Bocak L, Barton C, Crampton-Platt A, Chesters D, Ahrens D, Vogler AP. Building the Coleoptera tree-of-life for >8000 species: composition of public DNA data and fit with Linnaean classification. Syst Entomol. 2014;39:97–110. https://doi.org/10.1111/syen.12037.
Article
Google Scholar
Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007;318:1913–6.
Article
CAS
PubMed
Google Scholar
McKenna DD, Wild AL, Kanda K, Bellamy CL, Beutel RG, Caterino MS, et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the cretaceous terrestrial revolution. Syst Entomol. 2015;40:835–80. https://doi.org/10.1111/syen.12132.
Article
Google Scholar
Zhang SQ, Che LH, Li Y, Dan L, Pang H, Ślipiński A, Zhang P. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat Commun. 2018;205:2041–1723. https://doi.org/10.1038/s41467-017-02644-4.
Google Scholar
Nikitsky NB, Lawrence JF, Kirejtshuk AG, Gratshev VGA. New beetle family, Decliniidae fam. N., from the Russian far east and its taxonomic relationships (Coleoptera, Polyphaga). Russ Entomol J. 1993;2:3–10.
Google Scholar
Lawrence JF, Nikitsky NB, Kirejtshuk AB. Phylogenetic position of Decliniidae (Coleoptera: Scirtoidea) and comments on the classification of Elateriformia (sensu lato). In: Pakaluk J, Ślipiński SA, editors. Biology, phylogeny, and classification of Coleoptera: papers celebrating the 80th birthday of Roy a. Crowson. Warszawa: Muzeum i Instytut Zoologii PAN; 1995. p. 373–410.
Google Scholar
Ribera I, Beutel RG, Balke M, Vogler AP. Discovery of Aspidytidae, a new family of aquatic Coleoptera. Proc Biol Sci. 2002;269:2351–6. https://doi.org/10.1098/rspb.2002.2157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spangler PJ, Steiner WE Jr. A new aquatic beetle family, Meruidae, from Venezuela (Coleoptera: Adephaga). Syst Entomol. 2005;30:339–57. https://doi.org/10.1111/j.1365-3113.2005.00288.x.
Article
Google Scholar
Bocak L, Kundrata R, Andújar CF, Vogler AP. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc Biol Sci. 2016;283:20152350. https://doi.org/10.1098/rspb.2015.2350.
Article
PubMed
PubMed Central
Google Scholar
Lawrence JF. Rhinorhipidae, a new beetle family from Australia, with comments on the phylogeny of the Elateriformia. Invertebr Taxon. 1988;2:1–53.
Article
Google Scholar
Lawrence JF, Newton AF. Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names). In: Pakaluk J, Ślipiński SA, editors. Biology, phylogeny, and classification of Coleoptera: papers celebrating the 80th birthday of Roy a. Crowson. Warszawa: Muzeum i Instytut Zoologii PAN; 1995. p. 779–1006.
Google Scholar
Leschen RAB, Beutel RG, Lawrence JF. Handbook of zoology, Arthropoda: Insecta. Coleoptera, beetles; volume 2: morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). In: Kristensen NP, Beutel RG, editors. Handbook of zoology, Arthropoda: Insecta. Berlin and New York: Walter de Gruyter GmbH & Co. KG; 2010.
Google Scholar
Bouchard P, Bousquet Y, Davies AE, Alonso-Zarazaga MA, Lawrence JF, Lyal CHC, et al. Family-group names in Coleoptera (Insecta). ZooKeys. 2011;88:1–972. https://doi.org/10.3897/zookeys.88.807.
Article
Google Scholar
Lawrence JF, Ślipiński SA, Seago AE, Thayer MK, Newton AF, Marvaldi AE. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Annal Zool. 2011;61:1–217. https://doi.org/10.3161/000345411X576725.
Article
Google Scholar
Beutel RG, Leschen RAB. Coleoptera, beetles; volume 1: morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). In: Kristensen NP, Beutel RG, editors. Handbook of zoology, Arthropoda: Insecta. 2nd ed. Berlin and Boston: Walter de Gruyter GmbH & Co. KG; 2016.
Google Scholar
Timmermans MJTN, Dodsworth S, Culverwell CL, Bocak L, Ahrens D, Littlewood DTJ, et al. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res. 2010;38(21):e197. https://doi.org/10.1093/nar/gkq807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Timmermans MJTN, Barton C, Haran J, Ahrens D, Ollikainen A, Culverwell L, et al. Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and Phylogenetics. Genome Biol Evol. 2016;8:161–75. https://doi.org/10.1093/gbe/evv241.
