Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;16(431):343–9.
Google Scholar
Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42(1):217–39.
PubMed
PubMed Central
CAS
Google Scholar
Shabalina SA, Koonin EV. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol. 2008;23(10):578–87.
PubMed
PubMed Central
Google Scholar
Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2(4):279–89.
PubMed
PubMed Central
CAS
Google Scholar
Angell SM, Baulcombe DC. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J. 1997;16(12):3675–84.
PubMed
PubMed Central
CAS
Google Scholar
Palauqui J-C, Elmayan T, Pollien J-M, Vaucheret H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 1997;16(15):4738–45.
PubMed
PubMed Central
CAS
Google Scholar
Voinnet O, Vain P, Angell S, Baulcombe DC. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell. 1998;95(2):177–87.
PubMed
CAS
Google Scholar
Waterhouse PM, Graham MW, Wang M-B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci. 1998;95(23):13959–64.
PubMed
PubMed Central
CAS
Google Scholar
Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek. 1994;65(3):205–9.
PubMed
CAS
Google Scholar
Cogoni C, Macino G. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. PNAS. 1997;94(19):10233–8.
PubMed
PubMed Central
CAS
Google Scholar
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.
PubMed
CAS
Google Scholar
Ngô H, Tschudi C, Gull K, Ullu E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A. 1998;95(25):14687–92.
PubMed
PubMed Central
Google Scholar
Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol. 2008;9:R10.
PubMed
PubMed Central
Google Scholar
Dowling D, Pauli T, Donath A, Meusemann K, Podsiadlowski L, Petersen M, et al. Phylogenetic origin and diversification of RNAi pathway genes in insects. Genome Biol Evol. 2016;8(12):3784–93.
PubMed
PubMed Central
CAS
Google Scholar
Mongelli V, Saleh M-C. Bugs are not to be silenced: small RNA pathways and antiviral responses in insects. Ann Rev Virol. 2016;3(1):573–89.
CAS
Google Scholar
Brown SJ, Mahaffey JP, Lorenzen MD, Denell RE, Mahaffey JW. Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol Dev. 1999;1:11–5.
PubMed
CAS
Google Scholar
Dong Y, Friedrich M. Enforcing biphasic eye development in a directly developing insect by transient knockdown of single eye selector genes. J Exp Zool B Mol Dev Evol. 2010;314B(2):104–14.
Google Scholar
Elias-Neto M, Belles X. Tergal and pleural structures contribute to the formation of ectopic prothoracic wings in cockroaches. R Soc Open Sci. 2016;3(8):160347.
PubMed
PubMed Central
Google Scholar
Hughes CL, Kaufman TC. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development. 2000;127(17):3683–94.
PubMed
CAS
Google Scholar
Khila A, Abouheif E, Rowe L. Function, developmental genetics, and fitness consequences of a sexually antagonistic trait. Science. 2012;336(6081):585–9.
PubMed
CAS
Google Scholar
Konopova B, Akam M. The Hox genes Ultrabithorax and abdominal-A specify three different types of abdominal appendage in the springtail Orchesella cincta (Collembola). EvoDevo. 2014;5(1):2.
PubMed
PubMed Central
Google Scholar
Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, et al. Involvement of wingless/armadillo signaling in the posterior sequential segmentation in the cricket, gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev. 2004;121(2):119–30.
PubMed
CAS
Google Scholar
Ansari S, Troelenberg N, Dao VA, Richter T, Bucher G, Klingler M. Double abdomen in a short-germ insect: Zygotic control of axis formation revealed in the beetle Tribolium castaneum. PNAS. 2018;115(8):1819–24.
PubMed
PubMed Central
CAS
Google Scholar
Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. PNAS. 2005;102(32):11337–42.
PubMed
PubMed Central
CAS
Google Scholar
Fu J, Posnien N, Bolognesi R, Fischer TD, Rayl P, Oberhofer G, et al. Asymmetrically expressed axin required for anterior development in Tribolium. PNAS. 2012;109(20):7782–6.
PubMed
PubMed Central
CAS
Google Scholar
Jacobs CGC, Spaink HP, van der Zee M. The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. Medzhitov R, editor. eLife. 2014;3:e04111.
Knorr E, Fishilevich E, Tenbusch L, Frey MLF, Rangasamy M, Billion A, et al. Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests. Sci Rep. 2018;8(1):2061.
PubMed
PubMed Central
Google Scholar
Konopova B, Jindra M. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. PNAS. 2007;104(25):10488–93.
PubMed
PubMed Central
CAS
Google Scholar
Linz DM, Tomoyasu Y. Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in Tribolium. PNAS. 2018;115(4):E658–67.
PubMed
PubMed Central
CAS
Google Scholar
Nunes da Fonseca R, von Levetzow C, Kalscheuer P, Basal A, van der Zee M, Roth S. Self-regulatory circuits in dorsoventral axis formation of the short-germ beetle Tribolium castaneum. Dev Cell. 2008;14(4):605–15.
Rösner J, Tietmeyer J, Merzendorfer H. Functional analysis of ABCG and ABCH transporters from the red flour beetle. Tribolium castaneum Pest Management Science. 2021;77(6):2955–63.
PubMed
Google Scholar
Schmitt-Engel C, Schultheis D, Schwirz J, Ströhlein N, Troelenberg N, Majumdar U, et al. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nat Commun. 2015;28(6):7822.
Google Scholar
Ulrich J, Dao VA, Majumdar U, Schmitt-Engel C, Schwirz J, Schultheis D, et al. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target. BMC Genomics [Internet]. 2015 Dec [cited 2016 Jun 15];16(1). Available from: http://www.biomedcentral.com/1471-2164/16/674
Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, et al. Control of coleopteran insect pests through RNA interference. Nat Biotechnol. 2007;25(11):1322–6.
