Beauclair L, Ramé C, Arensburger P, Piégu B, Guillou F, Dupont J, et al. Sequence properties of certain GC rich avian genes, their origins and absence from genome assemblies: case studies. BMC Genomics. 2019;20:734.
Article
Google Scholar
Li Y, Ren Y, Zhang D, Jiang H, Wang Z, Li X, et al. Chromosome-level assembly of the mustache toad genome using third-generation DNA sequencing and Hi-C analysis. GigaScience. 2019;8:giz114.
Article
Google Scholar
Lu B, Jiang J, Wu H, Chen X, Song X, Liao W, et al. A large genome with chromosome-scale assembly sheds light on the evolutionary success of a true toad (Bufo gargarizans). Mol Ecol Resour. 2021;21:1256–73.
Article
CAS
Google Scholar
Funk WC, Zamudio KR, Crawford AJ. Advancing understanding of amphibian evolution, ecology, behavior, and conservation with massively parallel sequencing. In Population genomics: wildlife (pp. 211–254). Springer, Cham; 2018.
Sun YB, Xiong ZJ, Xiang XY, Liu SP, Zhou WW, Tu XL, et al. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. PNAS. 2012;112:1257–62.
Google Scholar
Duellman WE, Zug GR. "amphibian". Encyclopedia Britannica, 4 Feb. 2020, https://www.britannica.com/animal/amphibian. Accessed 22 March 2022.
Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. The genome of the Western clawed frog Xenopus tropicalis. Science. 2010;328:633–6.
Article
CAS
Google Scholar
Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. 2016;538:336–43.
Article
CAS
Google Scholar
Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA, et al. The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA. Nat Commun. 2017;8:1433.
Article
Google Scholar
Edwards RJ, Tuipulotu DE, Amos TG, O’Meally D, Richardson MF, Russell TL, et al. Draft genome assembly of the invasive cane toad, Rhinella marina. GigaScience. 2018;7:giy095.
Article
Google Scholar
Rogers RL, Zhou L, Chu C, Márquez R, Corl A, Linderoth T, et al. Genomic takeover by transposable elements in the strawberry poison frog. Mol Biol Evol. 2018;35:2913–27.
CAS
Google Scholar
Li J, Yu H, Wang W, Fu C, Zhang W, Han F, et al. Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense. Nat Commun. 2019;10:1–13.
Article
Google Scholar
Streicher JW, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective et al. The genome sequence of the common frog, Rana temporaria Linnaeus 1758 [version 1; peer review: 2 approved]. Wellcome Open Res. 2021; 6: 286.
Chen W, Wang X, Fan X. Do anurans living in higher altitudes have higher prehibernation energy storage? Investigations from a high-altitude frog. Herpetol J. 2013;23:45–9.
Google Scholar
Wang J, Li Z, Gao H, Liu Z, Teng L. The complete mitochondrial genome of the Rana kukunoris (Anura: Ranidae) from Inner Mongolia, China. Mitochondrial DNA B. 2020;5:586–7.
Article
Google Scholar
Zhou Y, Wang SR, Zhu HD, Li PP, Yang BT, Ma JZ. Phylogeny and biogeography of South Chinese brown frogs (Ranidae, Anura). PLoS ONE. 2017;12:e0175113.
Article
Google Scholar
Jeffries DL, Lavanchy G, Sermier R, Sredl MJ, Miura I, Borzée A, et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat Commun. 2018;9:4088.
Article
Google Scholar
Jiang JP, Xie F, Zheng ZH. Phylogenetic relationships of Chinese brown frogs with discussion on the Karyotype Evolution. J Sichuan Univ (Natl Sci Edn). 2002;39:85–9.
Google Scholar
Spasić-Bošković O, Tanić N, Blagojević J, Vujošević M. Comparative cytogenetic analysis of European brown frogs: Rana temporaria, R dalmatina and R graeca. Caryologia. 1997;50:139–49.
Article
Google Scholar
Yang W, Qi Y, Bi K, Fu JZ. Toward understanding the genetic basis of adaptation to high-elevation life in poikilothermic species: a comparative transcriptomic analysis of two ranid frogs, Rana chensinensis and R. kukunoris. BMC Genomics. 2012;13:588.
Article
CAS
Google Scholar
Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nat Rev Genet. 2013;14:807–20.
Article
CAS
Google Scholar
Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am Nat. 2016;188:379–97.
Article
Google Scholar
Rees JS, Castellano S, Andrés AM. The genomics of human local adaptation. Trends Genet. 2020;36:415–28.
Article
CAS
Google Scholar
Petrov DA. Evolution of genome size: new approaches to an old problem. Trends Genet. 2001;17:23–8.
Article
CAS
Google Scholar
Shapiro JA, Sternberg RV. Why repetitive DNA is essential to genome function. Biol Rev. 2005;80:227–50.
Article
Google Scholar
Gregory TR. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev. 2001;76:65–101.
Article
CAS
Google Scholar
Gregory TR. Genome size and developmental parameters in the homeothermic vertebrates. Genome. 2002;45:833–8.
Article
CAS
Google Scholar
Gregory TR. Variation across amphibian species in the size of the nuclear genome supports apluralistic, hierarchical approach to the C-value enigma. Biol J Linn Soc. 2003;79:329–39.
Article
Google Scholar
Ohno S. “So much junk” DNA in our genome. In: Smith HH, editor. Evolution of genetic systems. , New York: Gordon and Breach; 1972. p. 366–70.
Google Scholar
Pagel M, Johnstone RA. Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. P Roy Soc B-Biol Sci. 1992;249:119–24.
