Wang B, Xu Y, Ran J. Predicting suitable habitat of the Chinese monal (Lophophorus lhuysii) using ecological niche modeling in the Qionglai Mountains, China. PeerJ. 2017;5:e3477.
Article
PubMed
PubMed Central
Google Scholar
CITES. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendices I, II and III. Available at http://www.cites.org. Accessed 17 Mar 2020.
BirdLife International. Lophophorus lhuysii. The IUCN Red List of Threatened Species 2016. Available at https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22679192A92806697.en. Accessed 17 Mar 2020.
Zheng G. Pheasants in China: the Chinese monal (Lophophorus lhuysii). In: Zheng G, Ding P, Lu X, Zhang Z, Zhang Y, editors. Higher education press, Beijing; 2015. p.338–351.
Martin F-PJ, Collino S, Rezzi S, Kochhar S. Metabolomic applications to decipher gut microbial metabolic influence in health and disease. Front Physio. 2012;3:113.
Article
CAS
Google Scholar
He F, Zhai J, Zhang L, Liu D, Ma Y, Rong K, et al. Variations in gut microbiota and fecal metabolic phenotype associated with Fenbendazole and Ivermectin tablets by 16S rRNA gene sequencing and LC/MS-based metabolomics in Amur tiger. Biochem Biophys Res Commun. 2018;499:447–53.
Article
CAS
PubMed
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.
Article
PubMed
Google Scholar
Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 2015;9:1–15.
Article
PubMed
CAS
Google Scholar
Guan Y, Yang H, Han S, Feng L, Wang T, Ge J. Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing. AMB Expr. 2017;7:212.
Article
CAS
Google Scholar
Schmidt E, Mykytczuk N, Schulte-Hostedde AI. Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). ISME J. 2019;13:1293–305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ushida K, Segawa T, Tsuchida S, Murata K. Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans. J Vet Med Sci. 2016;78:251–7.
Article
CAS
PubMed
Google Scholar
Scupham AJ, Patton TG, Bent E, Bayles DO. Comparison of the Cecal microbiota of domestic and wild turkeys. Microb Ecol. 2008;56:322–31.
Article
PubMed
Google Scholar
Xenoulis PG, Gray PL, Brightsmith D, Palculict B, Hoppes S, Steiner JM, et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet Microbiol. 2010;146:320–5.
Article
CAS
PubMed
Google Scholar
Salgado-Flores A, Tveit AT, Wright A-D, Pope PB, Sundset MA. Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway. Chaves AV, editor. PLoS ONE. 2019;14:e0213503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uenishi G, Fujita S, Ohashi G, Kato A, Yamauchi S, Matsuzawa T, et al. Molecular analyses of the intestinal microbiota of chimpanzees in the wild and in captivity. Am J Primatol. 2007;69:367–76.
Article
CAS
PubMed
Google Scholar
Gao H, Chi X, Qin W, Wang L, Song P, Cai Z, et al. Comparison of the gut microbiota composition between the wild and captive Tibetan wild ass (Equus kiang). J Appl Microbiol. 2019;126:1869–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A, et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 2013;7:1933–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie G, Zhang S, Zheng X, Jia W. Metabolomics approaches for characterizing metabolic interactions between host and its commensal microbes. Electrophoresis. 2013;19:2787–98.
Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaeli M, et al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol. 2016;310:F857–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Mazcorro JF, Pedreschi R, Yuan J, Kawas JR, Chew B, Dowd SE, et al. Apple consumption is associated with a distinctive microbiota, proteomics and metabolomics profile in the gut of Dawley Sprague rats fed a high-fat diet. Blachier F, editor. PLoS ONE. 2019;14:e0212586.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrázek J, Koppova I, et al. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol. 2015;24:2551–65.
Article
CAS
PubMed
Google Scholar
Nelson TM, Rogers TL, Carlini AR, Brown MV. Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals: the gut microbiota of wild and captive Antarctic seals. Environ Microbiol. 2013;15:1132–45.
Article
CAS
PubMed
Google Scholar
D’Andreano S, Sànchez Bonastre A, Francino O, Cuscó Martí A, Lecchi C, Grilli G, et al. Gastrointestinal microbial population of Turkey (Meleagris gallopavo) affected by hemorrhagic enteritis virus. Poult Sci. 2017;96:3550–8.
