Speakman JR, Blount JD, Bronikowski AM, Buffenstein R, Isaksson C, Kirkwood TB, Monaghan P, Ozanne SE, Beaulieu M, Briga M. Oxidative stress and life histories: unresolved issues and current needs. Ecol Evol. 2015;5:5745–57.
Article
PubMed
PubMed Central
Google Scholar
Garratt M, Vasilaki A, Stockley P, McArdle F, Jackson M, Hurst JL. Is oxidative stress a physiological cost of reproduction? An experimental test in house mice. Proc R Soc B Biol Sci. 2010;278:1098–106.
Article
Google Scholar
Blount JD, Vitikainen EI, Stott I, Cant MA. Oxidative shielding and the cost of reproduction. Biol Rev. 2016;91:483–97.
Article
PubMed
Google Scholar
Sies H. Oxidative stress: oxidants and antioxidants. Cambridge: Academic Press; 1991.
Google Scholar
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239.
Article
CAS
PubMed
Google Scholar
Costantini D. Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett. 2008;11:1238–51.
Article
PubMed
Google Scholar
Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.
Article
CAS
PubMed
Google Scholar
Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115:500–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blair AS, Hajduch E, Litherland GJ, Hundal HS. Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress evidence for cross-talk between the insulin and sapk2/p38 mitogen-activated protein kinase signaling pathways. J Biol Chem. 1999;274:36293–9.
Article
CAS
PubMed
Google Scholar
Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliveira MF, Geihs MA, França TF, Moreira DC, Hermes-Lima M. Is “preparation for oxidative stress” a case of physiological conditioning hormesis? Front Physiol. 2018;9:945.
Article
PubMed
PubMed Central
Google Scholar
Burg MB, Ferraris JD, Dmitrieva NI. Cellular response to hyperosmotic stresses. Physiol Rev. 2007;87:1441–74.
Article
CAS
PubMed
Google Scholar
Williams GC. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am Nat. 1966;100:687–90.
Article
Google Scholar
Benton T. The evolution of Life-histories. J Anim Ecol. 1993;62:796–7.
Article
Google Scholar
Lemaître JF, Gaillard JM. Reproductive senescence: new perspectives in the wild. Biol Rev. 2017;92:2182–99.
Article
PubMed
Google Scholar
Brooks RC, Garratt MG. Life history evolution, reproduction, and the origins of sex-dependent aging and longevity. Annal NY Acad Sci. 2017;1389:92–107.
Article
Google Scholar
Speakman JR. The physiological costs of reproduction in small mammals. Philos Trans R Soc B. 2008;363:375–98.
Article
Google Scholar
Harshman LG, Zera AJ. The cost of reproduction: the devil in the details. Trends Ecol Evol. 2007;22:80–6.
Article
PubMed
Google Scholar
Alonso-Alvarez C, Bertrand S, Devevey G, Prost J, Faivre B, Sorci G. Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol Lett. 2004;7:363–8.
Article
Google Scholar
Stier A, Reichert S, Massemin S, Bize P, Criscuolo F. Constraint and cost of oxidative stress on reproduction: correlative evidence in laboratory mice and review of the literature. Front Zool. 2012;9:37.
Article
PubMed
PubMed Central
Google Scholar
Sainz R, Reiter R, Mayo J, Cabrera J, Tan D, Qi W, Garcia J. Changes in lipid peroxidation during pregnancy and after delivery in rats: effect of pinealectomy. J Reprod Fertil. 2000;119:143–50.
Article
CAS
PubMed
Google Scholar
Metcalfe NB, Monaghan P. Does reproduction cause oxidative stress? An open question. Trend Ecol Evol. 2013;28:347–50.
Article
Google Scholar
Costantini D. Commentary: oxidative stress as a cost of reproduction: beyond the simplistic trade-off model. Front Ecol Evol. 2016;4:10.
Article
Google Scholar
Speakman JR, Garratt M. Oxidative stress as a cost of reproduction: beyond the simplistic trade-off model. BioEssays. 2014;36:93–106.
Article
PubMed
Google Scholar
Wiersma P, Selman C, Speakman JR, Verhulst S. Birds sacrifice oxidative protection for reproduction. Proc R Soc Lond B Biol Sci. 2004;271:S360–3.
Article
CAS
Google Scholar
Costantini D. Oxidative stress and hormesis in evolutionary ecology and physiology: a marriage between mechanistic and evolutionary approaches. Berlin: Springer; 2014.
Book
Google Scholar
Novikov E, Kondratyuk E, Petrovski D, Titova T, Zadubrovskaya I, Zadubrovskiy P, Moshkin M. Reproduction, aging and mortality rate in social subterranean mole voles (Ellobius talpinus Pall.). Biogerontology. 2015;16:723–32.
