Wilson EO. The insect societies. Cambridge: Harvard University Press; 1971.
Google Scholar
Kistner DH. Social and evolutionary significance of social insect symbionts. In: Hermann HR, editor. Social insects. New York: Academic Press; 1979. p. 339–413.
Google Scholar
Schmid-Hempel P. Parasites in social insects. Princeton: Princeton University Press; 1998.
Google Scholar
Hölldobler B, Wilson EO. The ants. Cambridge: Harvard University Press; 1990.
Google Scholar
Lonsdorf EV. Sex differences in the development of termite-fishing skills in the wild chimpanzees, Pan troglodytes schweinfurthii, of Gombe National Park, Tanzania. Anim Behav. 2005;70:673–83.
Google Scholar
Sanz C, Call J, Morgan D. Design complexity in termite-fishing tools of chimpanzees (Pan troglodytes). Biol Lett. 2009;5:293–6.
PubMed
PubMed Central
Google Scholar
Redford KH. Ants and termites as food. In: Genoways HH, editor. Current mammalogy. New York: Springer; 1987. p. 349–99.
Google Scholar
Lubin YD, Montgomery GG, Young OP. Food resources of anteaters (Edentata: Myrmecophagidae) I. A year’s census of arboreal nests of ants and termites on Barro Colorado Island, Panama Canal Zone. Biotropica. 1977;9:26–34.
Google Scholar
Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol. 2011;11:13.
PubMed
PubMed Central
Google Scholar
Poinar G. Nematode parasites and associates of ants: past and present. Psyche Hindawi. 2012;2012:1–13.
Google Scholar
de Bekker C, Will I, Das B, Adams RM. The ants (Hymenoptera: Formicidae) and their parasites: effects of parasitic manipulations and host responses on ant behavioral ecology. Myrmecol News. 2018;28:1–24.
Google Scholar
Beros S, Jongepier E, Hagemeier F, Foitzik S. The parasite’s long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host. Proc R Soc B. 2015;282:20151473.
PubMed
PubMed Central
Google Scholar
Kistner DH. The social insects’ bestiary. In: Hermann HR, editor. Social insects. New York: Academic Press; 1982. p. 1–244.
Google Scholar
Parker J. Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecol News. 2016;22:65–108.
Google Scholar
Rettenmeyer CW, Rettenmeyer ME, Joseph J, Berghoff SM. The largest animal association centered on one species: the army ant Eciton burchellii and its more than 300 associates. Insect Soc. 2011;58:281–92.
Google Scholar
Parmentier T. Guests of social insects. In: Starr CK, editor. Encyclopedia of social insects. Heidelberg: Springer; 2020.
Google Scholar
Buschinger A. Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol News. 2009;12:219–35.
Google Scholar
Thomas JA, Schönrogge K, Elmes GW. Specializations and host associations of social parasites of ants. In: Fellowes MDE, Holloway GJ, Rolff J, editors. Insect evolutionary ecology. Reading: Proceedings of the Royal Entomological Society’s 22nd Symposium: CABI; 2005. pp. 475–514.
Akre RD, Rettenmeyer CW. Behavior of Staphylinidae associated with army ants (Formicidae: Ecitonini). J Kans Entomol Soc. 1966;39:745–82.
Google Scholar
Gotwald WH Jr. Army ants: the biology of social predation. Ithaca: Comstock Pub. Associates; 1995.
Google Scholar
Brückner A. Using weapons instead of perfume–chemical association strategies of the myrmecophilous bug Scolopostethus pacificus (Rhyparochromidae). bioRxiv. 2020;https://doi.org/10.1101/2020.12.08.412577.
Luo X-Z, Jałoszyński P, Stoessel A, Beutel RG. The specialized thoracic skeletomuscular system of the myrmecophile Claviger testaceus (Pselaphinae, Staphylinidae, Coleoptera). Org Divers Evol . 2021;21:317–35.
Google Scholar
Barbero F, Thomas JA, Bonelli S, Balletto E, Schönrogge K. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science. 2009;323:782–5.
CAS
PubMed
Google Scholar
Lenoir A, d’Ettorre P, Errard C, Hefetz A. Chemical ecology and social parasitism in ants. Annu Rev Entomol. 2001;46:573–99.
CAS
PubMed
Google Scholar
Witte V, Leingärtner A, Sabaß L, Hashim R, Foitzik S. Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim Behav. 2008;76:1477–86.
Google Scholar
von Beeren C, Schulz S, Hashim R, Witte V. Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecol. 2011;11:30.
