ‘neighbourhood size’using a more precise estimator. Mol Ecol. 2007;16:737–51.
Article
PubMed
Google Scholar
Keller D, Brodbeck S, Flöss I, Vonwil G, Holderegger R. Ecological and genetic measurements of dispersal in a threatened dragonfly. Biol Cons. 2010;143:2658–63.
Article
Google Scholar
Watts PC, Saccheri IJ, Kemp SJ, Thompson DJ. Population structure and the impact of regional and local habitat isolation upon levels of genetic diversity of the endangered damselfly Coenagrion mercuriale (Odonata: Zygoptera). Fresh Biol. 2006;51:193–205.
Article
CAS
Google Scholar
Van Strien MJ, Keller D, Holderegger R. A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol. 2012;21:4010–23.
Article
Google Scholar
Wellenreuther M, Sánchez-Guillén RA, Cordero-Rivera A, Svensson EI, Hansson B. Environmental and climatic determinants of molecular diversity and genetic population structure in a coenagrionid damselfly. PLoS One. 2011;6:e20440.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hassall C, Thompson DJ, French GC. Historical changes in the phenology of British Odonata are related to climate. Glob Chang Biol. 2007;13:933–41.
Article
Google Scholar
Hickling R, Roy DB, Hill JK, Thomas CD. A northward shift of range margins in British Odonata. Glob Chang Biol. 2006;11:502–6.
Article
Google Scholar
Sánchez-Guillén RA, Muñoz J, Rodríguez-Tapia G, Arroyo TPF, Córdoba-Aguilar A. Climate-induced range shifts and possible hybridisation consequences in insects. PLoS One. 2013;8:e80531.
Article
PubMed
PubMed Central
CAS
Google Scholar
Merilä J, Hendry AP. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl. 2014;7:1–14.
Article
PubMed
PubMed Central
Google Scholar
Shama LN, Campero-Paz M, Wegner KM, De Block M, Stoks R. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate. Mol Ecol. 2011;20:2929–41.
Article
PubMed
Google Scholar
Stoks R, Swillen I, De Block M. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae. J Anim Ecol. 2012;81:1034–40.
Article
PubMed
Google Scholar
Stoks R, De Block M. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins. PLoS One. 2011;6:e16935.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Block M, Pauwels K, Vanden Broeck M, Meester L, Stoks R. Local genetic adaptation generates latitude-specific effects of warming on predator–prey interactions. Glob Chang Biol. 2013;19:689–96.
Article
PubMed
Google Scholar
Van Dinh K, Janssens L, Debecker S, Jonge M, Lambret P, Nilsson‐Örtman V, Bervoets L, Stoks R. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient. Glob Chang Biol. 2013;19:2625–33.
Article
Google Scholar
Śniegula S, Nilsson-Örtman V, Johansson F. Growth pattern responses to photoperiod across latitudes in a northern damselfly. PLoS One. 2012;7:e46024.
Article
PubMed
PubMed Central
CAS
Google Scholar
Śniegula S, Johansson F, Nilsson‐Örtman V. Differentiation in developmental rate across geographic regions: a photoperiod driven latitude compensating mechanism? Oikos. 2012;121:1073–82.
Article
Google Scholar
Śniegula S, Drobniak SM, Gołąb MJ, Johansson F. Photoperiod and variation in life history traits in core and peripheral populations in the damselfly Lestes sponsa. Ecol Entomol. 2014;39:137–48.
Article
Google Scholar
Swaegers J, Mergeay J, Therry L, Larmuseau M, Bonte D, Stoks R. Rapid range expansion increases genetic differentiation while causing limited reduction in genetic diversity in a damselfly. Heredity. 2013;111:422–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watts PC, Keat S, Thompson DJ. Patterns of spatial genetic structure and diversity at the onset of a rapid range expansion: colonisation of the UK by the small red-eyed damselfly Erythromma viridulum. Biol Invasions. 2010;12:3887–903.
Article
Google Scholar
Swaegers J, Mergeay J, Van Geystelen A, Therry L, Larmuseau M, Stoks R. Neutral and adaptive genomic signatures of rapid poleward range expansion. Mol Ecol. 2015;24:6163–76.
