Arita G. A comparative study of the structure and function of the adhesive apparatus of the Cyclopteridae and Gobiesocidae. MSc Thesis, Univ. Br. Columbia. 1967.
Bansode MA, Eastman JT, Aronson RB. Feeding biomechanics of five demersal Antarctic fishes. Polar Biol. 2014;37(12):35–40. https://doi.org/10.1007/s00300-014-1565-z.
Article
Google Scholar
Behan MK, Macdonald AG, Jones GR, Cossins AR. Homeoviscous adaptation under pressure: the pressure dependence of membrane order in brain myelin membranes of deep-sea fish. BBA-Biomembr. 1992;1103(2):317–23. https://doi.org/10.1016/0005-2736(92)90102-R.
Article
CAS
Google Scholar
Bollback JP. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics. 2006;7(1):1–7. https://doi.org/10.1186/1471-2105-7-88.
Article
CAS
Google Scholar
Bostock HC, Hayward BW, Neil HL, Currie KI, Dunbar GB. Deep-water carbonate concentrations in the Southwest Pacific. Deep Res Part I Oceanogr Res Pap. 2011;58(1):72–85. https://doi.org/10.1016/j.dsr.2010.11.010.
Article
CAS
Google Scholar
Brooks RA, Di Chiro G. Beam hardening in X-ray reconstructive tomography. Phys Med Biol. 1976;21(3):390–8. https://doi.org/10.1088/0031-9155/21/3/004.
Article
CAS
PubMed
Google Scholar
Burke V. Revision of fishes of family Liparidae. Bull US Natl Mus. 1930:1–204. https://doi.org/10.5479/si.03629236.150.1.
Busby MS, Cartwright RL. Paraliparis adustus and Paraliparis bullacephalus: two new snailfish species (Teleostei: Liparidae) from Alaska. Ichthyol Res. 2009;56(3):245–52. https://doi.org/10.1007/s10228-008-0090-x.
Article
Google Scholar
Campana SE, Neilson JD. Microstructure of fish otoliths. Can J Fish Aquat Sci. 1985;42(5):1014–32. https://doi.org/10.1139/f85-127.
Article
Google Scholar
Chernova NV, Stein DL, Andriashev AP. Family Liparidae Scopoli 1777. Calif Acad Sci Annot Checklists Fishes. 2004:31.
Childress JJ. Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol Evol. 1995;10(1):30–6. https://doi.org/10.1016/s0169-5347(00)88957-0.
Article
CAS
PubMed
Google Scholar
Childress JJ, Nygaard MH. The chemical composition of midwater fishes as a function of depth of occurrence off Southern California. Deep Sea Res Oceanogr Abstr. 1973;20(11):1093–109. https://doi.org/10.1016/0011-7471(73)90023-5.
Article
CAS
Google Scholar
Coad B, Reist J. Annotated list of the arctic marine fishes of Canada. Can MS Rep Fish Aquat Sci. 2004;2674:112.
Google Scholar
Cohen DM. A review of the pelagic ophidioid fish genus Brotulataenia with descriptions of two new species. Zool J Linnean Soc. 1974;55(2):119–49. https://doi.org/10.1111/j.1096-3642.1974.tb01590.x.
Article
Google Scholar
Cossins AR, Macdonald AG. Homeoviscous adaptation under pressure. III. The fatty acid composition of liver mitochondrial phospholipids of deep-sea fish. BBA-Biomembr. 1986;860(2):325–35. https://doi.org/10.1016/0005-2736(86)90529-8.
Article
CAS
Google Scholar
Cui X, Grebmeier JM, Cooper LW. Feeding ecology of dominant groundfish in the northern Bering Sea. Polar Biol. 2012;35(9):1407–19. https://doi.org/10.1007/s00300-012-1180-9.