Article
PubMed
CAS
Google Scholar
Barbosa A, Balagué V, Valera F, Martínez A, Benzal J, Motas M, et al. Age-Related Differences in the Gastrointestinal Microbiota of Chinstrap Penguins (Pygoscelis antarctica). Peter H-U, editor. PLoS ONE. 2016;11:e0153215.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilkinson N, Hughes RJ, Aspden WJ, Chapman J, Moore RJ, Stanley D. The gastrointestinal tract microbiota of the Japanese quail, Coturnix japonica. Appl Microbiol Biotechnol. 2016;100:4201–9.
Article
CAS
PubMed
Google Scholar
Godoy-Vitorino F, Ley RE, Gao Z, Pei Z, Ortiz-Zuazaga H, Pericchi LR, et al. Bacterial Community in the Crop of the hoatzin, a Neotropical Folivorous flying bird. Appl Environ Microbiol. 2008;74:5905–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dewar ML, Arnould JPY, Dann P, Trathan P, Groscolas R, Smith S. Interspecific variations in the gastrointestinal microbiota in penguins. MicrobiologyOpen. 2013;2:195–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dewar ML, Arnould JPY, Krause L, Dann P, Smith SC. Interspecific variations in the faecal microbiota of Procellariiform seabirds. FEMS Microbiol Ecol. 2014;89:47–55.
Article
CAS
PubMed
Google Scholar
Shen J, Zhang X, Wu W, Hu W, Zhang C, Zhu L. The Gut Microbes’Diversity and Function of Phasianidae Provide Insights on the Adaptation to Their Diet. J Nanjing Normal Univ (Natural Science Edition). 2016;39:90–5.
Google Scholar
Shin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.
Article
CAS
PubMed
Google Scholar
Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Kling Bäckhed H, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chevalier C, Stojanović O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163:1360–74.
Article
CAS
PubMed
Google Scholar
Sun B, Wang X, Bernstein S, Huffman MA, Xia D-P, Gu Z, et al. Marked variation between winter and spring gut microbiota in free-ranging Tibetan macaques (Macaca thibetana). Sci Rep. 2016;6:26035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker A, Pfitzner B, Neschen S, Kahle M, Harir M, Lucio M, et al. Distinct signatures of host–microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME J. 2014;8:2380–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.
Article
CAS
PubMed
Google Scholar
López-López A, Castellote-Bargalló AI, Campoy-Folgoso C, Rivero-Urgel M, Tormo-Carnicé R, Infante-Pina D, et al. The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Hum Dev. 2001;65:S83–94.
Article
PubMed
Google Scholar
Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng. 1999;87:1–14.
Article
CAS
PubMed
Google Scholar
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 2010;463:559–62.
Article
CAS
PubMed
Google Scholar
Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal. 2008;20:2180–97.
Article
CAS
PubMed
Google Scholar
Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated Metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122:284–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim G-B, Lee BH. Biochemical and molecular insights into bile salt hydrolase in the gastrointestinal microflora - a review. Asian Australas J Anim Sci. 2005;18:1505–12.
Article
CAS
Google Scholar
Yeh Y-H, Hwang D-F. High-performance liquid chromatographic determination for bile components in fish, chicken and duck. J Chromatogr B Biomed Sci Appl. 2001;751:1–8.
Article
CAS
PubMed
Google Scholar
He F, Lu T. Ecology of the Chinese monal in winter. Zool Res. 1985;6:345–52.
Google Scholar
Long Y, Shao K, Guo G, Cheng C, Zhou X, Hans L, et al. A follow-up study of the ecology of the Chinese monal in winter. Sichuan J Zool. 1998;17:104–5.
Google Scholar
Loescher WH, McCamant T, Keller JD. Carbohydrate reserves, translocation, and storage in Woody Plant roots. HortSci. 1990;25:274–81.
Article
CAS
Google Scholar
Cruz A, Moreno JM. Seasonal course of Total non-structural carbohydrates in the Lignotuberous Mediterranean-type shrub Erica australis. Oecologia. 2001;128:343–50.
Article
PubMed
Google Scholar
Knox KJE, Clarke PJ. Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. Funct Ecol. 2005;19:690–8.
Article
Google Scholar
Ridlon JM, Alves JM, Hylemon PB, Bajaj JS. Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes. 2013;4:382–7.
Article
PubMed
PubMed Central
Google Scholar
Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2013;3:14–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sengupta S, Mukherjee S, Basak P, Majumder AL. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front Plant Sci [Internet]. 2015 [cited 2020 May 12];6. Available from: http://journal.frontiersin.org/Article/10.3389/fpls.2015.00656/abstract.
