Stensland EVA, Angerbjörn A, Berggren PER. Mixed species groups in mammals. Mammal Rev. 2003;33:205–23.
Article
Google Scholar
Goodale E, Sridhar H, Sieving KE, Bangal P, Colorado ZGJ, Farine DR, et al. Mixed company: a framework for understanding the composition and organization of mixed-species animal groups. Biol Rev. 2020;95:889–910.
Article
PubMed
Google Scholar
Sinclair AR. Does interspecific competition or predation shape the African ungulate community? J Anim Ecol. 1985;54:899–918.
Article
Google Scholar
Peres CA. Prey-capture benefits in a mixed-species group of Amazonian tamarins, Saguinus fuscicollis and S. mystax. Behav Ecol Sociobiol. 1992;31:339-47.
Heymann EW, Buchanan-Smith HM. The behavioural ecology of mixed-species troops of callitrichine primates. Biol Rev. 2000;75:169–90.
Article
CAS
PubMed
Google Scholar
Lukoschek V, McCormick MI. A review of multi-species foraging associations in fishes and their ecological significance. In: Kasim Moosa MK, Soemodihardjo, S Nontji A, et al., editors. Proceedings of the 9th International Coral Reef Symposium. Ministry of Environment, Indonesian Institute of Sciences and International Society for Reef Studies. p. 467–74.
Sridhar H, Beauchamp G, Shanker K. Why do birds participate in mixed-species foraging flocks? A large-scale synthesis. Anim Behav. 2009;78:337–47.
Article
Google Scholar
Schmitt MH, Stears K, Shrader AM. Zebra reduce predation risk in mixed-species herds by eavesdropping on cues from giraffe. Behav Ecol. 2016;27:1073–7.
Article
Google Scholar
Fitzgibbon CD. Mixed-species grouping in Thomson’s and Grant’s gazelles: the antipredator benefits. Anim Behav. 1990;39:1116–26.
Article
Google Scholar
Creel S, Schuette P, Christianson D. Effects of predation risk on group size, vigilance, and foraging behavior in an African ungulate community. Behav Ecol. 2014;25:773–84.
Article
Google Scholar
Harrison NM, Whitehouse MJ. Mixed-species flocks: an example of niche construction? Anim Behav. 2011;81:675–82.
Article
Google Scholar
Srinivasan U. Morphological and behavioral correlates of long-term bird survival in selectively logged forest. Front Ecol Evol. 2019;7:17.
Article
Google Scholar
Chapman CA, Chapman LJ. Interdemic variation in mixed-species association patterns: common diurnal primates of Kibale National Park, Uganda. Behav Ecol Sociobiol. 2000;47:129–39.
Article
Google Scholar
Kunz TH, Lumsden LF. Ecology of cavity and foliage roosting bats. In: Kunz TH, Fenton MB, editors. Bat ecology. Chicago: University of Chicago Press; 2003. p. 3–89.
Google Scholar
Fairbanks B, Dobson FS. Mechanisms of the group-size effect on vigilance in Columbian ground squirrels: dilution versus detection. Anim Behav. 2007;73:115–23.
Article
Google Scholar
Knörnschild M, Tschapka M. Predator mobbing behaviour in the greater spear-nosed bat, Phyllostomus hastatus. Chiropt Neotrop. 2012;18:1132–5.
Google Scholar
Lima SL, O’Keefe JM. Do predators influence the behaviour of bats? Biol Rev. 2013;88:626–44.
Article
PubMed
Google Scholar
Roverud RC, Chappell MA. Energetic and thermoregulatory aspects of clustering behavior in the neotropical bat Noctilio albiventris. Physiol Zool. 1991;64:1527–41.
Article
Google Scholar
Arends A, Bonaccorso FJ, Genoud M. Basal rates of metabolism of nectarivorous bats (Phyllostomidae) from a semiarid thorn forest in Venezuela. J Mammal. 1995;76:947–56.
Article
Google Scholar
Kerth G, Reckardt K. Information transfer about roosts in female Bechstein’s bats: an experimental field study. Proc R Soc B Biol Sci. 2003;270:511–5.
Article
Google Scholar
Ratcliffe JM, ter Hofstede HM. Roosts as information centres: social learning of food preferences in bats. Biol Lett. 2005;1:72–4.
Article
PubMed
PubMed Central
Google Scholar
Rex K, Kelm DH, Wiesner K, Kunz TH, Voigt CC. How many bat species coexist in a Neotropical rainforest? Species richness and structure of phyllostomid bat assemblages. Biol J Linn Soc. 2008;94:617–29.