PubMed
Google Scholar
von Beeren C, Hashim R, Witte V. The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry. J Chem Ecol. 2012;38:262–71.
CAS
Google Scholar
Vander Meer RK, Wojcik DP. Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science. 1982;218:806–8.
CAS
Google Scholar
Nash DR, Als TD, Maile R, Jones GR, Boomsma JJ. A mosaic of chemical coevolution in a large blue butterfly. Science. 2008;319:88–90.
CAS
PubMed
Google Scholar
Akino T. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol News. 2008;11:173–81.
Google Scholar
Allan RA, Capon RJ, Brown WV, Elgar MA. Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina. J Chem Ecol. 2002;28:835–48.
CAS
PubMed
Google Scholar
von Beeren C, Pohl S, Witte V. On the use of adaptive resemblance terms in chemical ecology. Psyche. 2012. https://doi.org/10.1155/2012/635761.
Article
Google Scholar
Sprenger PP, Menzel F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol News. 2020. https://doi.org/10.25849/myrmecol.news_030:001.
Article
Google Scholar
Bagnères A-G, Lorenzi MC. Chemical deception/mimicry using cuticular hydrocarbons. In: Blomquist GJ, Bagnères A-G, editors. Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge: Cambridge University Press; 2010.
Google Scholar
Hefetz A. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae)—interplay of colony odor uniformity and odor idiosyncrasy. A review. Myrmecol News. 2007;10:59–68.
Google Scholar
Lorenzi MC, d’Ettorre P. Nestmate recognition in social insects: what does it mean to be chemically insignificant? Front Ecol Evol. 2020;7:488.
Google Scholar
Hölldobler B, Kwapich CL, Haight KL. Behavior and exocrine glands in the myrmecophilous beetle Lomechusoides strumosus (Fabricius, 1775) (formerly called Lomechusa strumosa) (Coleoptera: Staphylinidae: Aleocharinae). PLoS ONE. 2018;13:e0200309.
PubMed
PubMed Central
Google Scholar
von Beeren C, Brückner A, Maruyama M, Burke G, Wieschollek J, Kronauer DJC. Chemical and behavioral integration of army ant-associated rove beetles—a comparison between specialists and generalists. Front Zool. 2018;15:8.
Google Scholar
Di Giulio A, Maurizi E, Barbero F, Sala M, Fattorini S, Balletto E, et al. The pied piper: a parasitic beetle’s melodies modulate ant behaviours. PLoS ONE. 2015;10:e0130541.
PubMed
PubMed Central
Google Scholar
Settele J, Barbero F, Musche M, Thomas JA, Schönrogge K. Singing the blues: from experimental biology to conservation application. J Exp Biol. 2011;214:1407–10.
PubMed
Google Scholar
Stoeffler M, Tolasch T, Steidle J. Three beetles—three concepts. Different defensive strategies of congeneric myrmecophilous beetles. Behav Ecol Sociobiol. 2011;65:1605–13.
Google Scholar
Seevers CH. The systematics, evolution and zoogeography of staphylinid beetles, associated with army ants (Coleoptera, Staphylinidae). Fieldiana Zool. 1965;47:137–351.
Google Scholar
Wasmann E. Die Ameisen- und Termitengäste von Brasilien. I. Theil. Mit einem Anhange von Dr. August Forel (Zürich). Verh Zool-Bot Ges Wien. 1895;45:137–79.
Google Scholar
Wasmann E, Aachen S. Die Ameisenmimikry. Sci Nat. 1925;13:944–51.
Google Scholar
Reichensperger A. Neue südamerikanische Histeriden als Gäste von Wanderameisen und Termiten. II. Teil. Rev Suisse Zool. 1924;31:117–52.
Google Scholar
Rettenmeyer CW. Insect mimicry. Annu Rev Entomol. 1970;15:43–74.
Google Scholar
Maruyama M, Parker J. Deep-time convergence in rove beetle symbionts of army ants. Curr Biol. 2017;27:920–6.
CAS
PubMed
Google Scholar
Kistner DH, Jacobson HR. Cladistic analysis and taxonomic revision of the ecitophilous tribe Ecitocharini with studies of their behavior and evolution (Coleoptera, Staphylinidae, Aleocharinae). Sociobiology. 1990;17:333–480.
Google Scholar
Rettenmeyer CW. Arthropods associated with Neotropical army ants with a review of the behavior of these ants (Arthropoda; Formicidae: Dorylinae). University of Kansas, Lawrence, PhD thesis; 1961.