Article
CAS
PubMed
Google Scholar
Therry L, Nilsson‐Örtman V, Bonte D, Stoks R. Rapid evolution of larval life history, adult immune function and flight muscles in a poleward-moving damselfly. JEB. 2014;27:141–52.
CAS
Google Scholar
Therry L, Lefevre E, Bonte D, Stoks R. Increased activity and growth rate in the non-dispersive aquatic larval stage of a damselfly at an expanding range edge. Fresh Biol. 2014;59:1266–77.
Article
Google Scholar
Marden JH, Fescemyer HW, Schilder RJ, Doerfler WR, Vera JC, Wheat CW. Genetic variation in HIF signaling underlies quantitative variation in physiological and life-history traits within lowland butterfly populations. Evolution. 2013;67:1105–15.
Article
CAS
PubMed
Google Scholar
Wheat CW, Hill J. Pgi: the ongoing saga of a candidate gene. Curr Opin Insect Sci. 2014;4:42–7.
Article
Google Scholar
Wellenreuther M, Tynkkynen K, Svensson EI. Simulating range expansion: male species recognition and loss of premating isolation in damselflies. Evolution. 2010;64:242–52.
Article
PubMed
Google Scholar
Sánchez-Guillén R, Cordoba-Aguilar A, Hansson B, Ott J, Wellenreuther M. Evolutionary consequences of climate-induced range shifts in insects. Biol Rev. 2015.
Scascitelli M, Whitney K, Randell R, King M, Buerkle C, Rieseberg L. Genome scan of hybridizing sunflowers from Texas (Helianthus annuus and H. debilis) reveals asymmetric patterns of introgression and small islands of genomic differentiation. Mol Ecol. 2010;19:521–41.
Article
CAS
PubMed
Google Scholar
Weetman D, Wilding CS, Steen K, Pinto J, Donnelly MJ. Gene flow–dependent genomic divergence between Anopheles gambiae M and S forms. Mol Biol Evo. 2012;29:279–91.
Article
CAS
Google Scholar
Sánchez-Guillén RA, Córdoba-Aguilar A, Cordero-Rivera AS, Wellenreuther M. Genetic divergence predicts reproductive isolation in damselflies. JEB. 2013;27:76–87.
Google Scholar
Coyne JA, Orr HA. Speciation. Sunderland (MA): Sinauer Associates; 2004.
Google Scholar
Mallet J. Hybrid speciation. Nature. 2007;446:279–83.
Article
CAS
PubMed
Google Scholar
Fincke OM. Conflict resolution in the Odonata: implications for understanding female mating patterns and female choice. Biol J Linn Soc. 1997;60:201–20.
Article
Google Scholar
Waage JK. Reproductive isolation and the potential for character displacement in the damselflies, Calopteryx maculata and C. aequabilis (Odonata: Calopterygidae). Syst Zool. 1975;24:24–36.
Article
Google Scholar
Waage JK. Reproductive character displacement in Calopteryx (Odonata: Calopterygidae). Evolution. 1979;33:104–16.
Article
Google Scholar
Andrés JA, Sánchez-Guillén RA, Cordero-Rivera A. Evolution of female colour polymorphism in damselflies: testing the hypotheses. Anim Behav. 2002;63:677–85.
Article
Google Scholar
Cordero-Rivera A, Stoks R. Mark-recapture studies and demography, Dragonflies and damselflies: model organisms for ecological and evolutionary research. 2008. p. 7–20.
Google Scholar
Rowe L, Arnqvist G, Sih A, Krupa JJ. Sexual conflict and the evolutionary ecology of mating patterns: water striders as a model system. TREE. 1994;9:289–93.
CAS
PubMed
Google Scholar
Markow TA, O’Grady P. Drosophila: a guide to species identification and use. Academic Press; 2005.
Amdam GV, Csondes A, Fondrk MK, Page RE. Complex social behaviour derived from maternal reproductive traits. Nature. 2006;439:76–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wellenreuther M, Sánchez-Guillén RA. Non-adaptive radiation in damselflies. Evol Appl. 2016;9:103–18.