PubMed
CAS
Google Scholar
Liu S, Jaouannet M, Dempsey DA, Imani J, Coustau C, Kogel K-H. RNA-based technologies for insect control in plant production. Biotechnology Advances. 2020 Mar 1;39:107463.
Mao Y-B, Cai W-J, Wang J-W, Hong G-J, Tao X-Y, Wang L-J, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol. 2007;25(11):1307–13.
PubMed
CAS
Google Scholar
Bradshaw CJA, Leroy B, Bellard C, Roiz D, Albert C, Fournier A, et al. Massive yet grossly underestimated global costs of invasive insects. Nat Commun. 2016;7(1):1–8.
Google Scholar
Oerke E-C. Crop losses to pests. J Agric Sci. 2006;144(1):31–43.
Google Scholar
Lehmann P, Ammunét T, Barton M, Battisti A, Eigenbrode SD, Jepsen JU, et al. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment [Internet]. 2020 Feb 3 [cited 2020 Mar 11];n/a(n/a). Available from: https://esajournals.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/fee.2160
Borel B. CRISPR, microbes and more are joining the war against crop killers. Nature News. 2017;543(7645):302.
CAS
Google Scholar
Casida JE, Bryant RJ. The ABCs of pesticide toxicology: amounts, biology, and chemistry. Toxicol Res. 2017;6(6):755–63.
CAS
Google Scholar
Sparks TC, Wessels FJ, Lorsbach BA, Nugent BM, Watson GB. The new age of insecticide discovery-the crop protection industry and the impact of natural products. Pestic Biochem Physiol. 2019;1(161):12–22.
Google Scholar
Sparks TC, Nauen R. IRAC: Mode of action classification and insecticide resistance management. Pestic Biochem Physiol. 2015;1(121):122–8.
Google Scholar
Tabashnik BE, Carrière Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol. 2017;35(10):926–35.
PubMed
CAS
Google Scholar
Nauen R, Jeschke P, Velten R, Beck ME, Ebbinghaus-Kintscher U, Thielert W, et al. Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Manag Sci. 2015;71(6):850–62.
PubMed
CAS
Google Scholar
San Miguel K, Scott JG. The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag Sci. 2016;72(4):801–9.
PubMed
CAS
Google Scholar
Christiaens O, Whyard S, Vélez AM, Smagghe G. Double-stranded RNA technology to control insect pests: current status and challenges. Front Plant Sci. 2020;11:451.
PubMed
PubMed Central
Google Scholar
Castellanos NL, Smagghe G, Sharma R, Oliveira EE, Christiaens O. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest Manag Sci. 2019;75(2):537–48.
PubMed
CAS
Google Scholar
Dhandapani RK, Gurusamy D, Duan JJ, Palli SR. RNAi for management of Asian long-horned beetle, Anoplophora glabripennis: identification of target genes. J Pest Sci. 2020;93(2):823–32.
Google Scholar
Kyre BR, Rodrigues TB, Rieske LK. RNA interference and validation of reference genes for gene expression analyses using qPCR in southern pine beetle. Dendroctonus frontalis Sci Rep. 2019;9(1):1–8.
CAS
Google Scholar
Mehlhorn S, Ulrich J, Baden CU, Buer B, Maiwald F, Lueke B, et al. The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests. Pesticide Biochemistry and Physiology. 2021 Jul 1;176:104870.
Mogilicherla K, Howell JL, Palli SR. Improving RNAi in the brown marmorated stink bug: identification of target genes and reference genes for RT-qPCR. Sci Rep. 2018;8(1):1–9.
CAS
Google Scholar
Rodrigues TB, Duan JJ, Palli SR, Rieske LK. Identification of highly effective target genes for RNAi-mediated control of emerald ash borer Agrilus planipennis. Sci Rep. 2018;8(1):1–9.
PubMed
PubMed Central
Google Scholar
Xu L, Xu S, Sun L, Zhang Y, Luo J, Bock R, et al. Synergism of gut microbiota to double-stranded RNAs in RNA interference of a leaf beetle. bioRxiv. 2019 Oct 31;824581.
Zhang Y, Xu L, Li S, Zhang J. Bacteria-mediated RNA interference for management of plagiodera versicolora (Coleoptera: Chrysomelidae). Insects. 2019;10(12):415.
PubMed Central
Google Scholar
Beder T, Aromolaran O, Dönitz J, Tapanelli S, Adedeji EO, Adebiyi E, et al. Identifying essential genes across eukaryotes by machine learning. bioRxiv. 2021 Apr 15;2021.04.15.439934.
Billmyre RB, Calo S, Feretzaki M, Wang X, Heitman J. RNAi function, diversity, and loss in the fungal kingdom. Chromosome Res. 2013;21(6):561–72.
PubMed
CAS
Google Scholar
Kavi HH, Fernandez H, Xie W, Birchler JA. Genetics and Biochemistry of RNAi in Drosophila. In: Paddison PJ, Vogt PK, editors. RNA Interference [Internet]. Berlin, Heidelberg: Springer; 2008 [cited 2021 Jul 6]. p. 37–75. (Current Topics in Microbiology and Immunology). Available from: https://doi.org/10.1007/978-3-540-75157-1_3
Tijsterman M, Ketting RF, Plasterk RHA. The genetics of RNA silencing. Annu Rev Genet. 2002;36(1):489–519.
PubMed
CAS
Google Scholar
Ullu E, Tschudi C, Chakraborty T. RNA interference in protozoan parasites. Cell Microbiol. 2004;6(6):509–19.
PubMed
CAS
Google Scholar
Ando T, Fujiwara H. Electroporation-mediated somatic transgenesis for rapid functional analysis in insects. Development. 2013;140(2):454–8.
PubMed
CAS
Google Scholar
Okude G, Fukatsu T, Futahashi R. Electroporation-mediated RNA Interference Method in Odonata. J Vis Exp. 2021 Feb 6;(168).