Article
Google Scholar
Davies TG, Rahman IA, Lautenschlager S, Cunninghab JA, Asher RJ, Barrett PM, Bates KT, Bengtson S, RBJ B, Boyer DM, Braga J, Bright JA, LPAM C, Cox PG, Dong X-P, Evans AR, Falkingham PL, Friedman M, Garwood RJ, Goswami A, Hutchinson JR, Jeffrey NS, Johanson Z, Lebrun R, Martinez-Pérez C, Marugán-Lobón J, O’Higgins PM, Metscher B, Orliac M, Rowe TB, Rücklin M, Sánches-Villagra MR, Shubin NH, Smith SY, Starck JM, Stringer C, Summers AP, Sutton MD, Walsh SA, Weisbecker V, Witmer LM, Wroe S, Yin Z, Rayfield EJ, PCJ D. Open data and digital morphology, Proc R Soc B. 2017;284:20170194. https://doi.org/10.1098/rspb.2017.0194.
Degens E, Deuser W, Haedrich R. Molecular structure and composition of fish otoliths. Mar Biol. 1969;2(2):105–13. https://doi.org/10.1007/BF00347005.
Article
CAS
Google Scholar
Denton EJ, Marshall NB. The buoyancy of bathypelagic fishes without a gas-filled swimbladder. J Mar Biol Assoc United Kingdom. 1958;37(3):753–67. https://doi.org/10.1017/S0025315400005750.
Article
Google Scholar
Diaz-Uriarte R, Garland TJ. PHYLOGR: Functions for phylogenetically based statistical analyses. 2018.
Drazen JC. Depth related trends in proximate composition of demersal fishes in the eastern North Pacific. Deep Sea res. Part I Oceanogr Res Pap. 2007;54(2):203–19. https://doi.org/10.1016/j.dsr.2006.10.007.
Article
Google Scholar
Drazen JC, Friedman JR, Condon NE, Aus EJ, Gerringer ME, Keller AA, Clarke ME. Enzyme activities of demersal fishes from the shelf to the abyssal plain. Deep Sea Res Part I Oceanogr Res Pap. 2015;100:117–26. https://doi.org/10.1016/j.dsr.2015.02.013.
Article
CAS
Google Scholar
Drazen JC, Phleger CF, Guest MA, Nichols PD. Lipid composition and diet inferences of abyssal macrourids in the eastern North Pacific. Mar Ecol Prog Ser. 2009;387:1–14. https://doi.org/10.3354/meps08106.
Article
CAS
Google Scholar
Drazen JC, Seibel BA. Depth-related trends in metabolism trends of benthic and benthopelagic deep-sea fishes. Limnol Oceanogr. 2007;52(5):2306–16. https://doi.org/10.4319/lo.2007.52.5.2306.
Article
CAS
Google Scholar
Drucker EG, Walker JA, Westneat MW. Mechanics of pectoral fin swimming in fishes, in: B.-F. Physiol Acad Press. 2005:369–423. https://doi.org/10.1016/s1546-5098(05)23010-8.
Eastman JT. The nature of the diversity of Antarctic fishes. Polar Biol. 2004;28(2):93–107. https://doi.org/10.1007/s00300-004-0667-4.
Article
Google Scholar
Eastman JT. Lipid storage systems and the biology of two neutrally buoyant Antarctic notothenioid fishes. Comp Biochem Physiol. 1988;90B(3):529–37. https://doi.org/10.1016/0305-0491(88)90292-1.
Article
CAS
Google Scholar
Eastman JT, Hikida RS, Devries A. Buoyancy studies and microscopy of skin and subdermal extracellular matrix of the Antarctic snailfish, Paraliparis devriesi. J Morphol. 1994;220(1):85–101. https://doi.org/10.1002/jmor.1052200108.
Article
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. https://doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125(1):1–15. https://doi.org/10.1086/284325.
Article
Google Scholar
Ferry LA, Paig-Tran EM, Gibb A. Suction, ram, and biting: deviations and limitations to the capture of aquatic prey. Integr Comp Biol. 2015;55(1):97–109. https://doi.org/10.1093/icb/icv028.
Article
PubMed
Google Scholar
Fricke R, Eschmeyer W, Van Der Laan R. Eschmeyer’s Catalog of Fishes: Genera, Species, References. 2020. https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp Accessed 31 July 2020.
Froese R, Pauly D. FishBase. https://www.fishbase.org 2014. Accessed 31 July 2020.