Article
PubMed
Google Scholar
Cordero-Rivera A, Córdoba-Aguilar A. Selective forces propelling genitalic evolution in Odonata, The evolution of primary sexual characters in animals. 2010. p. 332–52.
Google Scholar
Mackay TF, Heinsohn SL, Lyman RF, Moehring AJ, Morgan TJ, Rollmann SM. Genetics and genomics of Drosophila mating behavior. PNAS. 2005;102:6622–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorenzo-Carballa M, Beatty C, Cordero-Rivera A. Parthenogenesis in island insects- the case study of Ischnura hastata. In: Serrano A, Serrano ARM, Borges PAV, Boieiro M, Oromí P, editors. Terrestial Arthropods of Macaronesia - biodiversity, ecology and evolution. Lisboa: Sociedade Portuguesa de Entomologia; 2011. p. 199–230.
Google Scholar
Althoff DM, Segraves KA, Johnson MT. Testing for coevolutionary diversification: linking pattern with process. TREE. 2014;29:82–9.
PubMed
Google Scholar
Masly JP. 170 years of “lock-and-key”: genital morphology and reproductive isolation. Int J Evol Biol. 2011;2012. Article ID 247352. doi:10.1155/2012/247352.
Masly JP, Dalton JE, Srivastava S, Chen L, Arbeitman MN. The genetic basis of rapidly evolving male genital morphology in Drosophila. Genetics. 2011;189:357–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cordero Rivera A, Andres JA, Cordoba-Aguilar A, Utzeri C. Postmating sexual selection: allopatric evolution of sperm competition mechanisms and genital morphology in calopterygid damselflies (Insecta: Odonata). Evolution. 2004;58:349–59.
Article
CAS
PubMed
Google Scholar
Corbet PS, May ML. Fliers and perchers among Odonata: dichotomy or multidimensional continuum? A provisional reappraisal. Int J Odonatol. 2008;11:155–71.
Article
Google Scholar
Evans JP, Simmons LW. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good-and sexy-sperm? Genetica. 2008;134:5–19.
Article
PubMed
Google Scholar
Fields PA, Dong Y, Meng X, Somero GN. Adaptations of protein structure and function to temperature: there is more than one way to ‘skin a cat’. J Exp Biol. 2015;218:1801–11.
Article
PubMed
Google Scholar
Serrano-Meneses MA, Córdoba-Aguilar A, Székely T. Sexual size dimorphism: patterns and processes, Dragonflies and damselflies: model organisms for ecological and evolutionary research Oxford University Press, Oxford. 2008. p. 248.
Google Scholar
Córdoba‐Aguilar A, Munguía‐Steyer R. To be or not to be? Mating success and survival trade-offs when switching between alternative reproductive tactics. JEB. 2015;28:2119–24.
Google Scholar
Rittschof CC, Robinson GE. Genomics: moving behavioural ecology beyond the phenotypic gambit. Anim Behav. 2014;92:263–70.
Article
PubMed
PubMed Central
Google Scholar
Tsubaki Y. The genetic polymorphism linked to mate-securing strategies in the male damselfly Mnais costalis Selys (Odonata: Calopterygidae). Popul Ecol. 2003;45:263–6.
Article
Google Scholar
Contreras‐Garduño J, Córdoba‐Aguilar A, Lanz‐Mendoza H, Cordero Rivera A. Territorial behaviour and immunity are mediated by juvenile hormone: the physiological basis of honest signalling? Funct Ecol. 2009;23:157–63.
Article
Google Scholar
González-Tokman DM, Munguía-Steyer R, González-Santoyo I, Baena-Díaz FS, Córdoba-Aguilar A. Support for the immunocompetence handicap hypothesis in the wild: hormonal manipulation decreases survival in sick damselflies. Evolution. 2012;66:3294–301.
Article
PubMed
Google Scholar
Plaistow S, Siva-Jothy MT. Energetic constraints and male mate securing tactics in the damselfly Calopteryx splendens xanthostoma (Charpentier). Proc R Soc Biol Sci Series B. 1996;263:1233–8.