Maruyama M, Akino T, Hashim R, Komatsu T. Behavior and cuticular hydrocarbons of myrmecophilous insects (Coleoptera: Staphylinidae; Diptera: Phoridae; Thysanura) associated with Asian Aenictus army ants (Hymenoptera; Formicidae). Sociobiology. 2009;54:19–35.
Google Scholar
Yamamoto S, Maruyama M, Parker J. Evidence for social parasitism of early insect societies by Cretaceous rove beetles. Nat Commun. 2016;7:1–9.
Google Scholar
Cai C, Huang D, Newton AF, Eldredge KT, Engel MS. Early evolution of specialized termitophily in Cretaceous rove beetles. Curr Biol. 2017;27:1229–35.
CAS
PubMed
Google Scholar
Zhou Y-L, Ślipiński A, Ren D, Parker J. A Mesozoic clown beetle myrmecophile (Coleoptera: Histeridae). eLife. 2019;8:e44985.
CAS
PubMed
PubMed Central
Google Scholar
Brown BV. Fossil evidence of social insect commensalism in the Phoridae (Insecta: Diptera). J Syst Palaeontol. 2017;15:275–85.
Google Scholar
Rettenmeyer CW. The behavior of Thysanura found with army ants. Ann Entomol Soc Am. 1963;56:170–4.
Google Scholar
Helava JVT, Howden HF, Ritchie AJ. A review of the new world genera of the myrmecophilous and termitophilous subfamily Hetaeriinae (Coleoptera: Histeridae). Sociobiology. 1985;10:127–386.
Google Scholar
Tishechkin AK. Phylogenetic revision of the genus Mesynodites (Coleoptera: Histeridae: Hetaeriinae) with description of new tribes, genera and species. Sociobiology. 2007;49:1–167.
Google Scholar
Tishechkin AK, Kronauer DJC, von Beeren C. Taxonomic review and natural history notes of the army ant-associated beetle genus Ecclisister Reichensperger (Coleoptera: Histeridae: Haeterinae). Coleopt Bull. 2017;71:279–88.
Google Scholar
von Beeren C, Tishechkin AK. Nymphister kronaueri von Beeren & Tishechkin sp. Nov., an army ant-associated beetle species (Coleoptera: Histeridae: Haeteriinae) with an exceptional mechanism of phoresy. BMC Zool. 2017;2:3.
Google Scholar
Akre RD. Behavior of Euxenister and Pulvinister histerid beetles associated with army ants. Pan-Pac Entomol. 1968;44:87–101.
Google Scholar
Witte V, Foitzik S, Hashim R, Maschwitz U, Schulz S. Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda. J Chem Ecol. 2009;35:355–67.
CAS
PubMed
Google Scholar
Mittelbach GG. Community ecology. Sunderland: Sinauer Associates, Inc.; 2012.
Google Scholar
de Ruiter PC, Neutel A-M, Moore JC. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science. 1995;269:1257–60.
PubMed
Google Scholar
Emmerson MC, Raffaelli D. Predator–prey body size, interaction strength and the stability of a real food web. J Anim Ecol. 2004;73:399–409.
Google Scholar
Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L, Dormann CF, et al. Ecological networks—beyond food webs. J Anim Ecol. 2009;78:253–69.
PubMed
Google Scholar
Mulder C, Cohen JE, Setälä H, Bloem J, Breure AM. Bacterial traits, organism mass, and numerical abundance in the detrital soil food web of Dutch agricultural grasslands. Ecol Lett. 2005;8:80–90.
Google Scholar
Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, et al. Body size in ecological networks. Trends Ecol Evol. 2005;20:402–9.
PubMed
Google Scholar
Donisthorpe HSJK. The guests of British ants: their habits and life-histories. London: G. Routledge and Sons; 1927.
Google Scholar
Cushing PE. Spider-ant associations: an updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche. 2012;2012:151989.
Google Scholar
Parmentier T, Dekoninck W, Wenseleers T. Survival of persecuted myrmecophiles in laboratory nests of different ant species can explain patterns of host use in the field (Hymenoptera: Formicidae). Myrmecol News. 2016;23:71–9.
Google Scholar
Parmentier T, Dekoninck W, Wenseleers T. Context-dependent specialization in colony defence in the red wood ant Formica rufa. Anim Behav. 2015;103:161–7.