Fujii T, Jamieson AJ, Solan M, Bagley PM, Priede IG. A large aggregation of liparids at 7703 meters and a reappraisal of the abundance and diversity of hadal fish. Bioscience. 2010;60(7):506–15. https://doi.org/10.1525/bio.2010.60.7.6.
Article
Google Scholar
Gardner JR, Orr JW, Stevenson DE, Spies I, Somerton DA. Reproductive parasitism between distant phyla: molecular identification of snailfish (Liparidae) egg masses in the gill cavities of king crabs (Lithodidae). Copeia. 2016;104(3):645–57. https://doi.org/10.1643/CI-15-374.
Article
Google Scholar
Gerringer ME, Linley TD, Jamieson AJ, Goetze E, Drazen J. Pseudoliparis swirei sp. nov.: A newly-discovered hadal snailfish (Scorpaeniformes: Liparidae) from the Mariana Trench. Zootaxa. 2017;4358:161–77. https://doi.org/10.11646/zootaxa.4358.1.7.
Article
PubMed
Google Scholar
Gerringer ME. On the success of the hadal snailfishes. Integr Org Biol. 2019;1(1). https://doi.org/10.1093/iob/obz004.
Gerringer ME, Andrews AH, Huss GR, Nagashima K, Popp BN, Linley TD, Gallo ND, Clark MR, Jamieson AJ, Drazen JC. Life history of abyssal and hadal fishes from otolith growth zones and oxygen isotopic compositions. Deep Res Part I Oceanogr Res Pap. 2018;132:37–50. https://doi.org/10.1016/j.dsr.2017.12.002.
Article
CAS
Google Scholar
Gerringer ME, Drazen JC, Linley TD, Summers AP, Jamieson AJ, Yancey PH. Distribution, composition and functions of gelatinous tissues in deep-sea fishes. R Soc Open Sci. 2017a;4(12). https://doi.org/10.1098/rsos.171063.
Gerringer ME, Drazen JC, Yancey PH. Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-evaluation of depth-related changes. Deep Res Part I Oceanogr Res Pap. 2017b;125:135–46. https://doi.org/10.1016/j.dsr.2017.05.010.
Article
CAS
Google Scholar
Gerringer ME, Popp BN, Linley TD, Jamieson AJ, Drazen JC. Comparative feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope analysis. Deep Res Part I Oceanogr Res Pap. 2017c;121:110–20. https://doi.org/10.1016/j.dsr.2017.01.003.
Article
CAS
Google Scholar
Gerringer ME, Yancey PH, Tikhonova OV, Vavilov NE, Zgoda VG, Davydov DR. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes. FEBS J. 2020:1–17. https://doi.org/10.1111/febs.15317.
Godø OR, Patel R, Pedersen G. Diel migration and swimbladder resonance of small fish: some implications for analyses of multifrequency echo data. ICES J Mar Sci. 2009;66(6):1143–8. https://doi.org/10.1093/icesjms/fsp098.
Article
Google Scholar
Gregory WK. Fish skulls: a study of the evolution of natural mechanisms, 1959th ed, transactions of the American Philosophical Society. New York: Noble Offset Printers, Inc.; 1933.
Google Scholar
Günther A. Report on the deep-sea fishes collected by H.M.S. Challenger during the years 1873–76. Voyag H.M.S Chall. 1887;22:1–277. https://doi.org/10.5962/bhl.title.15693.
Article
Google Scholar
Harper EM, Peck LS. Latitudinal and depth gradients in marine predation pressure. Glob Ecol Biogeogr. 2016;25(6):670–8. https://doi.org/10.1603/ice.2016.110820.
Article
Google Scholar
Hoff G, Britt L. The 2002 Eastern Bering Sea upper continental slope survey of groundfish and invertebrate resources. US Dep Commer NOAA Tech Memo. 2003:NMFS-AFSC-141.
Holzman RA, Day SW, Mehta RS, Wainwright PC. Jaw protrusion enhances forces exerted on prey by suction feeding fishes. J R Soc Interface. 2008;5(29):1445–57. https://doi.org/10.1098/rsif.2008.0159.