Article
Google Scholar
Marden JH, Cobb JR. Territorial and mating success of dragonflies that vary in muscle power output and presence of gregarine gut parasites. Anim Behav. 2004;68:857–65.
Article
Google Scholar
Schilder RJ, Marden JH. Metabolic syndrome and obesity in an insect. PNAS. 2006;103:18805–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson GE, Grozinger CM, Whitfield CW. Sociogenomics: social life in molecular terms. Nat Rev Genet. 2005;6:257–70.
Article
CAS
PubMed
Google Scholar
Verzijden MN, ten Cate C, Servedio MR, Kozak GM, Boughman JW, Svensson EI. The impact of learning on sexual selection and speciation. TREE. 2012;27:511–9.
PubMed
Google Scholar
Svensson EI, Runemark A, Verzijden MN, Wellenreuther M. Sex differences in developmental plasticity and canalization shape population divergence in mate preferences. Proc R Soc Lond B Biol Sci. 2014;281:20141636.
Article
Google Scholar
Svensson EI, Eroukhmanoff F, Karlsson K, Runemark A, Brodin A. A role for learning in population divergence of mate preferences. Evolution. 2010;64:3101–13.
Article
PubMed
Google Scholar
Serrano-Meneses M, Córdoba-Aguilar A, Méndez V, Layen S, Székely T. Sexual size dimorphism in the American rubyspot: male body size predicts male competition and mating success. Anim Behav. 2007;73:987–97.
Article
Google Scholar
Serrano-Meneses M, Córdoba-Aguilar A, Azpilicueta-Amorín M, Gonzalez-Soriano E, Szekely T. Sexual selection, sexual size dimorphism and Rensch’s rule in Odonata. JEB. 2008;21:1259–73.
CAS
Google Scholar
Sokolovska N, Rowe L, Johansson F. Fitness and body size in mature odonates. Ecol Entomol. 2000;25:239–48.
Article
Google Scholar
De Block M, Stoks R. Flight-related body morphology shapes mating success in a damselfly. Anim Behav. 2007;74:1093–8.
Article
Google Scholar
Andersson M, editor. Sexual selection, 2nd edn edition. New Jersey: Princeton University Press; 1994.
Google Scholar
D’Amico LJ, Davidowitz G, Nijhout HF. The developmental and physiological basis of body size evolution in an insect. Proc R Soc Lond B. 2001;268:1589–93.
Article
Google Scholar
Wyatt G. Juvenile hormone in insect reproduction-a paradox? Eur J Entomol. 1997;94:323–35.
CAS
Google Scholar
Bastiaans E, Swanger E. Plasticity as panacea? Nerves, hormones, and the currencies of trade-offs. Curr Zool. 2015;61:251–64.
Article
Google Scholar
Warrant E, Nilsson D-E. Invertebrate vision. Cambridge: Cambridge University Press; 2006.
Bybee S, Johnson KK, Gering E, Whiting M, Crandall K. All the better to see you with: a review of odonate color vision with transcriptomic insight into the odonate eye. Organ Divers Evol. 2012;12:241–50.
Article
Google Scholar
Futahashi R, Kawahara-Miki R, Kinoshita M, Yoshitake K, Yajima S, Arikawa K, Fukatsu T. Extraordinary diversity of visual opsin genes in dragonflies. PNAS. 2015;112:E1247–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz TD, Fincke OM. Lost in the crowd or hidden in the grass: signal apparency of female polymorphic damselflies in alternative habitats. Anim Behav. 2013;86:923–31.
Article
Google Scholar
Contreras-Garduño J, Buzatto BA, Serrano-Meneses MA, Nájera-Cordero K, Córdoba-Aguilar A. The size of the red wing spot of the American rubyspot as a heightened condition-dependent ornament. Behav Ecol. 2008;19:724–32.
Article
Google Scholar
Futahashi R, Kurita R, Mano H, Fukatsu T. Redox alters yellow dragonflies into red. PNAS. 2012;109:12626–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Svensson EI, Waller JT. Ecology and sexual selection: evolution of wing pigmentation in calopterygid damselflies in relation to latitude, sexual dimorphism, and speciation. Am Nat. 2013;182:E174–95.
