Krebs CJ. Population dynamics of large and small mammals: Graeme Caughley’s grand vision. Wildl Res. 2009;36:1–7.
Article
Google Scholar
Krebs CJ. How does rodent behaviour impact on population dynamics? ACIAR Monogr Ser. 2002;96:117–23.
Google Scholar
Elton C, Nicholson M. The ten-year cycle in numbers of the lynx in canada. J Anim Ecol. 1942;11:215–44.
Article
Google Scholar
Hanski I, Hansson L, Henttonen H. Specialist predators, generalist predators, and the microtine rodent cycle. J Anim Ecol. 1991;60:353–67.
Article
Google Scholar
Bryant JP, Wieland GD, Clausen T, Kuropat P. Interactions of snowshoe hare and feltleaf willow in alaska. Ecology. 1985;66:1564–73.
Article
Google Scholar
Chitty D. The natural selection of self-regulatory behaviour in animal populations. Proc Ecol Soc Aust. 1967;2:51–78.
Google Scholar
Christian JJ. The adreno-pituitary system and population cycles in mammals. J Mammal. 1950;31:247–59.
Article
Google Scholar
Wynne-Edwards VC. Animal dispersion in relation to social behaviour. Edinburgh: Oliver and Boyd; 1962. p. 1–653.
Google Scholar
Wynne-Edwards VC. Population control in animals. Sci Am. 1964;211:68–000.
Article
Google Scholar
Ostfeld RS, Canham CD, Pugh SR. Intrinsic density-dependent regulation of vole populations. Nature. 1993;366:259–61.
Article
CAS
PubMed
Google Scholar
Stenseth NC, Falck W, Chan KS, Bjornstad ON, O’Donoghue M, Tong H, Boonstra R, Boutin S, Krebs CJ, Yoccoz NG. From patterns to processes: phase and density dependencies in the canadian lynx cycle. Proc Natl Acad Sci U S A. 1998;95:15430–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramsay DS, Woods SC. Physiological regulation: how it really works. Cell Metab. 2016;24:361–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christian JJ. Population density and reproductive efficiency. Biol Reprod. 1971;4:248.
Article
CAS
PubMed
Google Scholar
Huang SL, Li GL, Pan YL, Song MJ, Zhao JD, Wan XR, Krebs CJ, Wang ZX, Han WN, Zhang ZB. Density-induced social stress alters oxytocin and vasopressin activities in the brain of a small rodent species. Integr zool. 2021;16:149–59.
Article
PubMed
Google Scholar
Bale TL, Vale WW. Crf and crf receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol. 2004;44:525–57.
Article
CAS
PubMed
Google Scholar
Swanson LW, Sawchenko PE, Lind RW. Regulation of multiple peptides in crf parvocellular neurosecretory neurons—implications for the stress response. Prog Brain Res. 1986;68:169–90.
Article
CAS
PubMed
Google Scholar
Veenema AH, Meijer OC, de Kloet ER, Koolhaas JM, Bohus BG. Differences in basal and stress-induced hpa regulation of wild house mice selected for high and low aggression. Horm Behav. 2003;43:197–204.
Article
CAS
PubMed
Google Scholar
McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886:172–89.
Article
CAS
PubMed
Google Scholar
Herman JP. Neural control of chronic stress adaptation. Front Behav Neurosci. 2013. https://doi.org/10.3389/fnbeh.2013.00061.
Article
PubMed
PubMed Central
Google Scholar
Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry. 1999;46:1472–9.
Article
CAS
PubMed
Google Scholar
Meynen G, Unmehopa UA, van Heerikhuize JJ, Hofman MA, Swaab DF, Hoogendijk WJG. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: a preliminary report. Biol Psychiatry. 2006;60:892–5.
Article
CAS
PubMed
Google Scholar
Mastorakos G, Pavlatou MG, Mizamtsidi M. The hypothalamic-pituitary-adrenal and the hypothalamic-pituitary-gonadal axes interplay. Pediatric endocrinology reviews : PER. 2006;3(Suppl 1):172–81.