Google Scholar
Parmentier T, Vanderheyden A, Dekoninck W, Wenseleers T. Body size in the ant-associated isopod Platyarthrus hoffmannseggii is host-dependent. Biol J Linn Soc Lond. 2017;121:305–11.
Google Scholar
Parmentier T, Dekoninck W, Wenseleers T. A highly diverse microcosm in a hostile world: a review on the associates of red wood ants (Formica rufa group). Insect Soc. 2014;61:229–37.
Google Scholar
Kronauer DJC. Army ants: nature’s ultimate social hunters. Cambridge: Harvard University Press; 2020.
Google Scholar
von Beeren C, Blüthgen N, Hoenle PO, Pohl S, Brückner A, Tishechkin AK, et al. A remarkable legion of guests: diversity and host specificity of army ant symbionts. Mol Ecol. 2021. https://doi.org/10.1111/mec.16101.
Article
Google Scholar
von Beeren C, Maruyama M, Kronauer DJC. Cryptic diversity, high host specificity and reproductive synchronization in army ant-associated Vatesus beetles. Mol Ecol. 2016;25:990–1005.
Google Scholar
von Beeren C, Maruyama M, Kronauer DJC. Community sampling and integrative taxonomy reveal new species and host specificity in the army ant-associated beetle genus Tetradonia (Coleoptera, Staphylinidae, Aleocharinae). PLoS ONE. 2016;11:e0165056.
Google Scholar
von Beeren C, Maruyama M, Hashim R, Witte V. Differential host defense against multiple parasites in ants. Evol Ecol. 2011;25:259–76.
Google Scholar
Anderson M, Gorley RN, Clarke RK. Permanova+ for primer: guide to software and statistical methods. Plymouth: Primer-E; 2008.
Google Scholar
Clarke KR, Gorley RN. Getting started with PRIMER v7, vol. 20. Plymouth: Plymouth Marine Laboratory, PRIMER-E; 2015.
Google Scholar
Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:325–49.
Google Scholar
Brückner A, Heethoff M. A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology. 2017;27:33–46.
Google Scholar
Van den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr A. 1963;11:463–71.
Google Scholar
Carlson DA, Bernier UR, Sutton BD. Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol. 1998;24:1845–65.
CAS
Google Scholar
Schulz S. Composition of the silk lipids of the spider Nephila clavipes. Lipids. 2001;36:637–47.
CAS
PubMed
Google Scholar
Dunkelblum E, Tan SH, Silk PJ. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol. 1985;11:265–77.
CAS
PubMed
Google Scholar
Palarea-Albaladejo J, Martín-Fernández JA. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom Intell Lab Syst. 2015;143:85–96.
CAS
Google Scholar
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Google Scholar
Dormann CF. Parametrische Statistik. Heidelberg: Springer; 2013.
Google Scholar
Hartig F. DHARMa: residual diagnostics for hierarchical (Multi-Level/Mixed) regression models. The Comprehensive R Archive Network (CRAN), R package version 0.3. 2.0. 2020.
Thayer MK. Staphylinidae latreille, 1802. In: Beutel RG, Leschen RAB, editors. Handbook of zoology arthropoda insects coleoptera, beetles volume 1: morphology and systematics. 2nd edition. 2005. pp. 296–344.
Disney RHL, Rettenmeyer CW. New species and revisionary notes on scuttle flies (Diptera: Phoridae) associated with Neotropical army ants (Hymenoptera: Formicidae). Sociobiology. 2007;49:1–58.
Google Scholar
Kather R, Drijfhout FP, Shemilt S, Martin SJ. Evidence for passive chemical camouflage in the parasitic mite Varroa destructor. J Chem Ecol. 2015;41:178–86.
CAS
PubMed
Google Scholar
Uboni A, Bagnères A-G, Christidès J-P, Lorenzi MC. Cleptoparasites, social parasites and a common host: chemical insignificance for visiting host nests, chemical mimicry for living in. J Insect Physiol. 2012;58:1259–64.
CAS
PubMed
Google Scholar
Hughes DP, Pierce NE, Boomsma JJ. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol. 2008;23:672–7.
PubMed
Google Scholar
Robinson NA, Robinson EJH. Myrmecophiles and other invertebrate nest associates of the red wood ant Formica rufa (Hymenoptera: Formicidae) in North-west England. Br J Entomol Nat Hist. 2013;26:67–88.
Google Scholar
Lenoir A, Chalon Q, Carvajal A, Ruel C, Barroso Á, Lackner T, et al. Chemical integration of myrmecophilous guests in Aphaenogaster ant nests. Psyche. 2012;2012:840860.