Avila LA, Chandrasekar R, Wilkinson KE, Balthazor J, Heerman M, Bechard J, et al. Delivery of lethal dsRNAs in insect diets by branched amphiphilic peptide capsules. J Control Release. 2018;10(273):139–46.
Google Scholar
Christiaens O, Tardajos MG, Martinez Reyna ZL, Dash M, Dubruel P, Smagghe G. Increased RNAi Efficacy in Spodoptera exigua via the Formulation of dsRNA With Guanylated Polymers. Front Physiol [Internet]. 2018 [cited 2019 Dec 17];9. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphys.2018.00316/full
Kaur R, Gupta M, Singh S, Joshi N, Sharma A. Enhancing RNAi Efficiency to Decipher the Functional Response of Potential Genes in Bemisia tabaci AsiaII-1 (Gennadius) Through dsRNA Feeding Assays. Front Physiol [Internet]. 2020 [cited 2021 Jul 6];11. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphys.2020.00123/full#B86
Kunte N, McGraw E, Bell S, Held D, Avila L-A. Prospects, challenges and current status of RNAi through insect feeding. Pest Manag Sci. 2020;76(1):26–41.
PubMed
CAS
Google Scholar
Yan S, Qian J, Cai C, Ma Z, Li J, Yin M, et al. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. J Pest Sci. 2020;93(1):449–59.
Google Scholar
Yan S, Ren B-Y, Shen J. Nanoparticle-mediated double-stranded RNA delivery system: a promising approach for sustainable pest management. Insect Science. 2021;28(1):21–34.
PubMed
CAS
Google Scholar
Zhang X, Zhang J, Zhu KY. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol. 2010;19(5):683–93.
PubMed
Google Scholar
Whangbo JS, Hunter CP. Environmental RNA interference. Trends Genet. 2008;24(6):297–305.
PubMed
CAS
Google Scholar
Bucher G, Scholten J, Klingler M. Parental RNAi in Tribolium (Coleoptera). Curr Biol. 2002;12(3):R85–6.
PubMed
CAS
Google Scholar
Tomoyasu Y, Denell RE. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol. 2004;214:575–8.
PubMed
CAS
Google Scholar
Hahn N, Knorr DY, Liebig J, Wüstefeld L, Peters K, Büscher M, et al. The Insect Ortholog of the Human Orphan Cytokine Receptor CRLF3 Is a Neuroprotective Erythropoietin Receptor. Front Mol Neurosci [Internet]. 2017 [cited 2021 Jul 6];10. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fnmol.2017.00223/full
Feinberg EH, Hunter CP. Transport of dsRNA into Cells by the Transmembrane Protein SID-1. Science. 2003;301:1545–7.
PubMed
CAS
Google Scholar
Hinas A, Wright AJ, Hunter CP. SID-5 is an endosome-associated protein required for efficient systemic RNAi in C elegans. Curr Biol. 2012;22(20):1938–43.
Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science. 2002;295:2456–9.
Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP. Caenorhabditis elegans SID-2 is required for environmental RNA interference. PNAS. 2007;104(25):10565–70.
PubMed
PubMed Central
CAS
Google Scholar
Miller SC, Brown SJ, Tomoyasu Y. Larval RNAi in Drosophila? Dev Genes Evol. 2008;218:505–10.
PubMed
CAS
Google Scholar
Roignant J-Y, Carré C, Mugat B, Szymczak D, Lepesant J-A, Antoniewski C. Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA. 2003;9(3):299–308.
PubMed
PubMed Central
CAS
Google Scholar
Saleh M-C, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol. 2006;8(8):793–802.
PubMed
PubMed Central
CAS
Google Scholar
Ulvila J, Parikka M, Kleino A, Sormunen R, Ezekowitz RA, Kocks C, et al. Double-stranded RNA Is Internalized by Scavenger Receptor-mediated Endocytosis in Drosophila S2 Cells. J Biol Chem. 2006;281(20):14370–5.
PubMed
CAS
Google Scholar
Khajuria C, Vélez AM, Rangasamy M, Wang H, Fishilevich E, Frey MLF, et al. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Insect Biochem Mol Biol. 2015;1(63):54–62.
Google Scholar
Shakeel M, Du J, Li S-W, Zhou Y-J, Sarwar N, Bukhari SAH. Characterization, Knockdown and Parental Effect of Hexokinase Gene of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) Revealed by RNA Interference. Genes (Basel). 2020;11(11):E1258.
Google Scholar
Simonet P, Gaget K, Parisot N, Duport G, Rey M, Febvay G, et al. Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids. Sci Rep. 2016;6(1):34321.
PubMed
PubMed Central
CAS
Google Scholar
Yoshiyama N, Tojo K, Hatakeyama M. A survey of the effectiveness of non-cell autonomous RNAi throughout development in the sawfly, Athalia rosae (Hymenoptera). J Insect Physiol. 2013;59(4):400–7.
PubMed
CAS
Google Scholar
Ivashuta S, Zhang Y, Wiggins BE, Ramaseshadri P, Segers GC, Johnson S, et al. Environmental RNAi in herbivorous insects. RNA. 2015;21(5):840–50.
PubMed
PubMed Central
CAS
Google Scholar
Miyata K, Ramaseshadri P, Zhang Y, Segers G, Bolognesi R, Tomoyasu Y. Establishing an in vivo assay system to identify components involved in environmental RNA interference in the western corn rootworm. PLoS One. 2014;9(7):e101661.
Miller SC, Miyata K, Brown SJ, Tomoyasu Y. Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi. PLoS ONE. 2012;7(10):e47431.
Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R, et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One. 2012;7(10):e47534.
Li W, Koutmou KS, Leahy DJ, Li M. Systemic RNA interference deficiency-1 (SID-1) extracellular domain selectively binds long double-stranded RNA and Is required for RNA transport by SID-1. J Biol Chem. 2015;290(31):18904–13.
PubMed
PubMed Central
CAS
Google Scholar
Shih JD, Hunter CP. SID-1 is a dsRNA-selective dsRNA-gated channel. RNA. 2011;17(6):1057–65.