Article
PubMed
Google Scholar
Córdoba-Aguilar A, Salamanca-Ocaña JC, Lopezaraiza M. Female reproductive decisions and parasite burden in a calopterygid damselfly (Insecta: Odonata). Anim Behav. 2003;66:81–7.
Article
Google Scholar
Sherratt TN, Forbes MR. Sexual differences in coloration of Coenagrionid damselflies (Odonata): a case of intraspecific aposematism? Anim Behav. 2001;62:653–60.
Article
Google Scholar
Wellenreuther M, Svensson EI, Hansson B. Sexual selection and genetic colour polymorphisms in animals. Mol Ecol. 2014;23:5398–414.
Article
PubMed
Google Scholar
Van Gossum H, Sherratt T. A dynamical model of sexual harassment in damselflies and its implications for female-limited polymorphism. Ecol Model. 2008;210:212–20.
Article
Google Scholar
Takahashi Y, Watanabe M. Female reproductive success is affected by selective male harassment in the damselfly Ischnura senegalensis. Anim Behav. 2010;79:211–6.
Article
Google Scholar
Takahashi Y, Kagawa K, Svensson EI, Kawata M. Evolution of increased phenotypic diversity enhances population performance by reducing sexual harassment in damselflies. Nat Comm. 2014;5:4468.
Takahashi Y, Morita S, Yoshimura J, Watanabe M. A geographic cline induced by negative frequency-dependent selection. BMC Evol Biol. 2011;11:256.
Article
PubMed
PubMed Central
Google Scholar
Le Rouzic A, Hansen TF, Gosden TP, Svensson EI. Evolutionary time-series analysis reveals the signature of frequency-dependent selection on a female mating polymorphism. Am Nat. 2015;185:E182–96.
Article
PubMed
Google Scholar
Johnson C. The inheritance of female dimorphism in the damselfly, Ischnura damula. Genetics. 1964;49:513–9.
CAS
PubMed
PubMed Central
Google Scholar
Sánchez-Guillén RA, Van Gossum H, Cordero-Rivera A. Hybridization and the inheritance of female colour polymorphism in two Ischnurid damselflies (Odonata:Coenagrionidae). Biol J Linn Soc. 2005;85:471–81.
Article
Google Scholar
Joron M, Papa R, Beltrán M, Chamberlain N, Mavárez J, Baxter S, Abanto M, Bermingham E, Humphray SJ, Rogers J, et al. A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biol. 2006;4:e303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD, Mullen SP, Kronforst MR. Doublesex is a mimicry supergene. Nature. 2014;507:229–32.
Article
CAS
PubMed
Google Scholar
Le Poul Y, Whibley A, Chouteau M, Prunier F, Llaurens V, Joron M. Evolution of dominance mechanisms at a butterfly mimicry supergene. Nat Comm. 2014;5:5644.
Schwander T, Libbrecht R, Keller L. Supergenes and complex phenotypes. Curr Biol. 2014;24:288–94.
Article
CAS
Google Scholar
McKinnon JS, Pierotti MER. Colour polymorphism and correlated characters: genetic mechanisms and evolution. Mol Ecol. 2010;19:5101–25.
Article
PubMed
Google Scholar
Abbott J, Svensson EI. Ontogeny of sexual dimorphism and phenotypic integration in heritable morphs. Evol Ecol. 2007;22:103–21.
Article
Google Scholar
Chauhan P, Hansson B, Kraaijeveld K, de Knijff P, Svensson EI, Wellenreuther M. De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes. BMC Genomics. 2014;15:808.
Article
PubMed
PubMed Central
Google Scholar
Wellenreuther M, Sánchez-Guillén RA, Cordero-Rivera A, Svensson IE, Hansson B. Male-biased recombination in odonates: insights from a linkage map of the damselfly Ischnura elegans. J Genet. 2013;92:115–9.
