Christophers SR. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. New York: Cambridge University Press; 1960.
Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol. 2010;8(12):S7–S16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monath TP. Yellow fever: an update. Lancet Infect Dis. 2001;1(1):11–20.
Article
CAS
PubMed
Google Scholar
Pialoux G, Gaüzère B-A, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis. 2007;7(5):319–27.
Article
PubMed
Google Scholar
Petersen LR, Jamieson DJ, Powers AM, Honein MA. Zika virus. N Engl J Med. 2016;374(16):1552–63.
Article
CAS
PubMed
Google Scholar
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weaver SC, Charlier C, Vasilakis N, Lecuit M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med. 2018;69:395–408.
Article
CAS
PubMed
Google Scholar
Dye C. Vectorial capacity: must we measure all its components? Parasitol Today. 1986;2(8):203–9.
Article
CAS
PubMed
Google Scholar
Kramer LD, Ciota AT. Dissecting vectorial capacity for mosquito-borne viruses. Curr Opin Virol. 2015;15:112–8.
Article
PubMed
PubMed Central
Google Scholar
Garrett-Jones C, Shidrawi G. Malaria vectorial capacity of a population of Anopheles gambiae: an exercise in epidemiological entomology. Bull World Health Organ. 1969;40(4):531.
CAS
PubMed
PubMed Central
Google Scholar
Alto BW, Reiskind MH, Lounibos LP. Size alters susceptibility of vectors to dengue virus infection and dissemination. Am J Trop Med Hygiene. 2008;79(5):688–95.
Article
CAS
Google Scholar
Dye C. The analysis of parasite transmission by bloodsucking insects. Annu Rev Entomol. 1992;37(1):1–19.
Article
CAS
PubMed
Google Scholar
Clements AN. The biology of mosquitoes: development, nutrition and reproduction, vol. 1: Chapman & Hall London; 1992.
Westby KM, Juliano SA. The roles of history: age and prior exploitation in aquatic container habitats have immediate and carry-over effects on mosquito life history. Ecol Entomol. 2017;42(6):704–11.
Article
PubMed
PubMed Central
Google Scholar
Dickson LB, Jiolle D, Minard G, Moltini-Conclois I, Volant S, Ghozlane A, et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci Adv. 2017;8:e1700585.
Article
Google Scholar
Hawley W. The effect of larval density on adult longevity of a mosquito, Aedes sierrensis: epidemiological consequences. J Anim Ecol. 1985;1:955–64.
Article
Google Scholar
Ciota AT, Matacchiero AC, Kilpatrick AM, Kramer LD. The effect of temperature on life history traits of Culex mosquitoes. J Med Entomol. 2014;51(1):55–62.
Article
PubMed
Google Scholar
Reiskind M, Lounibos L. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med Vet Entomol. 2009;23(1):62–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alto BW, Lounibos LP, Mores CN, Reiskind MH. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proc R Soc B Biol Sci. 2008;275(1633):463–71.
Article
Google Scholar
Shapiro LL, Murdock CC, Jacobs GR, Thomas RJ, Thomas MB. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proc Royal Soc Biol Sci. 2016;283(1834):20160298.
Google Scholar
Costa EA, Santos EM, Correia JC, Albuquerque CM. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia. 2010;54(3):488–93.
Article
Google Scholar
Thu HM, Aye KM, Thein S. The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitos. Southeast Asian J Trop Med Public Health. 1998;29(2):280–4.
CAS
PubMed
Google Scholar
Nasci RS. Influence of larval and adult nutrition on biting persistence in Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1991;28(4):522–6.
Article
CAS
PubMed
Google Scholar
Merritt R, Dadd R, Walker E. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol. 1992;37(1):349–74.
Article
CAS
PubMed
Google Scholar
Washburn J. Regulatory factors affecting larval mosquito populations in container and pool habitats: implications for biological control. J Am Mosq Control Assoc. 1995;11(2):279–83.
CAS
PubMed
Google Scholar
Edman JD, Strickman D, Kittayapong P, Scott TW. Female Aedes aegypti (Diptera: Culicidae) in Thailand rarely feed on sugar. J Med Entomol. 1992;29(6):1035–8.
Article
CAS
PubMed
Google Scholar
Scott TW, Naksathit A, Day JF, Kittayapong P, Edman JD. A fitness advantage for Aedes aegypti and the viruses it transmits when females feed only on human blood. Am J Trop Med Hygiene. 1997;57(2):235–9.