PubMed
PubMed Central
CAS
Google Scholar
Wynant N, Santos D, Wielendaele PV, Broeck JV. Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust. Schistocerca gregaria Insect Molecular Biology. 2014;23(3):320–9.
PubMed
CAS
Google Scholar
Aronstein K, Pankiw T, Saldivar E. SID-I is implicated in systemic gene silencing in the honey bee. J Apic Res. 2006;45(1):20–4.
CAS
Google Scholar
Cappelle K, de Oliveira CFR, Eynde BV, Christiaens O, Smagghe G. The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Mol Biol. 2016;25(3):315–23.
PubMed
CAS
Google Scholar
Yoon J-S, Shukla JN, Gong ZJ, Mogilicherla K, Palli SR. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors. Insect Biochem Mol Biol. 2016;1(78):78–88.
Google Scholar
Pinheiro DH, Vélez AM, Fishilevich E, Wang H, Carneiro NP, Valencia-Jiménez A, et al. Clathrin-dependent endocytosis is associated with RNAi response in the western corn rootworm, Diabrotica virgifera virgifera LeConte. PLOS ONE. 2018 Aug 9;13(8):e0201849.
Wang H, Gong L, Qi J, Hu M, Zhong G, Gong L. Molecular cloning and characterization of A SID-1-LIKE GENE IN Plutella xylostella. Arch Insect Biochem Physiol. 2014;87(3):164–76.
PubMed
CAS
Google Scholar
Luo Y, Wang X, Yu D, Kang L. The SID-1 double-stranded RNA transporter is not required for systemic RNAi in the migratory locust. RNA Biol. 2012;9(5):663–71.
PubMed
CAS
Google Scholar
McEwan DL, Weisman AS, Hunter CP. Uptake of extracellular double-stranded RNA by SID-2. Mol Cell. 2012;47(5):746–54.
PubMed
PubMed Central
CAS
Google Scholar
Li X, Dong X, Zou C, Zhang H. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference. Sci Rep. 2015;5(1):1–8.
Google Scholar
Xiao D, Gao X, Xu J, Liang X, Li Q, Yao J, et al. Clathrin-dependent endocytosis plays a predominant role in cellular uptake of double-stranded RNA in the red flour beetle. Insect Biochem Mol Biol. 2015;1(60):68–77.
Google Scholar
Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, Meister M, et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in drosophila. Cell. 2005;123(2):335–46.
PubMed
CAS
Google Scholar
Rämet M, Pearson A, Manfruelli P, Li X, Koziel H, Göbel V, et al. Drosophila scavenger receptor CI Is a pattern recognition receptor for bacteria. Immunity. 2001;15(6):1027–38.
PubMed
Google Scholar
Brutscher LM, Daughenbaugh KF, Flenniken ML. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci Rep. 2017;7(1):1–15.
CAS
Google Scholar
Flenniken ML, Andino R. Non-Specific dsRNA-Mediated Antiviral Response in the Honey Bee. PLOS ONE. 2013;8(10):e77263.
PubMed
PubMed Central
CAS
Google Scholar
Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science. 2015;347(6225):991–4.
PubMed
CAS
Google Scholar
Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, et al. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol. 2011;57(2):231–45.
PubMed
CAS
Google Scholar
Ghosh SKB, Hunter WB, Park AL, Gundersen-Rindal DE. Double strand RNA delivery system for plant-sap-feeding insects. PLOS ONE. 2017 Feb 9;12(2):e0171861.
Gurusamy D, Howell JL, Chereddy SCRR, Mogilicherla K, Palli SR. Improving RNA interference in the southern green stink bug. Nezara viridula J Pest Sci. 2021. https://doi.org/10.1007/s10340-021-01358-3.
Article
Google Scholar
Sharma R, Christiaens O, Taning CN, Smagghe G. RNAi-mediated mortality in southern green stinkbug Nezara viridula by oral delivery of dsRNA. Pest Manag Sci. 2021;77(1):77–84.
PubMed
CAS
Google Scholar
Luan J-B, Ghanim M, Liu S-S, Czosnek H. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. Insect Biochem Mol Biol. 2013;43(8):740–6.
PubMed
CAS
Google Scholar
Luo Y, Chen Q, Luan J, Chung SH, Van Eck J, Turgeon R, et al. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Insect Biochem Mol Biol. 2017;1(88):21–9.
Google Scholar
Upadhyay SK, Chandrashekar K, Thakur N, Verma PC, Borgio JF, Singh PK, et al. RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J Biosci. 2011;36(1):153–61.
PubMed
CAS
Google Scholar
Vyas M, Raza A, Ali MY, Ashraf MA, Mansoor S, Shahid AA, et al. Knock down of Whitefly Gut Gene Expression and Mortality by Orally Delivered Gut Gene-Specific dsRNAs. PLOS ONE. 2017 Jan 3;12(1):e0168921.
Andrade EC, Hunter WB. RNAi feeding bioassay: development of a non-transgenic approach to control Asian citrus psyllid and other hemipterans. Entomol Exp Appl. 2017;162(3):389–96.
CAS
Google Scholar
Christiaens O, Smagghe G. The challenge of RNAi-mediated control of hemipterans. Curr Opin Insect Sci. 2014;6:15–21.
PubMed
Google Scholar
Christiaens O, Swevers L, Smagghe G. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides. 2014;53:307–14.
PubMed
CAS
Google Scholar
Ghodke AB, Good RT, Golz JF, Russell DA, Edwards O, Robin C. Extracellular endonucleases in the midgut of Myzus persicae may limit the efficacy of orally delivered RNAi. Sci Rep. 2019;9(1):1–14.