Article
PubMed
Google Scholar
Fincke OM, Jödicke R, Paulson D, Schultz T. The evolution and frequency of female colour morphs in Holartic Odonata: Why are male-like females typically the minority? Int J Odonatol. 2005;8:183–202.
Article
Google Scholar
Anholt B, Marden J, Jenkins D. Patterns of mass gain and sexual dimorphism in adult dragonflies (Insecta: Odonata). Can J Zool. 1991;69:1156–63.
Article
Google Scholar
Heinrich B. The hot-blooded insects: strategies and mechanisms of thermoregulation. Cambridge: Harvard University Press; 1993.
Rüppell G. Kinematic analysis of symmetrical flight manoeuvres of Odonata. J Exp Biol. 1989;144:13–42.
Google Scholar
Rüppel G, Hilfert-Rüppel D, Rehfeldt G, Schütte C. Die Prachtlibellen Europas. 1st ed. Hoehnwarsleben: Die neue Brehm-Bücherei Bd. 654, Westarp Wissenschaften; 2005.
Google Scholar
Marden JH. Maximum lift production during takeoff in flying animals. J Exp Biol. 1987;130:235–58.
Google Scholar
Mischiati M, Lin H-T, Herold P, Imler E, Olberg R, Leonardo A. Internal models direct dragonfly interception steering. Nature. 2015;517:333–8.
Article
CAS
PubMed
Google Scholar
Combes SA, Rundle D, Iwasaki J, Crall J. Linking biomechanics and ecology through predator–prey interactions: flight performance of dragonflies and their prey. J Exp Biol. 2012;215:903–13.
Article
CAS
PubMed
Google Scholar
Marden J. Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity. 2008;100:111–20.
Article
CAS
PubMed
Google Scholar
Schilder RJ, Marden JH. A hierarchical analysis of the scaling of force and power production by dragonfly flight motors. J Exp Biol. 2004;207:767–76.
Article
PubMed
Google Scholar
Marden J. Large-scale changes in thermal sensitivity of flight performance during adult maturation in a dragonfly. J Exp Biol. 1995;198:2095–102.
PubMed
Google Scholar
Wootton R. Palaeozoic insects. Ann Rev Entmol. 1981;26:319–44.
Article
Google Scholar
May ML. Thermoregulation and adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecol Monogr. 1976;46:1–32.
Article
Google Scholar
Corbet PS. Biology of dragonflies. 1963.
Google Scholar
Shelly TE. Comparative foraging behavior of light-versus shade-seeking adult damselflies in a lowland Neotropical forest (Odonata: Zygoptera). Physiol Zool. 1982;9:335–343.
Article
Google Scholar
Rowe R, Winterbourn M. Observations on the body and temperature associated behaviour of three New Zealand dragonflies (Odonata). Mauri ora. 1981;9:15–23.
Google Scholar
Heinrich B, Casey TM. Heat transfer in dragonflies:‘fliers’ and ‘perchers’. J Exp Biol. 1978;74:17–36.
Google Scholar
Wheat CW, Watt WB, Pollock DD, Schulte PM. From DNA to fitness differences: sequences and structures of adaptive variants of Colias phosphoglucose isomerase (PGI). Mol Biol Evo. 2006;23:499–512.
Article
CAS
Google Scholar
Lancaster LT, Dudaniec R, Chauhan P, Wellenreuther M, Svensson EI, Hansson B. Gene expression under thermal stress varies across a range-expansion front. Mol Ecol. 2016;25:1141–56.
Article
CAS
PubMed
Google Scholar
Piersanti S, Frati F, Conti E, Gaino E, Rebora M, Salerno G. First evidence of the use of olfaction in Odonata behaviour. J Insect Physiol. 2014;62:26–31.
Article
CAS
PubMed
Google Scholar
Yang E-C, Osorio D. Spectral sensitivities of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau. J Comp Physiol A Neuroethol Sens. 1991;169:663–9.
Google Scholar
Robertson H. Female dimorphism and mating behaviour in a damselfly, Ischnura ramburi: females mimicking males. Anim Behav. 1985;33:805–9.
Article
Google Scholar
Sherk TE. Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J Exp Zool. 1978;203:61–79.