Article
Google Scholar
Boratyński JS, Rusiński M, Kokurewicz T, Bereszyński A, Wojciechowski MS. Clustering behavior in wintering greater mouse-eared bats Myotis myotis—the effect of micro-environmental conditions. Acta Chiropterol. 2012;14:417–24.
Article
Google Scholar
Dwyer PD. Temperature regulation and cave-dwelling in bats: an evolutionary perspective. Mammalia. 1971;35:424–55.
Article
Google Scholar
Salinas-Ramos VB, Ancillotto L, Bosso L, Sánchez‐Cordero V, Russo D. Interspecific competition in bats: state of knowledge and research challenges. Mammal Rev. 2020;50:68–81.
Article
Google Scholar
Graham GL. Interspecific associations among Peruvian bats at diurnal roosts and roost sites. J Mammal. 1988;69:711–20.
Article
Google Scholar
Rodríguez-Durán A. Nonrandom aggregations and distribution of cave-dwelling bats in Puerto Rico. J Mammal. 1998;79:141–6.
Arita HT, Vargas JA. Natural history, interspecific association, and incidence of the cave bats of Yucatan, Mexico. Southwest Nat. 1995;40:29–37.
Google Scholar
Ancillotto L, Allegrini C, Serangeli MT, Jones G, Russo D. Sociality across species: spatial proximity of newborn bats promotes heterospecific social bonding. Behav Ecol. 2014;26:293–99.
Article
Google Scholar
O’Mara MT, Dechmann DK, Page RA. Frugivorous bats evaluate the quality of social information when choosing novel foods. Behav Ecol. 2014;25:1233–9.
Article
Google Scholar
Wohlgenant TJ. Roost interactions between the common vampire bat (Desmodus rotundus) and two frugivore bats (Phyllostomus discolor and Sturnira lilium) in Guanacaste, Costa Rica. Biotropica. 1994;26:344–8.
Article
Google Scholar
Zeus VM, Puechmaille SJ, Kerth G. Conspecific and heterospecific social groups affect each other’s resource use: a study on roost sharing among bat colonies. Anim Behav. 2017;123:329–38.
Article
Google Scholar
Bednekoff PA, Lima SL. Re-examining safety in numbers: interactions between risk dilution and collective detection depend upon predator targeting behaviour. Proc R Soc B Biol Sci. 1998;265:2021–6.
Article
Google Scholar
Reckardt K, Kerth G. Roost selection and roost switching of female Bechstein’s bats (Myotis bechsteinii) as a strategy of parasite avoidance. Oecologia. 2007;154:581–8.
Article
PubMed
Google Scholar
Fischer K, Zeus V, Kwasnitschka L, Kerth G, Haase M, Groschup MH, et al. Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany. Infect Genet Evol. 2016;37:108–16.
Article
PubMed
Google Scholar
Tschapka M. Energy density patterns of nectar resources permit coexistence within a guild of Neotropical flower-visiting bats. J Zool. 2004;263:7–21.
Article
Google Scholar
Kelm DH, Wiesner KR, von Helversen O. Effects of artificial roosts for frugivorous bats on seed dispersal in a neotropical forest pasture mosaic. Conserv Biol. 2008;22:733–41.
Article
PubMed
Google Scholar
Kelm DH, Schaer J, Ortmann S, Wibbelt G, Speakman JR, Voigt CC. Efficiency of facultative frugivory in the nectar-feeding bat Glossophaga commissarisi: The quality of fruits as an alternative food source. J Comp Physiol B. 2008;178:985–96.
Article
CAS
PubMed
Google Scholar
Bijleveld AI, Egas M, Van Gils JA, Piersma T. Beyond the information centre hypothesis: communal roosting for information on food, predators, travel companions and mates? Oikos. 2010;119:277–85.
Article
Google Scholar
Goodale E, Beauchamp G, Magrath RD, Nieh JC, Ruxton GD. Interspecific information transfer influences animal community structure. Trends Ecol Evol. 2010;25:354–61.
Article
PubMed
Google Scholar
Audet D, Thomas DW. Facultative hypothermia as a thermoregulatory strategy in the phyllostomid bats, Carollia perspicillata and Sturnira lilium. J Comp Physiol B. 1997;167:146–52.