CAS
Google Scholar
Mutti NS, Park Y, Reese JC, Reeck GR. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci [Internet]. 2006 Jan 1 [cited 2020 Apr 20];6(1). Available from: https://academic.oup.com/jinsectscience/article/6/1/38/871156
Whyard S, Singh AD, Wong S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol. 2009;39(11):824–32.
PubMed
CAS
Google Scholar
Mondal M, Peter J, Scarbrough O, Flynt A. Environmental RNAi pathways in the two-spotted spider mite. BMC Genomics. 2021;22(1):42.
PubMed
PubMed Central
CAS
Google Scholar
Yoon J-S, Sahoo DK, Maiti IB, Palli SR. Identification of target genes for RNAi-mediated control of the Twospotted Spider Mite. Sci Rep. 2018;8(1):14687.
PubMed
PubMed Central
Google Scholar
Balakrishna Pillai A, Nagarajan U, Mitra A, Krishnan U, Rajendran S, Hoti SL, et al. RNA interference in mosquito: understanding immune responses, double-stranded RNA delivery systems and potential applications in vector control. Insect Mol Biol. 2017;26(2):127–39.
PubMed
CAS
Google Scholar
Garcia RA, Macedo LLP, Nascimento DC do, Gillet F-X, Moreira-Pinto CE, Faheem M, et al. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis. PLOS ONE. 2017 Dec 20;12(12):e0189600.
Prentice K, Christiaens O, Pertry I, Bailey A, Niblett C, Ghislain M, et al. RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae). Pest Manag Sci. 2017;73(1):44–52.
PubMed
CAS
Google Scholar
Prentice K, Smagghe G, Gheysen G, Christiaens O. Nuclease activity decreases the RNAi response in the sweetpotato weevil Cylas puncticollis. Insect Biochem Mol Biol. 2019;1(110):80–9.
Google Scholar
Wu K, Taylor CE, Pinheiro DH, Skelley LH, McAuslane HJ, Siegfried BD. Lethal RNA interference response in the pepper weevil. J Appl Entomol. 2019;143(7):699–705.
CAS
Google Scholar
Abd El Halim HM, Alshukri BMH, Ahmad MS, Nakasu EYT, Awwad MH, Salama EM, et al. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNa v causes mortality in Tribolium castaneum. Scientific Reports. 2016;6(1):29301.
Cao M, Gatehouse JA, Fitches EC. A Systematic Study of RNAi Effects and dsRNA Stability in Tribolium castaneum and Acyrthosiphon pisum, Following Injection and Ingestion of Analogous dsRNAs. Int J Mol Sci. 2018;19(4).
Peng Y, Wang K, Chen J, Wang J, Zhang H, Ze L, et al. Identification of a double-stranded RNA-degrading nuclease influencing both ingestion and injection RNA interference efficiency in the red flour beetle Tribolium castaneum. Insect Biochem Mol Biol. 2020;125:103440.
PubMed
CAS
Google Scholar
Will T, Vilcinskas A. The structural sheath protein of aphids is required for phloem feeding. Insect Biochem Mol Biol. 2015;1(57):34–40.
Google Scholar
Ye C, Jiang Y-D, An X, Yang L, Shang F, Niu J, et al. Effects of RNAi-based silencing of chitin synthase gene on moulting and fecundity in pea aphids ( Acyrthosiphon pisum ). Sci Rep. 2019;9(1):3694.
PubMed
PubMed Central
Google Scholar
Nunes FMF, Simões ZLP. A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. Insect Biochem Mol Biol. 2009;39(2):157–60.
PubMed
CAS
Google Scholar
Vélez AM, Jurzenski J, Matz N, Zhou X, Wang H, Ellis M, et al. Developing an in vivo toxicity assay for RNAi risk assessment in honey bees Apis mellifera L. Chemosphere. 2016;144:1083–90.
PubMed
Google Scholar
Mehlhorn SG, Geibel S, Bucher G, Nauen R. Profiling of RNAi sensitivity after foliar dsRNA exposure in different European populations of Colorado potato beetle reveals a robust response with minor variability. Pesticide Biochemistry and Physiology. 2020;104569.
Khajuria C, Ivashuta S, Wiggins E, Flagel L, Moar W, Pleau M, et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLOS ONE. 2018;13(5):e0197059.
Yoon J-S, Tian H, McMullen JG, Chung SH, Douglas AE. Candidate genetic determinants of intraspecific variation in pea aphid susceptibility to RNA interference. Insect Biochemistry and Molecular Biology. 2020;123:103408.
Kitzmann P, Schwirz J, Schmitt-Engel C, Bucher G. RNAi phenotypes are influenced by the genetic background of the injected strain. BMC Genomics. 2013;14:5.
PubMed
PubMed Central
CAS
Google Scholar
Wang H, Zhang J, Zhao S, Zhu KY, Wu Y. Limited variations in susceptibility to an insecticidal double-stranded RNA (dsvATPaseE) among a laboratory strain and seven genetically differentiated field populations of Tribolium castaneum. Pestic Biochem Physiol. 2018;1(149):143–8.
Google Scholar
Dow JA. pH GRADIENTS IN LEPIDOPTERAN MIDGUT. J Exp Biol. 1992;172(1):355–75.
PubMed
CAS
Google Scholar
Ortego F. Physiological adaptations of the insect gut to herbivory. In: Smagghe G, Diaz I, editors. Arthropod-plant interactions: novel insights and approaches for IPM [Internet]. Dordrecht: Springer Netherlands; 2012 [cited 2019 Dec 19]. p. 75–88. (Progress in Biological Control). Available from: https://doi.org/10.1007/978-94-007-3873-7_3
Wu K, Yang B, Huang W, Dobens L, Song H, Ling E. Gut immunity in Lepidopteran insects. Dev Comp Immunol. 2016;1(64):65–74.
Google Scholar
Arimatsu Y, Kotani E, Sugimura Y, Furusawa T. Molecular characterization of a cDNA encoding extracellular dsRNase and its expression in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2007;37(2):176–83.