Article
CAS
Google Scholar
Gregory TR. Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology. 2004;30:179–202.
Article
Google Scholar
Zhou WW, Yan F, Fu JZ, Wu SF, Murphy RW, Che J, et al. River islands, refuge, and genetic structuring in the endemic brown frog Rana kukunoris (Anura, Ranidae) of the Qinghai-Tibetan Plateau. Mol Ecol. 2013;22:130–42.
Article
Google Scholar
Li JT, Gao YD, Xie L, Deng C, Shi P, Guan ML, et al. Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. PNAS. 2018;115:8406–11.
Article
CAS
Google Scholar
D’Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling pathways in melanogenesis. Int J Mol Sci. 2016;17:1144.
Article
Google Scholar
Hanaoka M, Droma Y, Basnyat B, Ito M, Kobayashi N, Katsuyama Y, et al. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. PLoS ONE. 2012;7: e50566.
Article
CAS
Google Scholar
Miao B, Wang Z, Li Y. Genomic analysis reveals hypoxia adaptation in the Tibetan mastiff by introgression of the gray wolf from the Tibetan plateau. Mol Biol Evol. 2017;34:734–43.
CAS
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:884–90.
Article
Google Scholar
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:gia008.
Article
Google Scholar
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70.
Article
Google Scholar
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–4.
Article
CAS
Google Scholar
Liu JJ, Liu SQ, Zheng K, Tang M, Gu LP, Young J, et al. Chromosome-level genome assembly of the Chinese three-keeled pond turtle (Mauremys reevesii) provides insights into freshwater adaptation. Mol Ecol Resour. 2021;22:1596–605.
Article
Google Scholar
Cui F, Taier G, Li M, Dai X, Hang N, Zhang X, et al. The genome of the warm-season turfgrass African bermudagrass (Cynodon transvaalensis). Hortic Res. 2021;8:93.
Article
CAS
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.
Article
CAS
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9: e112963.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
Google Scholar
Simão FA, Waterhouse RM, Panagiotis I, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–7.
Article
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
Google Scholar
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015;16:259.
Article
Google Scholar
Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31:1119–25.
Article
CAS
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
Article
CAS
Google Scholar
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:70–82.
Article
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.
Article
CAS
Google Scholar
Tang HB, Bowers J, Wang XY, Ming R, Alam M, Paterson A. Synteny and collinearity in plant genomes. Science. 2008;320:486–8.
Article
CAS
Google Scholar
Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24:637–44.
Article
CAS
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinform. 2004;5:59.
Article
Google Scholar
Keilwagen J, Wenk M, Erickson JL, Schattat MH, Jan G, Frank H. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 2016;44: e89.
Article
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Amit I. Trinity: reconstructing a full-length transcriptome without a genome from Rna-seq data. Nat Biotechnol. 2013;29:644–52.
Article
Google Scholar
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31:5654–66.
Article
CAS
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biol. 2008;9:R7.
Article
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.
Article
CAS
Google Scholar
Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:140–4.
Article
Google Scholar
Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 2005;33:121–4.
Article
Google Scholar
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold Faster RNA Homology Searches. Bioinformatics. 2013;29:2933–5.
Article
CAS
Google Scholar
She R, Chu JS, Wang K, Pei J, Chen N. GenBlastA: Enabling BLAST to identify homologous gene sequences. Genome Res. 2009;19:143–9.
Article
CAS
Google Scholar
Birney E, Clamp M, Durbin R. GeneWise and genomewise. Genome Res. 2004;14:988–95.
Article
CAS
Google Scholar
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:309–14.
Article
Google Scholar
Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003;31:365–70.
Article
CAS
Google Scholar
Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, et al. Pfam: clans, web tools and services. Nucleic Acids Res. 2006;34:247–51.
Article
Google Scholar
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. RepeatModeler2 for automated genomic discovery of transposable element families. PNAS. 2020;117:9451–7.
Article
CAS
Google Scholar
Bao Z, Eddy SR. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 2002;12:1269–76.
Article
CAS
Google Scholar
Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21:351–8.
Article
Google Scholar
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for De Novo detection of LTR retrotransposons. BMC Bioinform. 2008;9:18.
Article
Google Scholar
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2008;35:265–8.
Article
CAS
Google Scholar
Ou S, Jiang N. LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018;176:1410–22.
Article
CAS
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–7.
Article
CAS
Google Scholar
Neumann P, Novák P, Hoštáková N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA. 2019;10:1.
Article
Google Scholar
Wheeler TJ, Clements J, Eddy SR, Hubley R, Jones TA, Jurka J, et al. Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 2013;41:70–82.
Article
Google Scholar
Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33:2583–5.
Article
CAS
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.
Article
CAS
Google Scholar
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.
Article
Google Scholar
Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, Thomas PD. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat protocols. 2019;14:703–21.
Article
CAS
Google Scholar
Katoh K, Kuma KI, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–8.
Article
CAS
Google Scholar
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:609–12.
Article
Google Scholar
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.
Article
CAS
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler AV, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
Article
CAS
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
Article
CAS
Google Scholar
Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
Google Scholar
Puttick MN. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics. 2019;35:5321–2.
CAS
Google Scholar
Han MV, Thomas GW, Lugo-Martinez J, Hahn MW. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol. 2013;30:1987–97.
Article
CAS
Google Scholar
Storey JD, Bass AJ, Dabney A, Robinson D. qvalue: Q-value estimation for false discovery rate control. R package version 2.26.0; 2021.
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141.
CAS
Google Scholar