Article
PubMed
PubMed Central
Google Scholar
Horn MH, Grimes PW, Phleger CF, McClanahan LL. Buoyancy function of the enlarged fluid-filled cranium in the deep-sea ophidiid fish Acanthonus armatus. Mar Biol. 1978;46(4):335–9. https://doi.org/10.1007/bf00391405.
Article
Google Scholar
Hwan-Sung J, Jeong-Ho P, Tae-Woo B, Jin-Koo K. First record of a snailfish, Careproctus notosaikaiensis (Scorpaeniformes: Liparidae) from Korea. Anim Syst Evol Divers. 2012;28(4):308–11. https://doi.org/10.5635/ASED.2012.28.4.308.
Ingram T. Speciation along a depth gradient in a marine adaptive radiation. Proc R Soc B. 2011;278(1705):613–8. https://doi.org/10.1098/rspb.2010.1127.
Article
PubMed
Google Scholar
Jacobson LD. Depth distributions and time-varying bottom trawl selectivities for Dover sole (Microstomus pacificus), sablefish (Anoplopoma fimbria), and thornyheads (Sebastolobus alascanus and S. altivelis) in a commercial fishery. Fish. Bull. 1998;99:309–27.
Google Scholar
Jamieson AJ, Fujii T, Solan M, Matsumoto AK, Bagley PM, Priede IG. Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour. Proc R Soc B. 2009;276(1659):1037–45. https://doi.org/10.1098/rspb.2008.1670.
Article
CAS
PubMed
Google Scholar
Kai Y, Matsuzaki K, Orr JW, Mori T, Kamiunten M. A new species of Elassodiscus (Cottoidei: Liparidae) from the North Pacific with an emended diagnosis of the genus. Ichthyol Res. 2020;68(1):55–66. https://doi.org/10.1007/s10228-020-00764-4.
Article
Google Scholar
Knudsen SW, Møller PR, Gravlund P. Phylogeny of the snailfishes (Teleostei: Liparidae) based on molecular and morphological data. Mol Phylogenet Evol. 2007;44(2):649–66. https://doi.org/10.1016/j.ympev.2007.04.005.
Article
CAS
PubMed
Google Scholar
Kobayashi T, Hiyama S. Distribution, abundance, and food habits of the snailfish Liparis tanakai in the Suo Sea, Seto Inland Sea. Japanese J. Ichthyol. 1991;38(2):207–10. https://doi.org/10.1007/bf02905546.
Article
Google Scholar
Lall SP, Lewis-McCrea LM. Role of nutrients in skeletal metabolism and pathology in fish-an overview. Aquaculture. 2007;267(1-4):3–19. https://doi.org/10.1016/j.aquaculture.2007.02.053.
Article
CAS
Google Scholar
Lannoo MJ, Eastman JT, Orr JW. Nervous and sensory systems in sub-arctic and Antarctic snailfishes of the genus Paraliparis (Teleostei: Scorpaeniformes: Liparidae). Copeia. 2009;732–739; doi:https://doi.org/10.1643/CG-08-157, 2009, 4.
Lee RF, Phleger CF, Horn MH. Composition of oil in fish bones: possible function in neutral buoyancy. Comp. Biochem. Physiol. Part B comp. Biochem. 1975;50(1):13–6. https://doi.org/10.1016/0305-0491(75)90291-6.
Article
CAS
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):256–9. https://doi.org/10.1093/nar/gkz239.
Article
CAS
Google Scholar
Linley TD, Gerringer ME, Yancey PH, Drazen JC, Weinstock CL, Jamieson AJ. Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae. Deep Sea Res Part I Oceanogr Res Pap. 2016;114:99–110. https://doi.org/10.1016/j.dsr.2016.05.003.
Article
Google Scholar
Longo SJ, McGee MD, Oufiero CE, Waltzek TB, Wainwright PC. Body ram, not suction, is the primary axis of suction-feeding diversity in spiny-rayed fishes. J Exp Biol. 2016;219(1):119–28. https://doi.org/10.1242/jeb.129015.
Article
PubMed
Google Scholar
Marliave JB, Peden AE. Larvae of Liparis fucensis and Liparis callyodon: is the “cottoid bubblemorph” phylogenetically significant? Fish Bull. 1989;87:735–43.
