Bonabeau E, Theraulaz G, Deneubourg JL, Aron S, Camazine S. Self-organization in social insects. Trends Ecol Evol. 1997;12:188–93.
CAS
PubMed
Google Scholar
Beshers SN, Fewell JH. Models of division of labor in social insects. Annu Rev Entomol. 2001;46:413–40.
CAS
PubMed
Google Scholar
Robinson GE. Labor in Insect Societies. Annu Rev Entomol. 1992;37:637–65.
CAS
PubMed
Google Scholar
Brian MV. Social insects: ecology and behavioural biology. Berlin: Springer; 2012.
Google Scholar
Gordon DM. The organization of work in social insect colonies. Nature. 1996;380:121–4.
CAS
Google Scholar
Tenczar P, Lutz CC, Rao VD, Goldenfeld N, Robinson GE. Automated monitoring reveals extreme interindividual variation and plasticity in honeybee foraging activity levels. Anim Behav. 2014;95:41–8.
Google Scholar
Imirzian N, Zhang Y, Kurze C, Loreto RG, Chen DZ, Hughes DP. Automated tracking and analysis of ant trajectories shows variation in forager exploration. Sci Rep. 2019;9:1–10.
CAS
Google Scholar
Van Geystelen A, Benaets K, de Graaf DC, Larmuseau MHD, Wenseleers T. Track-a-Forager: a program for the automated analysis of RFID tracking data to reconstruct foraging behaviour. Insectes Soc. 2016;63:175–83.
Google Scholar
Mersch DP, Crespi A, Keller L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science. 2013;340:1090–3.
CAS
PubMed
Google Scholar
Detrain C, Pereira H, Fourcassié V. Differential responses to chemical cues correlate with task performance in ant foragers. Behav Ecol Sociobiol. 2019;73:1–11.
Google Scholar
Richter MR. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu Rev Entomol. 2000;45:121–50.
CAS
PubMed
Google Scholar
Traniello JFA. Foraging strategies of ants. Annu Rev Entomol. 1989;34:191–210.
Google Scholar
Traniello JFA, Leuthold RH. Behavior and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Berlin: Springer; 2000. p. 141–68.
Google Scholar
Seeley TD. The wisdom of the hive: the social physiology of honey bee colonies. Cambridge: Harvard University Press; 2009.
Google Scholar
Lemanski NJ, Cook CN, Smith BH, Pinter-Wollman N. A multiscale review of behavioral variation in collective foraging behavior in honey bees. Insects. 2019;10:370.
PubMed Central
Google Scholar
Abe T. Evolution of life types in termites. In: Abe T, Kawano S, Connel JH, Hidaka T, editors. Evolution and co-adaptation in biotic communities. Tokyo: University of Tokyo Press; 1987.
Google Scholar
King EG, Spink WT. Foraging galleries of the Formosan subterranean termite, Coptotermes formosanus, in Louisiana. Ann Entomol Soc Am. 1969;62:536–42.
Google Scholar
Su N-Y, Scheffrahn RH. Foraging population and territory of the Formosan Subterranean Termite (Isoptera, Rhinotermitidae) in an urban-environment. Sociobiology. 1988;14:353–60.
Google Scholar
Su N-Y, Bardunias P. Foraging behavior of subterranean termites (Isoptera: Rhinotermitidae): food discovery and movement of termites within established galleries. In: Proceedings of the fifth international conference on urban pests. Suntec, Singapore. 2005. p. 443–5.
Yang R-L, Su N-Y, Bardunias P. Individual task load in tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann Entomol Soc Am. 2009;102:906–10.
Google Scholar
Bardunias PM, Su N-Y. Queue size determines the width of tunnels in the formosan subterranean termite (Isoptera: Rhinotermitidae). J Insect Behav. 2010;23:189–204.
Google Scholar
Cornelius ML. Individual behavior of workers of the formosan subterranean termite (Isoptera: Rhinotermitidae) on consecutive days of tunnel construction. Insects. 2012;3:367–77.
PubMed
PubMed Central
Google Scholar
Cornelius ML, Gallatin EM. Task allocation in the tunneling behavior of workers of the Formosan subterranean termite, Coptotermes formosanus Shiraki. J Asia Pac Entomol. 2015;18:637–42.
Google Scholar
Lee S-B, Su N-Y, Song H, Lee S-H. Minimizing moving distance in deposition behavior of the subterranean termite. Ecol Evol. 2020;10:2145–52.
PubMed
PubMed Central
Google Scholar
Mizumoto N, Bardunias PM, Pratt SC. Complex relationship between tunneling patterns and individual behaviors in termites. Am Nat. 2020;196:555–65.
PubMed
Google Scholar
Mizumoto N, Gile GH, Pratt SC. Behavioral rules for soil excavation by colony founders and workers in termites. Ann Entomol Soc Am. 2020;114:654–61.