Article
CAS
PubMed
Google Scholar
Fischer D, Patchev V, Hellbach S, Hassan A, Almeida O. Lactation as a model for naturally reversible hypercorticalism plasticity in the mechanisms governing hypothalamo-pituitary-adrenocortical activity in rats. J Clin Invest. 1995;96:1208–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmer C. Animal ethics in context. New York: Columbia University Press; 2010.
Google Scholar
Norris DO, Lopez KH. Hormones and reproduction of vertebrates. Cambridge: Academic Press; 2010.
Google Scholar
Buffenstein R. Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B. 2008;178:439–45.
Article
PubMed
Google Scholar
Buffenstein R. The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci. 2005;60:1369–77.
Article
PubMed
Google Scholar
Schmidt CM, Blount JD, Bennett NC. Reproduction is associated with a tissue-dependent reduction of oxidative stress in eusocial female Damaraland mole-rats (Fukomys damarensis). PLOS ONE. 2014;9:e103286.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schmidt CM, Jarvis JU, Bennett NC. The long-lived queen: reproduction and longevity in female eusocial Damaraland mole-rats (Fukomys damarensis). Afr Zool. 2013;48:193–6.
Article
Google Scholar
Jarvis J, Bennett N. Eusociality has evolved independently in two genera of bathyergid mole-rats—but occurs in no other subterranean mammal. Behav Ecol Sociobiol. 1993;33:253–60.
Article
Google Scholar
Bennett NC, Faulkes CG. African mole-rats: ecology and eusociality. Cambridge: Cambridge University Press; 2000.
Google Scholar
Sherman PW, Lacey EA, Reeve HK, Keller L. The eusociality continuum. Behav Ecol. 1995;6:102–8.
Article
Google Scholar
Burland TM, Bennett NC, Jarvis JU, Faulkes CG. Colony structure and parentage in wild colonies of co-operatively breeding Damaraland mole-rats suggest incest avoidance alone may not maintain reproductive skew. Mol Ecol. 2004;13:2371–9.
Article
CAS
PubMed
Google Scholar
Clarke F, Faulkes C. Dominance and queen succession in captive colonies of the eusocial naked mole–rat, Heterocephalus glaber. Proc R Soc Lond B Biol Sci. 1997;264:993–1000.
Article
CAS
Google Scholar
Clarke F, Miethe G, Bennett N. Reproductive suppression in female Damaraland mole–rats Cryptomys damarensis: dominant control or self–restraint? Proc R Soc Lond B Biol Sci. 2001;268:899–909.
Article
CAS
Google Scholar
Sahm A, Platzer M, Koch P, Henning Y, Bens M, Groth M, Burda H, Begall S, Ting S, Goetz M, et al. Increased longevity due to sexual activity in mole-rats is associated with transcriptional changes in the HPA stress axis. Elife. 2021;10:e57843.
Article
PubMed
PubMed Central
Google Scholar
Bennett NC, Faulkes CG, Molteno AJ. Reproductive suppression in subordinate, non-breeding female Damaraland mole-rats: two components to a lifetime of socially induced infertility. Proc Biol Sci. 1996;263:1599–603.
Article
CAS
PubMed
Google Scholar
Faulkes CG, Bennett NC. Plasticity and constraints on social evolution in African mole-rats: ultimate and proximate factors. Philos Trans R Soc B. 2013;368:20120347.
Article
Google Scholar
Lewis KN, Andziak B, Yang T, Buffenstein R. The naked mole-rat response to oxidative stress: just deal with it. Antioxid Redox Sign. 2013;19:1388–99.
Article
CAS
Google Scholar
Dammann P, Šumbera R, Maßmann C, Scherag A, Burda H. Extended longevity of reproductives appears to be common in Fukomys mole-rats (Rodentia, Bathyergidae). PLOS ONE. 2011;6:e18757.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dammann P, Burda H: Senescence patterns in African mole-rats (Bathyergidae, Rodentia). In: Subterranean rodents. Springer; 2007; pp. 251–263.
Michener CD. Comparative social behavior of bees. Annu Rev Entomol. 1969;14:299–342.
Article
Google Scholar
Faulkes C, Trowell S, Jarvis J, Bennett N. Investigation of numbers and motility of spermatozoa in reproductively active and socially suppressed males of two eusocial African mole-rats, the naked mole-rat (Heterocephalus glaber) and the Damaraland mole-rat (Cryptomys damarensis). Reproduction. 1994;100:411–6.
Article
CAS
Google Scholar
Bennett NC, Ganswindt A, Ganswindt SB, Jarvis J, Zöttl M, Faulkes C. Evidence for contrasting roles for prolactin in eusocial naked mole-rats, Heterocephalus glaber and Damaraland mole-rats Fukomys damarensis. Biol Lett. 2018;14:20180150.