Google Scholar
Märss T, Lees J, Wilson MVH, Saat T, Špilev H. The morphology and sculpture of ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea. Est J Earth Sci. 2010;59(4):263. https://doi.org/10.3176/earth.2010.4.03.
Article
Google Scholar
Maslenikov K, Orr JW, Stevenson D. Range extensions and significant distributional records for eighty-two species of fishes in Alaskan marine waters. Northwest Nat. 2013;94(1):1–21. https://doi.org/10.1898/12-23.1.
Article
Google Scholar
Mecklenburg CW, Lynghammar A, Johannesen E, Byrkjedal I, Christiansen JS, Dolgov AV, Karamushko OV, Mecklenburg TA, Møller PR, Steinke D, Wienrroither RM. Marine fishes of the Arctic region, in: Conservation of Arctic Flora and Fauna. Iceland: Akureyri; 2018.
Google Scholar
Mecklenburg CW, Mecklenburg TA, Thorsteinson LK. Fishes of Alaska, American Fisheries Society. Maryland: Bethesda; 2002.
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Proc Gatew Comput Environ Work. 2010:1–8. https://doi.org/10.1109/gce.2010.5676129.
Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL. Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A. 2012;109(34):13698–703. https://doi.org/10.1073/pnas.1206625109.
Article
PubMed
PubMed Central
Google Scholar
Neat FC, Campbell N. Proliferation of elongate fishes in the deep sea. J Fish Biol. 2013;83(6):1576–91. https://doi.org/10.1111/jfb.12266.
Article
CAS
PubMed
Google Scholar
Neighbors MA, Nafpaktitis BG. Lipid compositions, water contents, swimbladder morphologies and buoyancies of nineteen species of midwater fishes (18 myctophids and 1 neoscopelid). Mar Biol. 1982;66(3):207–15. https://doi.org/10.1007/bf00397024.
Article
CAS
Google Scholar
Nielsen JG. Fishes from depths exceeding 6000 meters. Galathea Rep. 1964;7:113–24.
Article
Google Scholar
Orlov AM, Tokranov AM. Some rare and insufficiently studied snailfish (Liparidae, Scorpaeniformes, Pisces) in the Pacific waters off the northern Kuril Islands and southeastern Kamchatka, Russia Int Sch Res Netw Zool 2011;1–12; doi:https://doi.org/10.5402/2011/341640, 2011.
Orr JW, Pitruk D, Manning R, Stevenson DE, Gardner JR, Spies I. A new species of snailfish (Cottiformes: Liparidae) closely related to Careproctus melanurus of the eastern North Pacific. Copeia. 2020;108(4):711–26. https://doi.org/10.1643/CI2020008.
Article
Google Scholar
Orr JW. Two new species of snailfishes of the genus Careproctus (Liparidae) from the Aleutian Islands, Alaska. Copeia. 2016;104(4):890–6. https://doi.org/10.1643/CI-15-378.
Article
Google Scholar
Orr JW. Two new species of snailfishes of the genus Careproctus (Scorpaeniformes: Liparidae) from the Bering Sea and eastern North Pacific Ocean, with a redescription of Careproctus ovigerus. Copeia. 2012;2012(2):257–65. https://doi.org/10.1643/CI-11-046.
Article
Google Scholar
Orr JW. Lopholiparis flerxi: a new genus and species of snailfish (Scorpaeniformes: Liparidae) from the Aleutian Islands, Alaska. Copeia. 2004;551–555; doi:https://doi.org/10.1643/ci-03-279r1 , 2004, 3.
Orr JW, Busby MS. Revision of the snailfish genus Allocareproctus Pitruk and Fedorov (Teleostei: Liparidae), with the description of four new species from the Aleutian Islands. Zootaxa. 2006;1173:1–37. https://doi.org/10.11646/zootaxa.1173.1.1.
Article
Google Scholar
Orr JW, Sinclair EH, Walker WW. Bassozetus zenkevitchi (Ophidiidae: Teleostei) and Paraliparis paucidens (Liparidae: Teleostei): new records for Alaska from the Bering Sea. Northwest Nat. 2005;86(2):65–71. https://doi.org/10.1898/1051-1733(2005)086[0065:BZOTAP]2.0.CO;2.