Article
CAS
Google Scholar
Bocakova M, Bocak L, Hunt T, Teravainen M, Vogler AP. Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny. Cladistics. 2007;23:477–96. https://doi.org/10.1111/j.1096-0031.2007.00164.x.
Article
Google Scholar
Kundrata R, Bocakova M, Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia). Mol Phylogenet Evol. 2014;76:162–71. https://doi.org/10.1016/j.ympev.2014.03.012.
Article
PubMed
Google Scholar
Kundrata R, Jäch M, Bocak L. Molecular phylogeny of the Byrrhoidea-Buprestoidea complex (Coleoptera, Elateriformia). Zool Scr. 2017;46(2):150–64. https://doi.org/10.1111/zsc.12196.
Article
Google Scholar
Sharkey CR, Fujimoto MS, Lord NPSS, Mckenna DD, Suvorov A, et al. Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Sci Rep. 2017;7:8. https://doi.org/10.1038/s41598-017-00061-7.
Article
PubMed
PubMed Central
Google Scholar
Wang K, Hong W, Jiao H, Zhao H. Transcriptome sequencing and phylogenetic analysis of four species of luminescent beetles. Sci Rep. 2017;7:1814. https://doi.org/10.1038/s41598-017-01835-9.
Article
PubMed
PubMed Central
Google Scholar
Parker DJ, Cunningham CB, Walling CA, Stamper CE, Head ML, Roy-Zokan EM, et al. Transcriptomes of parents identify parenting strategies and sexual conflict in a subsocial beetle. Nat Commun. 2015;6:8449. https://doi.org/10.1038/ncomms9449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fallon TR, Li FS, Vicent MA, Weng JK. Sulfoluciferin is biosynthesized by a specialized luciferin sulfotransferase in fireflies. Biochemistry. 2016;55(24):3341–4. https://doi.org/10.1021/acs.biochem.6b00402.
Article
CAS
PubMed
Google Scholar
Peters RS, Meusemann K, Petersen M, Mayer C, Wilbrandt J, Ziesmann T, et al. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evol Biol. 2014;14(1):52. https://doi.org/10.1186/1471-2148-14-52.
Article
PubMed
PubMed Central
Google Scholar
Poelchau M, Childers C, Moore G, Tsavatapalli V, Evans J, Lee CY, et al. The i5k workspace@NAL—enabling genomic data access, visualization and curation of arthropod genomes. Nucleic Acids Res. 2014;43:(D1) https://doi.org/10.1093/nar/gku983.
McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 2017;17(1):227. https://doi.org/10.1186/s13059-016-1088-8.
Article
Google Scholar
Keeling CI, Yuen MM, Liao NY, Docking TR, Chan SK, Taylor GA, et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013;14(3) https://doi.org/10.1186/gb-2013-14-3-r27.
Richards S, et al. (Tribolium genome sequencing consortium). The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452(7190):949–55. https://doi.org/10.1038/nature06784.
Article
CAS
PubMed
Google Scholar
Toussaint E, Seidel M, Arriaga-Varela E, Hájek J, Král D, Sekerka L, et al. The peril of dating beetles. Syst Entomol. 2017;42:1–10. https://doi.org/10.1111/syen.12198.
Article
Google Scholar
Slowinski JB, Guyer C. Testing whether certain traits have caused amplified diversification: an improved method based on a model of random speciation and extinction. Am Nat. 1993;142:1019–24. https://doi.org/10.1086/285586.
Article
CAS
PubMed
Google Scholar
Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol. 2014;5(7):701–7. https://doi.org/10.1111/2041-210X.12199.
Article
Google Scholar
Wolfe JM, Daley AC, Legg D, Edgecombe GD. Fossil calibrations for the arthropod tree of life. Earth Sci Rev. 2016;160:43–110. https://doi.org/10.1016/j.earscirev.2016.06.008.
Article
Google Scholar
Labandeira CC, Eble GJ. The fossil record of insect diversity and disparity. In: Anderson J, Thackeray F, Van Wyk B, De Wit M, editors. Gondwana alive: biodiversity and the evolving biosphere. Johannesburg: Witwatersrand University Press; 2000.
Google Scholar
Kirejtshuk AG, Poschmann M, Prokop J, Garrouste R, Nel A. Evolution of the elytral venation and structural adaptations in the oldest Palaeozoic beetles (Insecta: Coleoptera: Tshekardocoleidae). J Syst Palaeontol. 2014;12(5):575–600. https://doi.org/10.1080/14772019.2013.821530.