PubMed
CAS
Google Scholar
Furusawa T, Takayama E, Ishihara R, Hayashi Y. Double-stranded ribonuclease activity in the digestive juice and midgut of the silkworm, Bombyx mori. Comp Biochem Physiol Part B Comp Biochem. 1993;104(4):795–801.
Google Scholar
Guan R, Hu S, Li H, Shi Z, Miao X. The in vivo dsRNA cleavage has sequence preference in insects. Front Physiol. 2018 Dec 10 [cited 2019 Nov 28];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6295558/
Guan R-B, Li H-C, Fan Y-J, Hu S-R, Christiaens O, Smagghe G, et al. A nuclease specific to lepidopteran insects suppresses RNAi. J Biol Chem. 2018 2;jbc.RA117.001553.
Liu J, Swevers L, Iatrou K, Huvenne H, Smagghe G. Bombyx mori DNA/RNA non-specific nuclease: Expression of isoforms in insect culture cells, subcellular localization and functional assays. J Insect Physiol. 2012;58(8):1166–76.
PubMed
CAS
Google Scholar
Allen ML, Walker WB. Saliva of Lygus lineolaris digests double stranded ribonucleic acids. J Insect Physiol. 2012;58(3):391–6.
PubMed
CAS
Google Scholar
Garbutt JS, Bellés X, Richards EH, Reynolds SE. Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: Evidence from Manduca sexta and Blattella germanica. J Insect Physiol. 2013;59(2):171–8.
PubMed
CAS
Google Scholar
Shukla JN, Kalsi M, Sethi A, Narva KE, Fishilevich E, Singh S, et al. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 2016;13(7):656–69.
PubMed
PubMed Central
Google Scholar
Singh IK, Singh S, Mogilicherla K, Shukla JN, Palli SR. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci Rep. 2017;7(1):1–12.
Google Scholar
Vatanparast M, Kim Y. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. PLOS ONE. 2017 Aug 11;12(8):e0183054.
Wynant N, Santos D, Verdonck R, Spit J, Van Wielendaele P, Vanden BJ. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol. 2014;1(46):1–8.
Google Scholar
Wang K, Peng Y, Pu J, Fu W, Wang J, Han Z. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo. Insect Biochem Mol Biol. 2016;1(77):1–9.
Google Scholar
Yoon J-S, Gurusamy D, Palli SR. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda. Insect Biochem Mol Biol. 2017;1(90):53–60.
Google Scholar
Castellanos NL, Smagghe G, Sharma R, Oliveira EE, Christiaens O. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest Manag Sci. 2019;75(2):537–48.
PubMed
CAS
Google Scholar
He B, Chu Y, Yin M, Müllen K, An C, Shen J. Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv Mater. 2013;25(33):4580–4.
PubMed
CAS
Google Scholar
Mysore K, Flannery EM, Tomchaney M, Severson DW, Duman-Scheel M. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a. PLoS Negl Trop Dis. 2013;7(5):e2215.
Gillet F-X, Garcia RA, Macedo LLP, Albuquerque EVS, Silva MCM, Grossi-de-Sa MF. Investigating engineered ribonucleoprotein particles to improve Oral RNAi delivery in crop insect pests. Front Physiol. 2017;8:256.
PubMed
PubMed Central
Google Scholar
Whitten MMA, Facey PD, Del Sol R, Fernández-Martínez LT, Evans MC, Mitchell JJ, et al. Symbiont-mediated RNA interference in insects. Proc Biol Sci. 2016;283(1825):20160042.
Berry B, Deddouche S, Kirschner D, Imler J-L, Antoniewski C. Viral Suppressors of RNA Silencing Hinder Exogenous and Endogenous Small RNA Pathways in Drosophila. PLOS ONE. 2009 Jun 10;4(6):e5866.
Li H, Li WX, Ding SW. Induction and suppression of RNA silencing by an animal virus. Science. 2002;296(5571):1319–21.
PubMed
CAS
Google Scholar
Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A, Deng C, et al. Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat Struct Mol Biol. 2010;17(5):547–54.
PubMed
PubMed Central
CAS
Google Scholar
van Mierlo JT, Bronkhorst AW, Overheul GJ, Sadanandan SA, Ekström J-O, Heestermans M, et al. Convergent Evolution of Argonaute-2 Slicer Antagonism in Two Distinct Insect RNA Viruses. PLOS Pathogens. 2012;8(8):e1002872.
Flynt A, Liu N, Martin R, Lai EC. Dicing of viral replication intermediates during silencing of latent Drosophila viruses. PNAS [Internet]. 2009 Feb 26 [cited 2020 Apr 20]; Available from: https://www.pnas.org/content/early/2009/02/26/0813412106
Goic B, Vodovar N, Mondotte JA, Monot C, Frangeul L, Blanc H, et al. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat Immunol. 2013;14(4):396–403.
PubMed
CAS
Google Scholar
Xie J, Li S, Zhang W, Xia Y. RNAi-knockdown of the Locusta migratoria nuclear export factor protein results in insect mortality and alterations in gut microbiome. Pest Manag Sci. 2019;75(5):1383–90.
PubMed
CAS
Google Scholar
He W, Xu W, Xu L, Fu K, Guo W, Bock R, et al. Length-dependent accumulation of double-stranded RNAs in plastids affects RNA interference efficiency in the Colorado potato beetle. J Exp Bot. 2020;71(9):2670–7.
PubMed
PubMed Central
CAS
Google Scholar
Henschel A, Buchholz F, Habermann B. DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. 2004;1(32):W113–20.
Google Scholar
Du M-H, Yan Z-W, Hao Y-J, Yan Z-T, Si F-L, Chen B, et al. Suppression of Laccase 2 severely impairs cuticle tanning and pathogen resistance during the pupal metamorphosis of Anopheles sinensis (Diptera: Culicidae). Parasit Vectors. 2017;10(1):171.