Article
PubMed
PubMed Central
CAS
Google Scholar
Medger K, Bennett NC, Ganswindt SB, Ganswindt A, Hart DW. Changes in prolactin, cortisol and testosterone concentrations during queen succession in a colony of naked mole-rats (Heterocephalus glaber): a case study. Sci Nat. 2019;106:1–7.
Article
CAS
Google Scholar
Voigt C, Medger K, Bennett N. The oestrous cycle of the Damaraland mole-rat revisited: evidence for induced ovulation. J Zool. 2021;314:85–95.
Article
Google Scholar
Lutermann H, Young AJ, Bennett NC. Reproductive status and testosterone among females in cooperative mole-rat societies. Gen Comp Endocr. 2013;187:60–5.
Article
CAS
PubMed
Google Scholar
Voigt C, Bennett NC. Reproductive status-dependent kisspeptin and RF amide-related peptide (Rfrp) gene expression in female Damaraland mole-rats. J Neuroendocrinol. 2018;30:e12571.
Article
CAS
PubMed
Google Scholar
Rickard C, Bennett N. Recrudescence of sexual activity in a reproductively quiescent colony of the Damaraland mole-rat (Cryptomys damarensis), by the introduction of an unfamiliar and genetically unrelated male—a case of incest avoidance in ‘queenless’ colonies. J Zool. 1997;241:185–202.
Article
Google Scholar
Christensen LL, Selman C, Blount JD, Pilkington JG, Watt KA, Pemberton JM, Reid JM, Nussey DH. Plasma markers of oxidative stress are uncorrelated in a wild mammal. Ecol Evol. 2015;5:5096–108.
Article
PubMed
PubMed Central
Google Scholar
Giustarini D, Tsikas D, Colombo G, Milzani A, Dalle-Donne I, Fanti P, Rossi R. Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: An elephant in the room. J Chromatogr B. 2016;1019:21–8.
Article
CAS
Google Scholar
Giustarini D, Dalle-Donne I, Milzani A, Fanti P, Rossi R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat Protoc. 2013;8:1660.
Article
CAS
PubMed
Google Scholar
Zöttl M, Vullioud P, Mendonça R, Ticó MT, Gaynor D, Mitchell A, Clutton-Brock T. Differences in cooperative behavior among Damaraland mole rats are consequences of an age-related polyethism. Proc Natl Acad Sci. 2016;113:10382–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Faulkes C, Abbott D, Jarvis J. Social suppression of ovarian cyclicity in captive and wild colonies of naked mole-rats Heterocephalus glaber. Reproduction. 1990;88:559–68.
Article
CAS
Google Scholar
Bennett NC, Jarvis JU. The social structure and reproductive biology of colonies of the mole-rat, Cryptomys damarensis (Rodentia, Bathyergidae). J Mammal. 1988;69:293–302.
Article
Google Scholar
Oosthuizen MK, Cooper HM, Bennett NC. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (family: Bathyergidae). J Biol Rhythms. 2003;18:481–90.
Article
PubMed
Google Scholar
Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37:112–9.
Article
CAS
PubMed
Google Scholar
Bitiren M, Karakilcik AZ, Zerin M, Ozardalı I, Selek S, Nazlıgül Y, Ozgonul A, Musa D, Uzunkoy A. Protective effects of selenium and vitamin E combination on experimental colitis in blood plasma and colon of rats. Biol Trace Elem Res. 2010;136:87–95.
Article
CAS
PubMed
Google Scholar
Team RDC: R Foundation for Statistical Computing, Vienna, available at: http://www.R-project.org 2018.
Bates D, Kliegl R, Vasishth S, Baayen H: Parsimonious mixed models. arXiv:150604967; 2015.
Ivy CM, Sprenger RJ, Bennett NC, van Jaarsveld B, Hart DW, Kirby AM, Yaghoubi D, Storey KB, Milsom WK, Pamenter ME. The hypoxia tolerance of eight related African mole-rat species rivals that of naked mole-rats, despite divergent ventilatory and metabolic strategies in severe hypoxia. Acta Physiol. 2020;228:13436.
Article
CAS
Google Scholar
Garland T Jr, Adolph SC. Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol Zool. 1994;67:797–828.
Article
Google Scholar
Andziak B, O’Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Van Remmen H, Buffenstein R. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell. 2006;5:463–71.
Article
CAS
PubMed
Google Scholar
Sherman PW, Braude S, Jarvis JU. Litter sizes and mammary numbers of naked mole-rats: breaking the one-half rule. J Mammal. 1999;80:720–33.
Article
Google Scholar
Alonso-Alvarez C, Canelo T, Romero-Haro AÁ. The oxidative cost of reproduction: theoretical questions and alternative mechanisms. Bioscience. 2017;67:258–70.