Article
CAS
PubMed
Google Scholar
Yang EC, Osorio D. Spectral responses and chromatic processing in the dragonfly lamina. J Comp Physiol A Neuroethol Sens. 1996;178:543–50.
Google Scholar
Labhart T, Nilsson DE. The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky. J Comp Physiol A Neuroethol Sens. 1995;176:437–53.
Google Scholar
Mortensen L, Richardson JM. Effects of chemical cues on foraging in damselfly larvae, Enallagma antennatum. J Insect Behav. 2008;21:285–95.
Article
Google Scholar
Olberg RM, Seaman RC, Coats MI, Henry AF. Eye movements and target fixation during dragonfly prey-interception flights. J Comp Physiol A. 2007;193:685–93.
Article
CAS
Google Scholar
Sharkey CR, Partridge JC, Roberts NW. Polarization sensitivity as a visual contrast enhancer in the Emperor dragonfly larva, Anax imperator. J Exp Biol. 2015;218:3399–405.
Article
PubMed
Google Scholar
Horridge G. Unit studies on the retina of dragonflies. Zeitschrift für vergleichende Physiologie. 1969;62:1–37.
Article
Google Scholar
Etienne AS. Stereotyped pattern of locomotion controlled by duration of previous tracking by a predatory insect. Nature. 1976;260:5500.
Article
Google Scholar
Jansson B-O, Aneer G, Nellbring S. Spatial and temporal distribution of the demersal fish fauna in the Baltic archipelagoas estimated by SCUBA census. MEPS. 1985;23:31–43.
Article
Google Scholar
Relyea RA, Mills N. Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor). PNAS. 2001;98:2491–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED. The toxicology of climate change: environmental contaminants in a warming world. Environ Int. 2009;35:971–86.
Article
CAS
PubMed
Google Scholar
Beketov MA, Kefford BJ, Schäfer RB, Liess M. Pesticides reduce regional biodiversity of stream invertebrates. PNAS. 2013;110:11039–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malaj E, Peter C, Grote M, Kühne R, Mondy CP, Usseglio-Polatera P, Brack W, Schäfer RB. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. PNAS. 2014;111:9549–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hawlena D, Schmitz OJ. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am Nat. 2010;176:537–56.
Article
PubMed
Google Scholar
Slos S, Stoks R. Predation risk induces stress proteins and reduces antioxidant defense. Funct Ecol. 2008;22:637–42.
Article
Google Scholar
Janssens L, Van Dievel M, Stoks R. Warming reinforces effects of predation risk on growth, physiology and stoichiometry. Ecology. 2016;96:3270–80.
Article
Google Scholar
Campero M, Slos S, Ollevier F, Stoks R. Sublethal pesticide concentrations and predation jointly shape life history: behavioral and physiological mechanisms. Ecol Appl. 2007;17:2111–22.
Article
PubMed
Google Scholar
Debecker S, Sommaruga R, Maes T, Stoks R. Larval UV exposure impairs adult immune function through a trade-off with larval investment in cuticular melanin. Funct Ecol. 2015;29:1292–9.
Article
Google Scholar
Roff DA. The analysis of a population model demonstrating the importance of dispersal in a heterogeneous environment. Oecologia. 1974;15:259–75.
Article
Google Scholar
Siva-Jothy MT. A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proc R Soc Lond B Biol Sci. 2000;267:2523–7.
Article
CAS
Google Scholar
Rolff J, Siva–Jothy MT. Selection on insect immunity in the wild. Proc R Soc Lond B Biol Sci. 2004;271:2157–60.
Article
Google Scholar
Hendry A. Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity. 2013;111:456–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol. 2013;22:2841–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlotterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals - mining genome-wide polymorphism data without big funding. Nat Rev Gen. 2014; advance online publication.
Dayaram A, Potter KA, Pailes R, Marinov M, Rosenstein DD, Varsani A. Identification of diverse circular single-stranded DNA viruses in adult dragonflies and damselflies (Insecta: Odonata) of Arizona and Oklahoma, USA. Infect Genet Evol. 2015;30:278–87.