Article
CAS
PubMed
Google Scholar
Kelm DH, von Helversen O. How to budget metabolic energy – torpor in a small Neotropical mammal. J Comp Physiol B. 2007;177:667–77.
Article
PubMed
Google Scholar
Howell DJ. Weight loss and temperature regulation in clustered versus individual Glossophaga soricina. Comp Biochem Physiol A. 1976;53:197–9.
Article
CAS
PubMed
Google Scholar
Voigt CC, Kelm DH. Host preferences of bat flies: following the bloody path of stable isotopes in a host–parasite food chain. Can J Zool. 2006;84:397–403.
Article
CAS
Google Scholar
Schöner CR, Schöner MG, Kerth G. Similar is not the same: social calls of conspecifics are more effective in attracting wild bats to day roosts than those of other bat species. Behav Ecol Sociobiol. 2010;64:2053–63.
Article
Google Scholar
Popa-Lisseanu AG, Bontadina F, Mora O, Ibáñez C. Highly structured fission–fusion societies in an aerial-hawking, carnivorous bat. Anim Behav. 2008;75:471–82.
Article
Google Scholar
Voss RS, Fleck DW, Strauss RE, Velazco PM, Simmons NB. Roosting ecology of amazonian bats: evidence for guild structure in hyperdiverse mammalian communities. Am Mus Novit. 2016;3870:1–43.
Article
Google Scholar
Bradbury JW, Vehrenkamp SL. Social organization and foraging in Emballonurid bats. Behav Ecol Sociobiol. 1976;1:383–404.
Article
Google Scholar
Kerth G, Weissmann K, König B. Day roost selection in female Bechstein’s bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia. 2001;126:1–9.
Article
PubMed
Google Scholar
Ruczyński I. Influence of temperature on maternity roost selection by noctule bats (Nyctalus noctula) and Leisler’s bats (N. leisleri) in Białowieża Primeval Forest, Poland. Can J Zool. 2006;84:900–7.
Article
Google Scholar
Estrada A, Coates-Estrada R. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat island at Los Tuxtlas, Mexico. Biol Conserv. 2002;103:237–45.
Article
Google Scholar
Willig MR, Presley SJ, Bloch CP, Hice CL, Yanoviak SP, Díaz MM, et al. Phyllostomid bats of lowland Amazonia: effects of habitat alteration on abundance. Biotropica. 2007;39:737–46.
Article
Google Scholar
Muscarella R, Fleming TH. The role of frugivorous bats in tropical forest succession. Biol Rev. 2007;82:573–90.
Article
PubMed
Google Scholar
Salazar D, Kelm DH, Marquis R. Directed seed dispersal of Piper by Carollia perspicillata and its effect on understory plant diversity and folivory. Ecology. 2013;94:2444–53.
Article
PubMed
Google Scholar
Voigt CC, Borissov I, Kelm DH. Bats fertilize roost trees. Biotropica. 2015;47:403–6.
Article
Google Scholar
Timm RM. The mammal fauna. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS, editors. La Selva - Ecology and natural history of a Neotropical rainforest. Chicago: University of Chicago Press; 1994. pp. 229–37.
Google Scholar
Chung Y, Rabe-Hesketh S, Dorie V, Gelman A, Liu J. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika. 2013;78:685–709.
Article
PubMed
Google Scholar
R core Team. R: A language and environment for statistical computing. Vienna: R Found Stat Comput; 2018.
Google Scholar
Bürkner PC. brms: An R package for Bayesian multilevel models using stan. J Stat Softw. 2017;80:1–28.
Article
Google Scholar
Gelman A, Jakulin A, Pittau M, Su Y. A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat. 2008;2:1360–83.
Google Scholar
Legendre P, Legendre L. Numerical ecology. 2nd ed. Amsterdam: Elsevier; 1998.
Google Scholar
Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, et al. Package “vegan: Community Ecology Package”. R Packag. 2018. version 2.5-2.
Barton K. Package “Model Inference”. R Packag. 2018. version 1.40.4.
Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol. 2011;65:23–35.
Article
Google Scholar
Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol. 2011;24:699–711.
Article
CAS
PubMed
Google Scholar
Symonds MR, Moussalli A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol. 2011;65:13–21.
Article
Google Scholar
Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin, et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ. 2018;6:e4794.
Article
PubMed
PubMed Central
Google Scholar
Nakagawa S, Freckleton RP. Model averaging, missing data and multiple imputation: a case study for behavioural ecology. Behav Ecol Sociobiol. 2011;65:103–16.
Article
Google Scholar