PubMed
PubMed Central
Google Scholar
Elias-Neto M, Soares MPM, Simões ZLP, Hartfelder K, Bitondi MMG. Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, Apis mellifera (Hymenoptera, Apinae). Insect Biochem Mol Biol. 2010;40(3):241–51.
PubMed
CAS
Google Scholar
Futahashi R, Tanaka K, Matsuura Y, Tanahashi M, Kikuchi Y, Fukatsu T. Laccase2 is required for cuticular pigmentation in stinkbugs. Insect Biochem Mol Biol. 2011;41(3):191–6.
PubMed
CAS
Google Scholar
Nishide Y, Kageyama D, Hatakeyama M, Yokoi K, Jouraku A, Tanaka H, et al. Diversity and function of multicopper oxidase genes in the stinkbug Plautia stali. Sci Rep. 2020;10(1):3464.
PubMed
PubMed Central
CAS
Google Scholar
Liu J, Lemonds TR, Marden JH, Popadić A. A pathway analysis of melanin patterning in a hemimetabolous insect. Genetics. 2016;203(1):403–13.
PubMed
PubMed Central
CAS
Google Scholar
Tomoyasu Y, Arakane Y, Kramer KJ, Denell RE. Repeated co-options of exoskeleton formation during wing-to-elytron evolution in beetles. Curr Biol. 2009;19(24):2057–65.
PubMed
CAS
Google Scholar
Kato Y, Shiga Y, Kobayashi K, Tokishita S, Yamagata H, Iguchi T, et al. Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev Genes Evol. 2011;220(11):337–45.
PubMed
CAS
Google Scholar
Ohde T (Nagoya U (Japan)), Masumoto M, Yaginuma T, Niimi T. Embryonic RNAi analysis in the firebrat, Thermobia domestica [Zygentoma: Lepismatidae]: Distal-less is required to form caudal filament. Journal of Insect Biotechnology and Sericology (Japan). 2009;78(2):99–105.
Schoppmeier M, Damen WG. Double-stranded RNA interference in the spider Cupiennius salei: the role of Distal-less is evolutionarily conserved in arthropod appendage formation. Dev Genes Evol. 2001;211(2):76–82.
PubMed
CAS
Google Scholar
Martin A, Serano JM, Jarvis E, Bruce HS, Wang J, Ray S, et al. CRISPR/Cas9 mutagenesis reveals versatile roles of hox genes in crustacean limb specification and evolution. Curr Biol. 2016;26(1):14–26.
PubMed
CAS
Google Scholar
Refki PN, Armisén D, Crumière AJJ, Viala S, Khila A. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait. Dev Biol. 2014;392(2):441–53.
PubMed
PubMed Central
CAS
Google Scholar
Tomoyasu Y, Wheeler SR, Denell RE. Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature. 2005;433(7026):643–7.
PubMed
CAS
Google Scholar
Jose AM, Kim YA, Leal-Ekman S, Hunter CP. Conserved tyrosine kinase promotes the import of silencing RNA into Caenorhabditis elegans cells. Proc Natl Acad Sci U S A. 2012;109(36):14520–5.
PubMed
PubMed Central
CAS
Google Scholar
Schaeper ND, Prpic N-M, Wimmer EA. A conserved function of the zinc finger transcription factor Sp8/9 in allometric appendage growth in the milkweed bug Oncopeltus fasciatus. Dev Genes Evol. 2009;219(8):427.
PubMed
PubMed Central
CAS
Google Scholar
Kulkarni MM, Booker M, Silver SJ, Friedman A, Hong P, Perrimon N, et al. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat Methods. 2006;3(10):833–8.
PubMed
CAS
Google Scholar
Horn T, Boutros M. E-RNAi: a web application for the multi-species design of RNAi reagents–2010 update. Nucleic Acids Res. 2010;38:W332–9.
PubMed
PubMed Central
CAS
Google Scholar
Nüsslein-Volhard C. Of flies and fishes. Science. 1994;266(5185):572–4.
PubMed
Google Scholar
Knorr E, Bingsohn L, Kanost MR, Vilcinskas A. Tribolium castaneum as a Model for High-Throughput RNAi Screening. In: Vilcinskas A, editor. Yellow Biotechnology II: Insect Biotechnology in Plant Protection and Industry [Internet]. Berlin, Heidelberg: Springer; 2013 [cited 2021 Jul 6]. p. 163–78. (Advances in Biochemical Engineering/Biotechnology). Available from: https://doi.org/10.1007/10_2013_208
Anderson JA, Mickelson J, Challender M, Moellring E, Sult T, TeRonde S, et al. Agronomic and compositional assessment of genetically modified DP23211 maize for corn rootworm control. GM Crops Food. 2020;11(4):206–14.
PubMed
PubMed Central
Google Scholar
Head GP, Carroll MW, Evans SP, Rule DM, Willse AR, Clark TL, et al. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Manag Sci. 2017;73(9):1883–99.
PubMed
CAS
Google Scholar
EFSA. Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal. 2013;11(7):3295.
ISAAA website. GM Crop Events List - GM Approval Database | ISAAA.org [Internet]. 2020 [cited 2020 Apr 22]. Available from: http://www.isaaa.org/gmapprovaldatabase/eventslist/default.asp
Tan J, Levine SL, Bachman PM, Jensen PD, Mueller GM, Uffman JP, et al. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests. Environmental Toxicology and Chemistry. 2016;35(2):287–94.
Guo X, Wang Y, Sinakevitch I, Lei H, Smith BH. Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera. J Insect Physiol. 2018;1(111):47–52.
Google Scholar
Jarosch A, Moritz RFA. Systemic RNA-interference in the honeybee Apis mellifera: tissue dependent uptake of fluorescent siRNA after intra-abdominal application observed by laser-scanning microscopy. J Insect Physiol. 2011;57(7):851–7.