Article
CAS
PubMed
Google Scholar
Johnston PR, Mikolajewski DJ, Rolff J. Identification of viruses associated with larvae of the dragonfly Leucorrhinia dubia, and damselfly Coenagrion puella from RNA sequencing data. Int J Odonatol. 2015;18:81–8.
Article
Google Scholar
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Ann Rev Entmol. 2014;59:95–117.
Article
CAS
Google Scholar
Simon S, Strauss S, von Haeseler A, Hadrys H. A phylogenomic approach to resolve the basal pterygote divergence. Mol Biol Evo. 2009;26:2719–30.
Article
CAS
Google Scholar
Shanku AG, McPeek MA, Kern AD. Functional annotation and comparative analysis of a zygopteran transcriptome. G3: Genes|Genomes|Genetics. 2013;3:763–70.
Article
CAS
PubMed Central
Google Scholar
Speiser DI, Pankey MS, Zaharoff AK, Battelle BA, Bracken-Grissom HD, Breinholt JW, Bybee SM, Cronin TW, Garm A, Lindgren AR. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms. BMC Bioinformatics. 2014;15:1.
Article
Google Scholar
Yamauchi M, Miya M, Nishida M. Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans. Insect Mol Biol. 2004;13:435–42.
Article
CAS
PubMed
Google Scholar
Liu S, Wang X, Xie L, Tan M, Li Z, Su X, Zhang H, Misof B, Kjer KM, Tang M. Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis. Mol Ecol Res. 2016;16:470–9.
Article
CAS
Google Scholar
Yu P, Cheng X, Ma Y, Yu D, Zhang J. The complete mitochondrial genome of Brachythemis contaminata (Odonata: Libellulidae). Mitochondrial DNA. 2014;27:1–2.
Simon S, Hadrys H. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol. 2013;69:393–403.
Article
CAS
PubMed
Google Scholar
Bonen L, Lee EM, Hong MY, Kim MI, Kim MJ, Park HC, Kim KY, Lee IH, Bae CH, Jin BR. The complete mitogenome sequences of the palaeopteran insects Ephemera orientalis (Ephemeroptera: Ephemeridae) and Davidius lunatus (Odonata: Gomphidae). Genome. 2009;52:810–7.
Article
CAS
Google Scholar
Wang J-F, Chen M-Y, Chaw S-M, Morii Y, Yoshimura M, Sota T, Lin C-P. Complete mitochondrial genome of an enigmatic dragonfly, Epiophlebia superstes (Odonata, Epiophlebiidae). Mitochondrial DNA. 2014;1–2.
Lorenzo-Carballa MO, Thompson DJ, Cordero-Rivera A, Watts PC. Next generation sequencing yields the complete mitochondrial genome of the scarce blue-tailed damselfly, Ischnura pumilio. Mitochondrial DNA. 2014;25:247–8.
Article
CAS
PubMed
Google Scholar
Chen M-Y, Chaw S-M, Wang J-F, Villanueva RJT, Nuneza OM, Lin C-P. Mitochondrial genome of a flashwing demoiselle, Vestalis melania from the Philippine Archipelago. Mitochondrial DNA. 2014;26:1–2.
Lorenzo Carballa MO, Tsubaki Y, Plaistow S, Watts P. The complete mitochondrial genome of the broad-winged damselfly Mnais costalis Selys (Odonata: Calopterygidae) obtained by next generation sequencing. Int J Odonatol. in press.
Brydegaard M, Guan Z, Wellenreuther M, Svanberg S. Insect monitoring with fluorescence lidar techniques: feasibility study. Appl Opt. 2009;48:5668–77.
Article
PubMed
Google Scholar
Runemark A, Wellenreuther M, Jayaweera H, Svanberg S, Brydegaard M. Rare events in remote dark field spectroscopy: an ecological case study of insects. IEEE J Sel Top Quantum Electron. 2012;18:1573–82.
Article
CAS
Google Scholar
Wellenreuther M, Vercken E, Svensson EI. A role for ecology in male mate discrimination of immigrant females in Calopteryx damselflies? Biol J Linn Soc. 2010;100:506–18.
Article
Google Scholar