PubMed
Google Scholar
Viau V. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J Neuroendocrinol. 2002;14:506–13.
Article
CAS
PubMed
Google Scholar
Neumann ID, Wigger A, Torner L, Holsboer F, Landgraf R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus. J Neuroendocrinol. 2000;12:235–43.
Article
CAS
PubMed
Google Scholar
Goodson JL, Schrock SE, Kingsbury MA. Oxytocin mechanisms of stress response and aggression in a territorial finch. Physiol Behav. 2015;141:154–63.
Article
CAS
PubMed
Google Scholar
Bernhard A, Martinelli A, Ackermann K, Neumann ID, Kirschbaum C, Freitag CM. Reactivity of oxytocin in the trier social stress test: a proof of concept study. Psychoneuroendocrinology. 2015;61:73.
Article
Google Scholar
Seney ML, Walsh C, Stolakis R, Sibille E. Neonatal testosterone partially organizes sex differences in stress-induced emotionality in mice. Neurobiol Dis. 2012;46:486–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geary DC, Flinn MV. Sex differences in behavioral and hormonal response to social threat: commentary on Taylor et al. (2000). Psychol Rev. 2002;109:745–50.
Article
PubMed
Google Scholar
Hashikawa K, Hashikawa Y, Lischinsky J, Lin DY. The neural mechanisms of sexually dimorphic aggressive behaviors. Trends Genet. 2018;34:755–76.
Article
CAS
PubMed
Google Scholar
Viviani D, Stoop R. Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response. Adv Vasopressin Oxytocin Genes Behav Dis. 2008;170:207–18.
Article
CAS
Google Scholar
Porges EC, Smith KE, Decety J. Individual differences in vagal regulation are related to testosterone responses to observed violence. Front Psychol. 2015;6:19–19.
Article
PubMed
PubMed Central
Google Scholar
Soma KK, Rendon NM, Boonstra R, Albers HE, Demas GE. Dhea effects on brain and behavior: Insights from comparative studies of aggression. J Steroid Biochem Mol Biol. 2015;145:261–72.
Article
CAS
PubMed
Google Scholar
Johnson EO, Kamilaris TC, Chrousos GP, Gold PW. Mechanisms of stress—a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev. 1992;16:115–30.
Article
CAS
PubMed
Google Scholar
Smith AS, Wang ZX. Hypothalamic oxytocin mediates social buffering of the stress response. Biol Psychiatry. 2014;76:281–8.
Article
CAS
PubMed
Google Scholar
Calcagnoli F, de Boer SF, Beiderbeck DI, Althaus M, Koolhaas JM, Neumann ID. Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness. Behav Brain Res. 2014;261:315–22.
Article
CAS
PubMed
Google Scholar
Yan LX, Sun XP, Wang ZX, Song MJ, Zhang ZB. Regulation of social behaviors by p-stat3 via oxytocin and its receptor in the nucleus accumbens of male Brandt’s voles (Lasiopodomys brandtii). Horm Behav. 2020;119:8.
Article
CAS
Google Scholar
Delville W, Mansour KM, Ferris CF. Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiol Behav. 1996;60:25–9.
Article
CAS
PubMed
Google Scholar
Gobrogge KL, Liu Y, Jia XX, Wang ZX. Anterior hypothalamic neural activation and neurochemical associations with aggression in pair-bonded male prairie voles. J Comp Neurol. 2007;502:1109–22.
Article
PubMed
Google Scholar
Cooper MA, Karom M, Huhman KL, Albers HE. Repeated agonistic encounters in hamsters modulate avp v1a receptor binding. Horm Behav. 2005;48:545–51.
Article
CAS
PubMed
Google Scholar
Veenema AH, Beiderbeck DI, Lukas M, Neumann ID. Distinct correlations of vasopressin release within the lateral septum and the bed nucleus of the Stria terminalis with the display of intermale aggression. Horm Behav. 2010;58:273–81.
Article
CAS
PubMed
Google Scholar
Benarroch EE. Paraventricular nucleus, stress response, and cardiovascular disease. Clin Auton Res. 2005;15:254–63.