Google Scholar
Akre RD, Torgerson RL. Behavior of Vatesus beetles associated with army ants (Coleoptera: Staphylinidae). Pan-Pac Entomol. 1969;45:269–81.
Google Scholar
Phillips ZI, Zhang MM, Mueller UG. Dispersal of Attaphila fungicola, a symbiotic cockroach of leaf-cutter ants. Insect Soc. 2017;64:277–84.
Google Scholar
Witte V, Schliessmann D, Hashim R. Attack or call for help? Rapid individual decisions in a group-hunting ant. Behav Ecol. 2010;21:1040–7.
Google Scholar
Witte V, Maschwitz U. Raiding and emigration dynamics in the ponerine army ant Leptogenys distinguenda (Hymenoptera, Formicidae). Insect Soc. 2000;47:76–83.
Google Scholar
Komatsu T, Maruyama M, Itino T. Behavioral differences between two ant cricket species in Nansei Islands: host-specialist versus host-generalist. Insect Soc. 2009;56:389–96.
Google Scholar
Wheeler WM. Studies on myrmecophiles. II. Hetaerius. J N Y Entomol Soc. 1908;16:135–43.
Google Scholar
Reichensperger A. Neue südamerikanische Histeriden als Gäste von Wanderameisen und Termiten. Zeitschr Ins-Biol. 1923;18:243–52.
Google Scholar
Reichensperger A. Neue Beiträge zur Artenkenntnis und zur Lebensweise myrmekophiler Histeriden. Verh d III Int Kongr Ent (Zürich). 1926;2:184–203.
Google Scholar
Elven H, Bachmann L, Gusarov VI. Molecular phylogeny of the Athetini–Lomechusini–Ecitocharini clade of aleocharine rove beetles (Insecta). Zool Scr. 2012;41:617–36.
PubMed
PubMed Central
Google Scholar
Quinet Y, Pasteels JM. Trail following and stowaway behaviour of the myrmecophilous staphylinid beetle, Homoeusa acuminata, during foraging trips of its host Lasius fuliginosus (Hymenoptera: Formicidae). Insect Soc. 1995;42:31–44.
Google Scholar
Parmentier T, Dekoninck W, Wenseleers T. Do well-integrated species of an inquiline community have a lower brood predation tendency? A test using red wood ant myrmecophiles. BMC Evol Biol. 2016;16:12.
PubMed
PubMed Central
Google Scholar
Jacobson HR, Kistner DH. A redescription of the myrmecophilous genus Tetradonia and a description of a new, closely related, free living genus Tetradonella (Coleoptera: Staphylinidae). Sociobiology. 1998;31:151–279.
Google Scholar
Santiago-Jiménez QJ. Two new species of Myrmedonota Cameron (Staphylinidae, Aleocharinae) from Mexico. ZooKeys. 2014;464:49–62.
Google Scholar
Brückner A, Parker J. Molecular evolution of gland cell types and chemical interactions in animals. J Exp Biol. 2020. https://doi.org/10.1242/jeb.211938.
Article
PubMed
Google Scholar
Steidle JL, Dettner K. Chemistry and morphology of the tergal gland of freeliving adult Aleocharinae (Coleoptera: Staphylinidae) and its phylogenetic significance. Syst Entomol. 1993;18:149–68.
Google Scholar
Hölldobler B, Kwapich CL. Behavior and exocrine glands in the myrmecophilous beetle Dinarda dentata (Gravenhorst, 1806) (Coleoptera: Staphylinidae: Aleocharinae). PLoS ONE. 2019;14:e0210524.
PubMed
PubMed Central
Google Scholar
Crozier R, Dix MW. Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav Ecol Sociobiol. 1979;4:217–24.
Google Scholar
Kistner DH. Cladistic analysis, taxonomic restructuring and revision of the Old World genera formerly classified as Dorylomimini with comments on their evolution and behavior (Coleoptera: Staphylinidae). Sociobiology. 1993;22:151–374.
Google Scholar
Hölldobler K. Gibt es in Deutschland Ameisengäste, die echte Täuscher sind? Sci Nat. 1953;40:34–5.
Google Scholar
Howard RW, McDaniel CA, Blomquist GJ. Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host. Science. 1980;210:431–3.
CAS
PubMed
Google Scholar
Fischer G, Friedman NR, Huang J-P, Narula N, Knowles LL, Fisher BL, et al. Socially parasitic ants evolve a mosaic of host-matching and parasitic morphological traits. Curr Biol. 2020;30:3639–46.