Article
CAS
Google Scholar
Harrington LC, Edman JD, Scott TW. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol. 2001;38(3):411–22.
Article
CAS
PubMed
Google Scholar
Martinez-Ibarra JA, Rodriguez MH, Arredondo-Jimenez JI, Yuval B. Influence of plant abundance on nectar feeding by Aedes aegypti (Diptera: Culicidae) in southern Mexico. J Med Entomol. 1997;34(6):589–93.
Article
CAS
PubMed
Google Scholar
Sissoko F, Junnila A, Traore MM, Traore SF, Doumbia S, Dembele SM, et al. Frequent sugar feeding behavior by Aedes aegypti in Bamako, Mali makes them ideal candidates for control with attractive toxic sugar baits (ATSB). PLoS One. 2019;14:6.
Article
CAS
Google Scholar
Olson MF, Garcia-Luna S, Juarez JG, Martin E, Harrington LC, Eubanks MD, et al. Sugar feeding patterns for Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) mosquitoes in South Texas. J Med Entomol. 2020;57:1111–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott-Fiorenzano JM, Fulcher AP, Seeger KE, Allan SA, Kline DL, Koehler PG, et al. Evaluations of dual attractant toxic sugar baits for surveillance and control of Aedes aegypti and Aedes albopictus in Florida. Parasites Vectors. 2017;10(1):9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fikrig K, Johnson BJ, Fish D, Ritchie SA. Assessment of synthetic floral-based attractants and sugar baits to capture male and female Aedes aegypti (Diptera: Culicidae). Parasites Vectors. 2017;10(1):32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lalubin F, Deledevant A, Glaizot O, Christe P. Natural malaria infection reduces starvation resistance of nutritionally stressed mosquitoes. J Anim Ecol. 2014;83(4):850–7.
Article
PubMed
Google Scholar
Joy TK, Arik AJ, Corby-Harris V, Johnson AA, Riehle MA. The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti. Exp Gerontol. 2010;45(9):685–90.
Article
PubMed
PubMed Central
Google Scholar
Alto BW, Lounibos LP, Higgs S, Juliano SA. Larval competition differentially affects arbovirus infection in Aedes mosquitoes. Ecology. 2005;86(12):3279–88.
Article
PubMed
Google Scholar
Telang A, Qayum A, Parker A, Sacchetta B, Byrnes G. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti). Med Vet Entomol. 2012;26(3):271–81.
Article
CAS
PubMed
Google Scholar
Nasci RS. Relationship of wing length to adult dry weight in several mosquito species (Diptera: Culicidae). J Med Entomol. 1990;27(4):716–9.
Article
CAS
PubMed
Google Scholar
Tukey JW. Exploratory data analysis. Reading: Addison-Wesley; 1977.
Google Scholar
Rousseeuw PJ, Hubert M. Robust statistics for outlier detection. Wiley Interdisc Rev. 2011;1(1):73–9.
Google Scholar
Therneau T. A Package for Survival Analysis in S. version 2.38; 2015.
Google Scholar
Kassambara A, Kosinski M, Biecek P, Fabian S. Package ‘survminer’. Drawing Survival Curves using ‘ggplot2’(R package version 03 1); 2017.
Google Scholar
Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, et al. Package “car”: Companion to applied regression. Computer software package at, https://cran r-project org/web/packages/car/index html. 2018.
Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
Google Scholar
Takken W, Smallegange RC, Vigneau AJ, Johnston V, Brown M, Mordue-Luntz AJ, et al. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasites Vectors. 2013;6(1):345.
Article
PubMed
PubMed Central
Google Scholar
Vantaux A, Lefèvre T, Cohuet A, Dabiré KR, Roche B, Roux O. Larval nutritional stress affects vector life history traits and human malaria transmission. Sci Rep. 2016;6(1):1–10.
Article
CAS
Google Scholar
Briegel H, Knusel I, Timmermann SE. Aedes aegypti: size, reserves, survival, and flight potential. J Vect Ecol. 2001;26:21–31.
CAS
Google Scholar
Vantaux A, Ouattarra I, Lefèvre T, Dabiré KR. Effects of larvicidal and larval nutritional stresses on Anopheles gambiae development, survival and competence for Plasmodium falciparum. Parasites Vectors. 2016;9(1):226.