Article
Google Scholar
Orr JW, Kai Y, Nakabo T. Snailfishes of the Careproctus rastrinus complex (Liparidae): redescriptions of seven species in the North Pacific Ocean region, with the description of a new species from the Beaufort Sea. Zootaxa. 2015;4018:301–48. https://doi.org/10.11646/zootaxa.4018.3.1.
Article
PubMed
Google Scholar
Orr JW, Maslenikov KP. Two new variegated snailfishes of the genus Careproctus (Teleostei: Scorpaeniformes: Liparidae) from the Aleutian Islands, Alaska. Copeia 2007;699–710; doi:https://doi.org/10.1643/0045-8511(2007)2007[699:tnvsot]2.0.co;2 , 2007, 3.
Orr JW, Spies I, Stevenson DE, Longo GC, Kai Y, Ghods S, Hollowed M. Molecular phylogenetics of snailfishes (Cottoidei: Liparidae) based on MtDNA and RADseq genomic analyses, with comments on selected morphological characters. Zootaxa. 2019;4642:1–79. https://doi.org/10.11646/zootaxa.4642.1.1.
Article
Google Scholar
Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35(3):526–8. https://doi.org/10.1093/bioinformatics/bty633.
Article
CAS
Google Scholar
Parin N, Fedorov V, Sheiko B. An annotated catalogue of fish-like vertebrates and fishes of the seas of Russia and adjacent countries: part 2. Order Scorpaeniformes. J Ichthyol. 2002;42:S60–S135.
Google Scholar
Patrick WS, Cope JM, Thorson JT. Validating and improving life history data in FishBase. Fisheries. 2014;39(4):173–6. https://doi.org/10.1080/03632415.2014.891504.
Article
Google Scholar
Pietsch TW, Orr JW. Fishes of the Salish Sea: Puget Sound and the straits of Georgia and Juan de Fuca. Seattle: University of Washington Press; 2019.
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: Linear and nonlinear mixed effects models. 2019.
Polloni P, Haedrich R, Rowe G, Hovey CC. The size-depth relationship in deep ocean animals. Int Rev der gesamten Hydrobiol und Hydrogr. 1979;64(1):39–46. https://doi.org/10.1002/iroh.19790640103.
Article
Google Scholar
Priede IG. Buoyancy of gas-filled bladders at great depth. Deep Res Part I Oceanogr Res Pap. 2018:1–5. https://doi.org/10.1016/j.dsr.2018.01.004.
Priede IG. Deep-Sea fishes: biology, diversity, ecology and fisheries, Deep-sea fishes: biology, diversity. Ecol Fisher. 2017. https://doi.org/10.1017/9781316018330.
R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Found Statistical Computing; 2015.
Google Scholar
Ramirez-Llodra E, Brandt A, Danovaro R, De Mol B, Escobar E, German CR, Levin LA, Martinez Arbizu P, Menot L, Buhl-Mortensen P, Narayanaswamy BE, Smith CR, Tittensor DP, Tyler PA, Vanreusel A, Vecchione M. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences. 2010;7(9):2851–99. https://doi.org/10.5194/bg-7-2851-2010.
Article
Google Scholar
Randall DJ, Farrell AP. Deep-Sea fishes. San Diego: Academic Press; 1997.
Google Scholar
Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2012;3(2):217–23. https://doi.org/10.1111/j.2041-210X.2011.00169.x.
Article
Google Scholar
Salmon PL, Liu X. MicroCT Bone densitometry: Context sensitivity, beam hardening correction, and the effect of surrounding media. Open Access J Sci Technol. 2014;2:25. https://doi.org/10.11131/2014/101142.
Scholander PF. Secretion of gases against high pressures in the swimbladder of deep sea fishes. Biol Bull. 1954;107(2):260–77. https://doi.org/10.2307/1538612.
Article
Google Scholar
Siebenaller JF. Structural comparison of lactate dehydrogenase homologs differing in sensitivity to hydrostatic pressure. Biochim Biophys Acta. 1984;786(3):161–9. https://doi.org/10.1016/0167-4838(84)90085-2.