PubMed
CAS
Google Scholar
Hu X, Boeckman CJ, Cong B, Steimel JP, Richtman NM, Sturtz K, et al. Characterization of DvSSJ1 transcripts targeting the smooth septate junction (SSJ) of western corn rootworm ( Diabrotica virgifera virgifera ). Sci Rep. 2020;10(1):11139.
PubMed
PubMed Central
CAS
Google Scholar
Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, et al. Advancing crop transformation in the era of genome editing. Plant Cell. 2016;28(7):1510–20.
PubMed
PubMed Central
CAS
Google Scholar
Aliabadi HM, Landry B, Sun C, Tang T, Uludağ H. Supramolecular assemblies in functional siRNA delivery: Where do we stand? Biomaterials. 2012;33(8):2546–69.
PubMed
CAS
Google Scholar
Petrick JS, Moore WM, Heydens WF, Koch MS, Sherman JH, Lemke SL. A 28-day oral toxicity evaluation of small interfering RNAs and a long double-stranded RNA targeting vacuolar ATPase in mice. Regul Toxicol Pharmacol. 2015;71(1):8–23.
PubMed
CAS
Google Scholar
Witwer KW, Hirschi KD. Transfer and functional consequences of dietary microRNAs in vertebrates: Concepts in search of corroboration: Negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions per. BioEssays. 2014;36(4):394–406.
PubMed
PubMed Central
CAS
Google Scholar
Parsons KH, Mondal MH, McCormick CL, Flynt AS. Guanidinium-functionalized interpolyelectrolyte complexes enabling RNAi in resistant insect pests. Biomacromol. 2018;19(4):1111–7.
CAS
Google Scholar
Maxwell B, Ramachandriya K, Abshire J, Cobb C. Enabling the RNA revolution; Cell-free dsRNA production and control of Colorado potato beetle [Internet]. p. 1. Available from: http://www.globalengage.co.uk/pgc/docs/PosterMaxwell.pdf
Avagrar. Decis forte [Internet]. Avagrar. 2020 [cited 2020 May 3]. Available from: https://avagrar.de/pflanzenschutzmittel/raps/insektizide/3/decis-forte
myAGRAR. myAGRAR Onlineshop | Decis forte 1 l | online kaufen [Internet]. https://www.myagrar.de/. 2020 [cited 2020 May 3]. Available from: https://www.myagrar.de/Pflanzenschutzmittel/Kulturen/Sonderkulturen/Decis-forte-1-l.html
BVL. Datenblatt PSM - Decis forte [Internet]. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. 2020 [cited 2020 May 3]. Available from: https://apps2.bvl.bund.de/psm/jsp/DatenBlatt.jsp?kennr=007418-00
BVL. PSM- Datenblatt Anwendungen Decis forte - Getreide [Internet]. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. 2020 [cited 2020 May 3]. Available from: https://apps2.bvl.bund.de/psm/jsp/BlattAnwendg.jsp?awg_id=007418-00/00-001&kennr=007418-00
BVL. PSM- Datenblatt Anwendungen Decis forte - Kartoffel [Internet]. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. 2020 [cited 2020 May 3]. Available from: https://apps2.bvl.bund.de/psm/jsp/BlattAnwendg.jsp?awg_id=007418-00/00-006&kennr=007418-00
Avagrar. XenTari (0,5kg) [Internet]. Avagrar. 2020 [cited 2020 May 3]. Available from: https://avagrar.de/pflanzenschutzmittel/sonderkulturen/insektizide-und-akarizide/366/xentari-0-5kg
BVL. Datenblatt PSM - XenTari [Internet]. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. 2020 [cited 2020 May 3]. Available from: https://apps2.bvl.bund.de/psm/jsp/DatenBlatt.jsp?kennr=024426-00
BVL. PSM- Datenblatt Anwendungen XenTari - Kohlgemüse [Internet]. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. 2020 [cited 2020 May 3]. Available from: https://apps2.bvl.bund.de/psm/jsp/BlattAnwendg.jsp?awg_id=024426-00/00-007&kennr=024426-00
BVL. PSM- Datenblatt Anwendungen XenTari - Wurzel- und Knollengemüse [Internet]. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. 2020 [cited 2020 May 3]. Available from: https://apps2.bvl.bund.de/psm/jsp/BlattAnwendg.jsp?awg_id=024426-00/06-001&kennr=024426-00
BVL. PSM- Datenblatt Anwendungen XenTari - Tomate, Aubergine [Internet]. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. 2020 [cited 2020 May 3]. Available from: https://apps2.bvl.bund.de/psm/jsp/BlattAnwendg.jsp?awg_id=024426-00/09-002&kennr=024426-00
Choi M-Y, Vander Meer RK, Coy M, Scharf ME. Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea. J Insect Physiol. 2012;58(8):1159–65.
PubMed
CAS
Google Scholar
Raje KR, Peterson BF, Scharf ME. Screening of 57 candidate double-stranded RNAs for insecticidal activity against the pest termite reticulitermes flavipes (Isoptera: Rhinotermitidae). J Econ Entomol. 2018;111(6):2782–7.
PubMed
CAS
Google Scholar
Zhou X, Wheeler MM, Oi FM, Scharf ME. RNA interference in the termite reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol. 2008;38(8):805–15.
PubMed
CAS
Google Scholar
Hapairai LK, Mysore K, Chen Y, Harper EI, Scheel MP, Lesnik AM, et al. Lure-and-kill yeast interfering RNA larvicides targeting neural genes in the human disease vector mosquito aedes aegypti. Sci Rep. 2017;7(1):1–11.
CAS
Google Scholar
Kumar A, Wang S, Ou R, Samrakandi M, Beerntsen BT, Sayre RT. Development of an RNAi based microalgal larvicide to control mosquitoes. 2013;4(6):7.
Google Scholar
Mysore K, Li P, Wang C-W, Hapairai LK, Scheel ND, Realey JS, et al. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes. Parasit Vectors [Internet]. 2019 May 22 [cited 2020 Apr 24];12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532267/