Article
PubMed
PubMed Central
CAS
Google Scholar
Couret J, Dotson E, Benedict MQ. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PloS One. 2014;9(2):e87468.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benedict MQ, Hunt CM, Vella MG, Gonzalez KM, Dotson EM, Collins CM. Pragmatic selection of larval mosquito diets for insectary rearing of Anopheles gambiae and Aedes aegypti. Plos One. 2020;15(3):e0221838.
Article
CAS
PubMed
PubMed Central
Google Scholar
Souza RS, Virginio F, Riback TIS, Suesdek L, Barufi JB, Genta FA. Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Front Physiol. 2019;10:152.
Article
PubMed
PubMed Central
Google Scholar
May CM, Doroszuk A, Zwaan BJ. The effect of developmental nutrition on life span and fecundity depends on the adult reproductive environment in Drosophila melanogaster. Ecol Evol. 2015;5(6):1156–68.
Article
PubMed
PubMed Central
Google Scholar
Bennett GF. The influence of the blood meal type on the fecundity of Aedes (Stegomyia) aegypti L.(Diptera: Culicidae). Can J Zool. 1970;48(3):539–43.
Article
CAS
PubMed
Google Scholar
Damiens D, Soliban S, Balestrino F, Alsir R, Vreysen M, Gilles J. Different blood and sugar feeding regimes affect the productivity of Anopheles arabiensis colonies (Diptera: Culicidae). J Med Entomol. 2013;50(2):336–43.
Article
CAS
PubMed
Google Scholar
Richards SL, Anderson SL, Yost SA. Effects of blood meal source on the reproduction of Culex pipiens quinquefasciatus (Diptera: Culicidae). J Vect Ecol. 2012;37(1):1–7.
Article
Google Scholar
Foster WA. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40(1):443–74.
Article
CAS
PubMed
Google Scholar
Gary RE Jr, Foster WA. Effects of available sugar on the reproductive fitness and vectorial capacity of the malaria vector Anopheles gambiae (Diptera: Culicidae). J Med Entomol. 2001;38(1):22–8.
Article
PubMed
Google Scholar
Mostowy WM, Foster WA. Antagonistic effects of energy status on meal size and egg-batch size of Aedes aegypti (Diptera: Culicidae). J Vect Ecol. 2004;29:84–93.
Google Scholar
Leisnham PT, Sala L, Juliano SA. Geographic variation in adult survival and reproductive tactics of the mosquito Aedes albopictus. J Med Entomol. 2014;45(2):210–21.
Article
Google Scholar
Gendrin M, Rodgers FH, Yerbanga RS, Ouédraogo JB, Basáñez M-G, Cohuet A, et al. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nat Commun. 2015;6(1):1–7.
Article
Google Scholar
Delhaye J, Aletti C, Glaizot O, Christe P. Exposure of the mosquito vector Culex pipiens to the malaria parasite Plasmodium relictum: effect of infected blood intake on immune and antioxidant defences, fecundity and survival. Parasites Vectors. 2016;9(1):616.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hauser G, Thiévent K, Koella JC. The ability of Anopheles gambiae mosquitoes to bite through a permethrin-treated net and the consequences for their fitness. Sci Rep. 2019;9(1):1–8.
Article
CAS
Google Scholar
Clifton ME, Noriega FG. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J Insect Physiol. 2012;58(7):1007–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Noordwijk AJ, de Jong G. Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat. 1986;128(1):137–42.
Article
Google Scholar
Pooraiiouby R, Sharma A, Beard J, Reyes J, Nuss A, Gulia-Nuss M. Nutritional quality during development alters insulin-Like peptides’ expression and physiology of the adult yellow fever mosquito, Aedes aegypti. Insects. 2018;9(3):110.
Article
PubMed Central
Google Scholar
Giannakou ME, Partridge L. Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci. 2007;32(4):180–8.
Article
CAS
PubMed
Google Scholar
Morris SNS, Coogan C, Chamseddin K, Fernandez-Kim SO, Kolli S, Keller JN, et al. Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochim Biophys Acta. 2012;1822(8):1230–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Badisco L, Van Wielendaele P, Vanden BJ. Eat to reproduce: a key role for the insulin signaling pathway in adult insects. Front Physiol. 2013;4:202.
Article
PubMed
PubMed Central
Google Scholar
Altintas O, Park S, Lee SJ. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 2016;49(2):81.
Article
CAS
PubMed
PubMed Central
Google Scholar