Article
CAS
PubMed
Google Scholar
Sinenesky M. Homeoviscous adaptation: a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci. 1974;71(2):522–5. https://doi.org/10.1073/pnas.71.2.522.
Article
Google Scholar
Smith WL, Busby MS. Phylogeny and taxonomy of sculpins, sandfishes, and snailfishes (Perciformes: Cottoidei) with comments on the phylogenetic significance of their early-life-history specializations. Mol Phylogenet Evol. 2014;79:332–52. https://doi.org/10.1016/j.ympev.2014.06.028.
Article
PubMed
Google Scholar
Sokolovskii AS, Sokolovskaya TG. Larvae and juveniles of the genus Liparis (Pisces: Liparidae) from the northwestern sea of Japan. Russ J Mar Biol. 2003;29(5):305–15. https://doi.org/10.1023/A:1026309611144.
Article
Google Scholar
Somero GN. Adaptations to high hydrostatic pressure. Annu Rev Physiol. 1992;54(1):557–77. https://doi.org/10.1146/annurev.ph.54.030192.003013.
Article
CAS
PubMed
Google Scholar
Somero GN, Siebenaller JF. Inefficient lactate dehydrogenases of deep-sea fishes. Nature. 1979;282(5734):100–2. https://doi.org/10.1038/282100a0.
Article
CAS
PubMed
Google Scholar
Stalling D, Westerhoff M, Hege H-C. Amira: a highly interactive system for visual data analysis, in: Hansen, C.D., Johnson, C.R. (Eds.), The Visualization Handbook. Elsevier, pp. 749–767. 2005. doi:https://doi.org/10.1016/b978-012387582-2/50040-x
Stamatakis A. RAxML version 8 a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):2010–1. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
Google Scholar
Stein DL. A review of the Deepwater Liparidae (Pisces) from the coast of Oregon and adjacent waters. Occ Pap Cal Acad Sci. 1978;127:1–55.
Google Scholar
Stein DL. Aspects of reproduction of liparid fishes from the continental slope and abyssal plain off Oregon, with notes on growth. Copeia. 1980;1980(4):687–99. https://doi.org/10.2307/1444445.
Article
Google Scholar
Stein DL, Drazen JC, Schlining KL, Barry JP, Kuhnz L. Snailfishes of the Central California coast: video, photographic and morphological observations. J Fish Biol. 2006;69(4):970–86. https://doi.org/10.1111/j.1095-8649.2006.01167.x.
Article
Google Scholar
Wang K, Shen Y, Yang Y, Gan X, Liu G, Hu K, Li Y, Gao Z, Zhu L, Yan G, He L, Shan X, Yang L, Lu S. Morphology and genome of a snailfish from the. Nat Ecol Evol. 2019;3(5):823–33. https://doi.org/10.1038/s41559-019-0864-8.
Article
PubMed
Google Scholar
Westneat MW, Olsen AM. How fish power suction feeding. Proc Natl Acad Sci. 2015;112(28):8525–6. https://doi.org/10.1073/pnas.1510522112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yancey PH. Cellular responses in marine animals to hydrostatic pressure. J Exp Zool Part A Ecol Integr Physiol. 2020;333(6):398–420. https://doi.org/10.1002/jez.2354.
Article
CAS
Google Scholar
Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson AJ. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci U S A. 2014;111(12):4461–5. https://doi.org/10.1073/pnas.1322003111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yancey PH, Lawrence-Berrey R, Douglas M. Adaptations in mesopelagic fishes. Int J Life Ocean Coast Waters. 1989;103(4):453–9. https://doi.org/10.1007/BF00399577.
Article
CAS
Google Scholar
Yancey PH, Siebenaller JF. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J Exp Biol. 2015;218(12):1880–96. https://doi.org/10.1242/jeb.114355.
Article
PubMed
Google Scholar
Yau C, Collins MA, Everson I. Commensalism between a liparid fish (Careproctus sp.) and stone crabs (Lithodidae) photographed in situ using a baited camera. J Mar Biol Assoc United Kingdom. 2000;80(2):379–80. https://doi.org/10.1017/s0025315499002052.