Article
Google Scholar
Nna V, Akpan U, Osim E. Hyperprolactinemia contributes to reproductive deficit in male rats chronically administered PDE5 inhibitors (sildenafil and tadalafil) and opioid (tramadol). Asian Pac J Reprod. 2016;5:381–6.
Article
Google Scholar
Levine S, Muneyyirci-Delale O. Stress-induced hyperprolactinemia: pathophysiology and clinical approach. Obstet Gynecol Int. 2018;2018:1–6.
Article
CAS
Google Scholar
Miller AA, De Silva TM, Jackman KA, Sobey CG. Effect of gender and sex hormones on vascular oxidative stress. Clin Exp Pharmacol P. 2007;34:1037–43.
Article
CAS
Google Scholar
Strehlow K, Rotter S, Wassmann S, Adam O, Grohé C, Laufs K, Böhm M, Nickenig G. Modulation of antioxidant enzyme expression and function by estrogen. Circ Res. 2003;93:170–7.
Article
CAS
PubMed
Google Scholar
Wassmann K, Wassmann S, Nickenig G. Progesterone antagonizes the vasoprotective effect of estrogen on antioxidant enzyme expression and function. Circ Res. 2005;97:1046–54.
Article
CAS
PubMed
Google Scholar
Yuan X-H, Fan Y-Y, Yang C-R, Gao X-R, Zhang L-L, Hu Y, Wang Y-Q, Jun H. Progesterone amplifies oxidative stress signal and promotes NO production via H2O2 in mouse kidney arterial endothelial cells. J Steroid Biochem Mol Biol. 2016;155:104–11.
Article
CAS
PubMed
Google Scholar
Metcalfe NB, Alonso-Alvarez C. Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct Ecol. 2010;24:984–96.
Article
Google Scholar
Ismail DI, Yousry MM. The effectiveness of resveratrol in protection against histological alterations induced by hyperprolactinemia in reproductive organs of female albino rats. Egypt J Histol. 2018;41:123–39.
Article
Google Scholar
Ahmadi A, Mostafavi M: Dose hyperprolactinemia induce reactive oxygen species (ROS) generation in the testis of adult male mice?. Cell J (Yakhteh) 2013, 15.
Un-Nahar Z, Ali M, Biswas S, Kamrun N, Bashar T, Arslan M. Study of seminal MDA level as a oxidative stress marker in infertile male. J Sci Found. 2011;9:85–93.
Article
Google Scholar
Lewis KN, Mele J, Hayes JD, Buffenstein R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol. 2010;50:829–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci. 2015;112:3722–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Waal EM, Liang H, Pierce A, Hamilton RT, Buffenstein R, Chaudhuri AR. Elevated protein carbonylation and oxidative stress do not affect protein structure and function in the long-living naked-mole rat: a proteomic approach. Biochem Biophys Res Commun. 2013;434:815–9.
Article
PubMed
CAS
Google Scholar
Pérez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci. 2009;106:3059–64.
Article
PubMed
PubMed Central
Google Scholar
Hulbert AJ, Turner N, Hinde J, Else P, Guderley H. How might you compare mitochondria from different tissues and different species? J Comp Physiol B. 2006;176:93–105.
Article
CAS
PubMed
Google Scholar
Mitchell TW, Buffenstein R, Hulbert A. Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics. Exp Gerontol. 2007;42:1053–62.
Article
CAS
PubMed
Google Scholar
MacRae SL, Croken MM, Calder R, Aliper A, Milholland B, White RR, Zhavoronkov A, Gladyshev VN, Seluanov A, Gorbunova V. DNA repair in species with extreme lifespan differences. Aging (Albany NY). 2015;7:1171.
Article
CAS
Google Scholar
Zuo L, Christofi FL, Wright VP, Liu CY, Merola AJ, Berliner LJ, Clanton TL. Intra-and extracellular measurement of reactive oxygen species produced during heat stress in diaphragm muscle. Am J Physiol Cell Ph. 2000;279:C1058–66.
Article
CAS
Google Scholar
Lee B, Smith M, Buffenstein R, Harries L: Negligible senescence in naked mole rats may be a consequence of well-maintained splicing regulation. GeroScience 2020; pp. 1–19.
Lewis KN, Buffenstein R: The naked mole-rat: a resilient rodent model of aging, longevity, and healthspan. In: Handbook of the biology of aging. Elsevier; 2016; pp. 179–204
Young AJ, Oosthuizen MK, Lutermann H, Bennett NC. Physiological suppression eases in Damaraland mole-rat societies when ecological constraints on dispersal are relaxed. Horm Behav. 2010;57:177–83.
Article
PubMed
Google Scholar
Council NR. Guide for the care and use of laboratory animals. Washington, DC: National Academies Press; 2010.
Google Scholar