Google Scholar
Su N-Y, Stith BM, Puche H, Bardunias P. Characterization of tunneling geometry of subterranean termites (lsoptera: Rhinotermitidae) by computer. Sociobiology. 2004;44(3):471–83.
Google Scholar
Lee S-H, Su N-Y. The influence of branching tunnels on subterranean termites’ foraging efficiency: Considerations for simulations. Ecol Inform. 2009;4:152–5.
Google Scholar
Lee S-H, Bardunias P, Su N-Y. Rounding a corner of a bent termite tunnel and tunnel traffic efficiency. Behav Process. 2008;77:135–8.
Google Scholar
Lee S-H, Bardunias P, Su N-Y. Optimal length distribution of termite tunnel branches for efficient food search and resource transportation. BioSystems. 2007;90:802–7.
PubMed
Google Scholar
Bardunias P, Su N-Y, Yang R-L. Behavioral variation among tunnelers in the Formosan subterranean termite. J Asia Pac Entomol. 2010;13:45–9.
Google Scholar
Arab A, Costa-Leonardo AM. Dynamics of foraging and recruitment behavior in the Asian subterranean termite Coptotermes gestroi (Rhinotermitidae). Psyche. 2012;2012:1–7.
Google Scholar
Chouvenc T, Scheffrahn RH, Mullins AJ, Su N-Y. Flight phenology of two Coptotermes species (Isoptera: Rhinotermitidae) in southeastern Florida. J Econ Entomol. 2017;110:1693–704.
PubMed
Google Scholar
Lee S.-B., Chouvenc T., Su N.-Y. A Reproductives Excluder for Subterranean Termites in Laboratory Experiments. J Econ Entomol. 2019; 112:2882-87.
Team RC. R: A language and environment for statistical computing. Vienna: Austria; 2016.
Google Scholar
IBM SPSS Inc. SPSS statistics for windows. IBM Corp Released 2012. 2016.
Detrain C, Deneubourg J-L, Pasteels JM. Decision-making in foraging by social insects. In: Detrain C, Deneubourg JL, Pasteels JM, editors. Information processing in social insects. Berlin: Springer; 1999. p. 331–54.
Google Scholar
Sumpter D, Pratt S. A modelling framework for understanding social insect foraging. Behav Ecol Sociobiol. 2003;53:131–44.
Google Scholar
Hedlund JC, Henderson G. Effect of available food size on search tunnel formation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol. 1999;92:610–6.
Google Scholar
Arab A, Carollo Blanco Y, Costa-Leonardo AM. Dynamics of foraging and recruitment behavior in the Asian subterranean termite Coptotermes gestroi (Rhinotermitidae). Psyche. 2012;2012:1–7.
Google Scholar
Cribb BW, Stewart A, Huang H, Truss R, Noller B, Rasch R. Unique zinc mass in mandibles separates drywood termites from other groups of termites. Naturwissenschaften. 2008;95:433–41.
CAS
PubMed
Google Scholar
Nalepa CA. Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA, editors. Nourishment and evolution in insect societies. Colorado: Westview Press Boulder; 1994. p. 57–104.
Google Scholar
Roisin Y, Korb J. Social organisation and the status of workers in termites. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Berlin: Springer; 2010. p. 133–64.
Google Scholar
Roisin Y. What makes the cost of brood care important for the evolution of termite sociality? Its insignificance. Ecol Entomol. 2016;41:31–3.
Google Scholar
Schofield RMS, Emmett KD, Niedbala JC, Nesson MH. Leaf-cutter ants with worn mandibles cut half as fast, spend twice the energy, and tend to carry instead of cut. Behav Ecol Sociobiol. 2011;65:969–82.
Google Scholar
Kakkar G, Chouvenc T, Osbrink W, Su N-Y. Temporal assessment of molting in workers of Formosan subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol. 2016;109:2175–81.
CAS
PubMed
Google Scholar
Kakkar G, Osbrink W, Mullins A, Su N-Y. Molting site fidelity in workers of Formosan subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol. 2017;110:2512–7.
CAS
PubMed
Google Scholar
Campora CE, Grace JK. Effect of average worker size on tunneling behavior of formosan subterranean termite colonies. J Insect Behav. 2004;17:777–91.
Google Scholar
Hapukotuwa NK, Grace JK. Coptotermes formosanus and Coptotermes gestroi (Blattodea: Rhinotermitidae) exhibit quantitatively different tunneling patterns. Psyche. 2012. 675356.
Leuthold RH, Bruinsma O, Van Huis A. Optical and pheromonal orientation and memory for homing distance in the harvester termite Hodotermes mossambicus (Hagen). Behav Ecol Sociobiol. 1976;1:127–39.
Google Scholar
Chouvenc T, Šobotník J, Engel MS, Bourguignon T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell Mol Life Sci. 2021;78:1–21.
Google Scholar