CAS
PubMed
Google Scholar
Parker J, Rabeling C. Evolution: shape-shifting social parasites. Curr Biol. 2020;30:R1049–51.
CAS
PubMed
Google Scholar
Di Giulio A, Maurizi E, Hlavac P, Moore W. The long-awaited first instar larva of Paussus favieri (Coleoptera: Carabidae: Paussini). Eur J Entomol. 2011;108:127.
Google Scholar
Geiselhardt SF, Peschke K, Nagel P. A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings. Naturwissenschaften. 2007;94:871–94.
CAS
PubMed
Google Scholar
Scarparo G, Cerretti P, Mei M, Di Giulio A. Detailed morphological descriptions of the immature stages of the ant parasite Microdon mutabilis (Diptera: Syrphidae: Microdontinae) and a discussion of its functional morphology, behaviour and host specificity. Eur J Entomol. 2017;114:565–86.
Google Scholar
Maruyama M, Disney RHL, Hashim R. Three new species of legless, wingless scuttle flies (Diptera: Phoridae) associated with army ants (Hymenoptera: Formicidae) in Malaysia. Sociobiology. 2008;52:485–96.
Google Scholar
Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, et al. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol. 2002;47:733–71.
CAS
PubMed
Google Scholar
Baker CC, Bittleston LS, Sanders JG, Pierce NE. Dissecting host-associated communities with DNA barcodes. Philos Trans R Soc B. 2016;371:20150328.
Google Scholar
Polidori C, Geyer M, Schmitt T. Do Sphecodes cuckoo bees use chemical insignificance to invade the nests of their social Lasioglossum bee hosts? Apidologie. 2020;51:147–62.
Google Scholar
Cini A, Gioli L, Cervo R. A quantitative threshold for nest-mate recognition in a paper social wasp. Biol Lett. 2009;5:459–61.
PubMed
PubMed Central
Google Scholar
Battisti A, Holm G, Fagrell B, Larsson S. Urticating hairs in arthropods: their nature and medical significance. Ann Rev Entomol. 2011;56:203–20.
CAS
Google Scholar
Ruzzier E, Kadej M, Battisti A. Occurrence, ecological function and medical importance of dermestid beetle hastisetae. PeerJ. 2020;8:e8340.
PubMed
PubMed Central
Google Scholar
Eisner T, Eisner M, Deyrup M. Millipede defense: use of detachable bristles to entangle ants. PNAS. 1996;93:10848–51.
CAS
PubMed
PubMed Central
Google Scholar
Rettenmeyer CW, Akre RD. Ectosymbiosis between phorid flies and army ants. Ann Entomol Soc Am. 1968;61:1317–26.
Google Scholar
Disney H. Scuttle flies: the Phoridae. London: Springer; 2012.
Google Scholar
Jeffries MJ, Lawton JH. Enemy free space and the structure of ecological communities. Biol J Linn Soc Lond. 1984;23:269–86.
Google Scholar
Atsatt PR. Lycaenid butterflies and ants: selection for enemy-free space. Am Nat. 1981;118:638–54.
Google Scholar
Parmentier T, Dekoninck W, Wenseleers T. Arthropods associate with their red wood ant host without matching nestmate recognition cues. J Chem Ecol. 2017;43:644–61.
CAS
PubMed
Google Scholar
Ott R, von Beeren C, Hashim R, Witte V, Harvey MS. Sicariomorpha, a new myrmecophilous goblin spider genus (Araneae, Oonopidae) associated with Asian army ants. Am Mus Novit. 2015;3843:1–14.
Google Scholar
Lenoir A, Háva J, Hefetz A, Dahbi A, Cerdá X, Boulay R. Chemical integration of Thorictus myrmecophilous beetles into Cataglyphis ant nests. Biochem Syst Ecol. 2013;51:335–42.
CAS
Google Scholar
Akino T, Knapp JJ, Thomas JA, Elmes GW. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B. 1999;266:1419–26.
CAS
Google Scholar
Casacci LP, Barbero F, Ślipiński P, Witek M. The inquiline ant Myrmica karavajevi uses both chemical and vibroacoustic deception mechanisms to integrate into its host colonies. Biology. 2021;10:654.
PubMed
PubMed Central
Google Scholar
Schönrogge K, Barbero F, Casacci LP, Settele J, Thomas JA. Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim Behav. 2017;134:249–56.
Google Scholar