Iji PA, Saki AA, Tivey DR. Intestinal structure and function of broiler chickens on diets supplemented with a mannan oligosaccharide. J Sci Food Agric. 2001;81:1186–92.
Article
CAS
Google Scholar
Coon CN, Leske KL, Akavanichan O, Cheng TK. Effect of oligosaccharide-free soybean meal on true Metabolizable energy and Fiber digestion in adult roosters. Poult Sci. 1990;69:787–93.
Article
CAS
PubMed
Google Scholar
Martínez del Rio C, Baker HG, Baker I. Ecological and evolutionary implications of digestive processes: Bird preferences and the sugar constituents of floral nectar and fruit pulp. Experientia. 1992;48:544–51.
Article
Google Scholar
Apanius V. Sucrose intolerance in birds: simple nonlethal diagnostic methods and consequences for assimilation of complex carbohydrates. Auk. 1994;111:170–7.
Article
Google Scholar
Lila ZA, Mohammed N, Takahashi T, Tabata M, Yasui T, Kurihara M, et al. Increase of ruminal fiber digestion by cellobiose and a twin strain of Saccharomyces cerevisiae live cells in vitro. Animal Sci J. 2006;77:407–13.
Article
CAS
Google Scholar
Inman DL. Cellulose digestion in ruffed grouse, Chukar partridge, and bobwhite quail. J Wildl Manag. 1973;37:114–21.
Article
CAS
Google Scholar
Wang Y, Yue X, Hu J, Guo Y, Wu X. Morphology of digestive system of Lophophorus lhuysii. J China West Normal University (Natural Science). 2007;28:7–10.
Google Scholar
Lu M, Hashimoto K, Uda Y. Rat intestinal microbiota digest desulfosinigrin to form allyl cyanide and 1-cyano-2,3-epithiopropane. Food Res Int. 2011;44:1023–8.
Article
CAS
Google Scholar
Mokhtari M, Rezaei A, Ghasemi A. Determination of urinary 5-Hydroxyindoleacetic acid as a metabolomics in gastric cancer. J Gastrointest Canc. 2015;46:138–42.
Article
CAS
Google Scholar
Degg TJ, Allen KR, Barth JH. Measurement of plasma 5-hydroxyindoleacetic acid in carcinoid disease: an alternative to 24-h urine collections? Ann Clin Biochem. 2000;37:724–6.
Article
CAS
PubMed
Google Scholar
Sheflin A, Borresen E, Wdowik M, Rao S, Brown R, Heuberger A, et al. Pilot dietary intervention with heat-stabilized Rice bran modulates stool microbiota and metabolites in healthy adults. Nutrients. 2015;7:1282–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel D, Patel K, Gadewar M, Tahilyani V. A concise report on pharmacological and bioanalytical aspect of sinigrin. Asian Pac J Trop Biomed. 2012;2:S446–8.
Article
Google Scholar
Krul C, Humblot C, Philippe C, Vermeulen M, van Nuenen M, Havenaar R, et al. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis. 2002;23:1009–16.
Article
CAS
PubMed
Google Scholar
GB/T 6435–2014. Determination of moisture in feedstuffs. Standards Press of China, Beijing; 2014.
GB/T 6433–2006. Determination of crude fat in Feeds. Standards Press of China, Beijing, China; 2006.
GB/T 6432–1994. Method for the determination of crude protein in Feedstuffs. Standards Press of China, Beijing; 1994.
GB/T 6434–2006. Determination of crude fiber in Feeds. Beijing: Standards Press of China; 2006.
Google Scholar
Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. AEM. 2006;72:5069–72.
Article
CAS
Google Scholar
Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. AEM. 2005;71:8228–35.
Article
CAS
Google Scholar
White JR, Nagarajan N, Pop M. Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples. Ouzounis CA, editor. PLoS Comput Biol. 2009;5:e1000352.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ivanisevic J, Epstein AA, Kurczy ME, Benton PH, Uritboonthai W, Fox HS, et al. Brain region mapping using global metabolomics. Chem Biol. 2014;21:1575–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benton HP, Ivanisevic J, Mahieu NG, Kurczy ME, Johnson CH, Franco L, et al. Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem. 2015;87:884–91.
Article
CAS
PubMed
Google Scholar