Article
PubMed
Google Scholar
Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry. 2001;6:13–34.
Article
CAS
PubMed
Google Scholar
Makino S, Shibasaki T, Yamauchi N, Nishioka T, Mimoto T, Wakabayashi I, Gold PW, Hashimoto K. Psychological stress increased corticotropin-releasing hormone mRNA and content in the central nucleus of the amygdala but not in the hypothalamic paraventricular nucleus in the rat. Brain Res. 1999;850:136–43.
Article
CAS
PubMed
Google Scholar
Davern PJ, Head GA. Role of the medial amygdala in mediating responses to aversive stimuli leading to hypertension. Clin Exp Pharmacol Physiol. 2011;38:136–43.
Article
CAS
PubMed
Google Scholar
Kubo T, Okatani H, Nishigori Y, Hagiwara Y, Fukumori R, Goshima Y. Involvement of the medial amygdaloid nucleus in restraint stress-induced pressor responses in rats. Neurosci Lett. 2004;354:84–6.
Article
CAS
PubMed
Google Scholar
Popik P, Vos PE, Vanree JM. Neurohypophyseal hormone receptors in the septum are implicated in social recognition in the rat. Behav Pharmacol. 1992;3:351–8.
Article
CAS
PubMed
Google Scholar
Ross HE, Young LJ. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol. 2009;30:534–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gobrogge K, Wang ZX. Neuropeptidergic regulation of pair-bonding and stress buffering: lessons from voles. Horm Behav. 2015;76:91–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gobrogge KL, Jia XX, Liu Y, Wang ZX. Neurochemical mediation of affiliation and aggression associated with pair-bonding. Biol Psychiatry. 2017;81:231–42.
Article
CAS
PubMed
Google Scholar
Ferris CF, Potegal M. Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol Behav. 1988;44:235–9.
Article
CAS
PubMed
Google Scholar
Trainor BC, Rouse KL, Marler CA. Arginine vasotocin interacts with the social environment to regulate advertisement calling in the gray treefrog (Hyla versicolor). Brain Behav Evol. 2003;61:165–71.
Article
PubMed
Google Scholar
Goodson JL, Evans AK. Neural responses to territorial challenge and nonsocial stress in male song sparrows: segregation, integration, and modulation by a vasopressin v–1 antagonist. Horm Behav. 2004;46:371–81.
Article
CAS
PubMed
Google Scholar
De Vries GJ, Panzica GC. Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: different mechanisms, similar endpoints. Neuroscience. 2006;138:947–55.
Article
PubMed
CAS
Google Scholar
Jurek B, Neumann ID. The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev. 2018;98:1805–908.
Article
CAS
PubMed
Google Scholar
de Jong TR, Neumann ID. Oxytocin and aggression. Curr Top Behav Neurosci. 2018;35:175–92.
Article
PubMed
CAS
Google Scholar
Gibbs DM. Vasopressin and oxytocin-hypothalamic modulators of the stress response—a review. Psychoneuroendocrinology. 1986;11:131–40.
Article
CAS
PubMed
Google Scholar
Ferris CF, Albers HE, Wesolowski SM, Goldman BD, Luman SE. Vasopressin injected into the hypothalamus triggers a stereotypic behavior in golden-hamsters. Science. 1984;224:521–3.
Article
CAS
PubMed
Google Scholar
Hennessey AC, Huhman KL, Albers HE. Vasopressin and sex-differences in hamster flank marking. Physiol Behav. 1994;55:905–11.
Article
CAS
PubMed
Google Scholar
Consiglio AR, Borsoi A, Pereira GAM, Lucion AB. Effects of oxytocin microinjected into the central amygdaloid nucleus and bed nucleus of Stria terminalis on maternal aggressive behavior in rats. Physiol Behav. 2005;85:354–62.
Article
CAS
PubMed
Google Scholar
Lubin DA, Elliott JC, Black MC, Johns JM. An oxytocin antagonist infused into the central nucleus of the amygdala increases maternal aggressive behavior. Behav Neurosci. 2003;117:195–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J-J, Liang H, Zhang Z-B. Influence of food restriction on mate choice in the rat-like hamster (Cricetulus triton). Chin J Zool. 2003;38:33–7.
CAS
Google Scholar
Liang H, Zhang Z. Effects of food restriction on physiological conditions of rodents. Acta Theriol Sin. 2003;23:175–82.
Google Scholar
Chen Y, Wang DW, Li N, Hu XF, Ren F, Hao WL, Song Y, Liu XH. Kinship analysis reveals reproductive success skewed toward overwintered Brandt’s voles in semi-natural enclosures. Integr zool. 2019;14:435–45.
Article
PubMed
Google Scholar
Li GL, Hou XL, Wan XR, Zhang ZB. Sheep grazing causes shift in sex ratio and cohort structure of Brandt’s vole: implication of their adaptation to food shortage. Integr zool. 2016;11:76–84.
Article
CAS
PubMed
Google Scholar
Li G, Yin B, Wan X, Wei W, Wang G, Krebs CJ, Zhang Z. Successive sheep grazing reduces population density of Brandt’s voles in steppe grassland by altering food resources: a large manipulative experiment. Oecologia. 2016;180:149–59.
Article
PubMed
Google Scholar
Jaman MF, Huffman MA. Enclosure environment affects the activity budgets of captive Japanese macaques (Macaca fuscata). Am J Primatol. 2008;70:1133–44.
Article
PubMed
Google Scholar
Ferguson JN, Aldag JM, Insel TR, Young LJ. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci. 2001;21:8278–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Renaud LP, Bourque CW. Neurophysiology and neuropharmacology of hypothalamic magnocellular neurons secreting vasopressin and oxytocin. Prog Neurobiol. 1991;36:131–69.
Article
CAS
PubMed
Google Scholar
Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, Kuroda KO. Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol. 2013;521:1633–63.
Article
CAS
PubMed
Google Scholar
Dominguez JM, Hull EM. Dopamine, the medial preoptic area, and male sexual behavior. Physiol Behav. 2005;86:356–68.
Article
CAS
PubMed
Google Scholar
Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S, Khalilov I, Tsintsadze V, Brouchoud C, Chazal G, et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science. 2014;343:675–9.
Article
CAS
PubMed
Google Scholar
Hattori T, Kanno K, Nagasawa M, Nishimori K, Mogi K, Kikusui T. Impairment of interstrain social recognition during territorial aggressive behavior in oxytocin receptor-null mice. Neurosci Res. 2015;90:90–4.
Article
CAS
PubMed
Google Scholar
Harony-Nicolas H, Kay M, du Hoffmann J, Klein ME, Bozdagi-Gunal O, Riad M, Daskalakis NP, Sonar S, Castillo PE, Hof PR, et al. Oxytocin improves behavioral and electrophysiological deficits in a novel shank3-deficient rat. Elife. 2017;6:23.
Article
Google Scholar
Mustoe A, Taylor JH, French JA. Oxytocin structure and function in new world monkeys: from pharmacology to behavior. Integr Zool. 2018;13:634–54.
Article
PubMed
PubMed Central
Google Scholar
Smith AS, Wang ZX. Salubrious effects of oxytocin on social stress-induced deficits. Horm Behav. 2012;61:320–30.
Article
CAS
PubMed
Google Scholar
Jokinen J, Chatzittofis A, Hellstrom C, Nordstrom P, Uvnas-Moberg K, Asberg M. Low CSF oxytocin reflects high intent in suicide attempters. Psychoneuroendocrinology. 2012;37:482–90.
Article
CAS
PubMed
Google Scholar
Arakawa H, Blanchard DC, Blanchard RJ. Central oxytocin regulates social familiarity and scent marking behavior that involves amicable odor signals between male mice. Physiol Behav. 2015;146:36–46.
Article
CAS
PubMed
Google Scholar
Smith AS, Tabbaa M, Lei K, Eastham P, Butler MJ, Linton L, Altshuler R, Liu Y, Wang ZX. Local oxytocin tempers anxiety by activating gaba(a) receptors in the hypothalamic paraventricular nucleus. Psychoneuroendocrinology. 2016;63:50–8.
Article
CAS
PubMed
Google Scholar
Winslow JT, Hastings N, Carter CS, Harbaugh CR, Insel TR. A role for central vasopressin in pair bonding in monogamous prairie voles. Nature. 1993;365:545–8.
Article
CAS
PubMed
Google Scholar
Lan N, Hellemans KGC, Ellis L, Weinberg J. Exposure to chronic mild stress differentially alters corticotropin-releasing hormone and arginine vasopressin mRNA expression in the stress-responsive neurocircuitry of male and female rats prenatally exposed to alcohol. Alcohol Clin Exp Res. 2015;39:2414–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song CY, Moody K, Newman JD, Insel TR. Effects of stress on the contents of oxytocin, arg-vassopressin and b-endorphin in hypothalamus, pituitary and plasma in rats. Acad J Sec Milit Med Coll. 1991;12:128–31.
Google Scholar
Bao A-M, Swaab DF. Corticotropin-releasing hormone and arginine vasopressin in depression: focus on the human postmortem hypothalamus. Horm Limbic Syst. 2010;82:339–65.
Article
CAS
Google Scholar
Peters S, Slattery DA, Uschold-Schmidt N, Reber SO, Neumann ID. Dose-dependent effects of chronic central infusion of oxytocin on anxiety, oxytocin receptor binding and stress-related parameters in mice. Psychoneuroendocrinology. 2014;42:225–36.
Article
CAS
PubMed
Google Scholar
Lukas M, Toth I, Reber SO, Slattery DA, Veenema AH, Neumann ID. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology. 2011;36:2159–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48:175–87.
Article
CAS
PubMed
Google Scholar
Krebs CJ. Microtus population biology-behavioral changes associated with population cycle in m-ochrogaster and m-pennsylvanicus. Ecology. 1970;51:34.
Article
Google Scholar
Wingfield JC, Hegner RE, Dufty AM, Ball GF. The challenge hypothesis-theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat. 1990;136:829–46.
Article
Google Scholar
Christian JJ. Adrenal and reproductive responses to population-size in mice from freely growing-populations. Ecology. 1956;37:258–73.
Article
Google Scholar
Christian JJ. Adrenocortical and gonadal responses of female mice to increased population density. Proc Soc Exp Biol Med. 1960;104:330–2.
Article
CAS
PubMed
Google Scholar
Lochmiller RL. Immunocompetence and animal population regulation. Oikos. 1996;76:594–602.
Article
Google Scholar
Klir P, Bondy R, Lachout J, Hanis T. Physiological-changes in laboratory rats caused by different housing. Physiol Bohemoslov. 1984;33:111–21.
CAS
PubMed
Google Scholar
Gunnar M, Quevedo K. The neurobiology of stress and development. Annu Rev Psychol. 2007;58:145–73.
Article
PubMed
Google Scholar
Edwards PD, Frenette-Ling C, Palme R, Boonstra R. A mechanism for population self-regulation: social density suppresses GnRH expression and reduces reproductivity in voles. J Anim Ecol. 2021;90:784–95.
Article
PubMed
Google Scholar
Pedersen CA, Boccia ML. Oxytocin maintains as well as initiates female sexual behavior: effects of a highly selective oxytocin antagonist. Horm Behav. 2002;41:170–7.
Article
CAS
PubMed
Google Scholar
Pedersen CA, Boccia ML. Vasopressin interactions with oxytocin in the control of female sexual behavior. Neuroscience. 2006;139:843–51.
Article
CAS
PubMed
Google Scholar
Rault J-L, van den Munkhof M, Buisman-Pijlman FTA. Oxytocin as an indicator of psychological and social well-being in domesticated animals: a critical review. Front Psychol. 2017;8:1521–1521.
Article
PubMed
PubMed Central
Google Scholar