Article
Google Scholar
Johnson MG, Gardner EM, Liu Y, Medina R, Goffinet B, Shaw AJ, et al. HybPiper: extracting coding sequence and introns for Phylogenetics from high-throughput sequencing reads using target enrichment. Appl Plant Sci. 2016;4(7):1600016. https://doi.org/10.3732/apps.1600016.
Article
Google Scholar
Allen JM, Boyd B, Nguyen NP, Vachaspati P, Warnow T, Huang D, et al. Phylogenomics from whole genome sequences using aTRAM. Syst Biol. 2017;66:786–98. https://doi.org/10.1093/sysbio/syw105.
PubMed
Google Scholar
Gould SJ. A special fondness for beetles. Nat Hist. 1993;102:4–6.
Google Scholar
Holz M. Mesozoic paleogeography and paleoclimates – a discussion of the diverse greenhouse and hothouse conditions of an alien world. J S Am Earth Sci. 2015;61:91–107. https://doi.org/10.1016/j.jsames.2015.01.001.
Article
CAS
Google Scholar
Andújar C, Arribas P, Ruzicka F, Crampton-Platt A, Timmermans MJTN, Vogler AP. Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics. Mol Ecol. 2015;24(14):3603–17. https://doi.org/10.1111/mec.13195.
Article
PubMed
Google Scholar
Crampton-Platt A, Timmermans MJTN, Gimmel ML, Kutty SN, Cockerill TD, Vun Khen C, Vogler AP. Soup to tree: the phylogeny of beetles inferred by mitochondrial metagenomics of a Bornean rainforest sample. Mol Biol Evol. 2015;32(9):2302–16. https://doi.org/10.1093/molbev/msv111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andújar C, Arribas P, Linard B, Kundrata R, Bocak L, Vogler AP. The mitochondrial genome of Iberobaenia (Coleoptera: Iberobaeniidae): first rearrangement of protein-coding genes in the beetles. Mitochondrial DNA A DNA Mapp Seq Anal. 2017;28(2):156–8. https://doi.org/10.3109/19401736.2015.1115488.
PubMed
Google Scholar
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69(2):313–9. https://doi.org/10.1016/j.ympev.2012.08.023.
Article
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics. 2008;9:212. https://doi.org/10.1186/1471-2105-9-212.
Article
PubMed
PubMed Central
Google Scholar
Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, et al. SOAPdenovo-trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30(12):1660–6. https://doi.org/10.1093/bioinformatics/btu077.
Article
CAS
PubMed
Google Scholar
Amaral DT, Silva JR, Viviani VR. Transcriptional comparison of the photogenic and non-photogenic tissues of Phrixothrix hirtus (Coleoptera: Phengodidae) and non-luminescent Chauliognathus flavipes (Coleoptera: Cantharidae) give insights on the origin of lanterns in railroad worms. Gene Rep. 2017;7:78–86. https://doi.org/10.1016/j.genrep.2017.02.004.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simão FA, Ioannidis P, et al. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 2016;45:(D1) https://doi.org/10.1093/nar/gkw1119.
Petersen M, Meusemann K, Donath A, Dowling D, Liu S, Peters RS, et al. Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics. 2017;18(1) https://doi.org/10.1186/s12859-017-1529-8.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. https://doi.org/10.1186/1471-2105-10-421.
Article
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slater G, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6(1):31. https://doi.org/10.1186/1471-2105-6-31.
Article
PubMed
PubMed Central
Google Scholar
Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992;89(22):10915–9. https://doi.org/10.1073/pnas.89.22.10915.
Article
CAS
PubMed
PubMed Central
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763. https://doi.org/10.1126/science.1257570.
Article
CAS
PubMed
Google Scholar
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34(Web Server https://doi.org/10.1093/nar/gkl315.
Misof B, Misof KA. Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Syst Biol. 2009;58(1):21–34. https://doi.org/10.1093/sysbio/syp006.
Article
CAS
PubMed
Google Scholar
Kück P, Meusemann K, Dambach J, Thormann B, von Reumont BM, Wägele JW, Misof B. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees. Front Zool. 2010;7(1):10. https://doi.org/10.1186/1742-9994-7-10.
Article
PubMed
PubMed Central
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. https://doi.org/10.1093/molbev/msu300.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.
Article
CAS
PubMed
Google Scholar
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):W232–5. https://doi.org/10.1093/nar/gkw256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TK, Haeseler AV, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. https://doi.org/10.1038/nmeth.4285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008. https://doi.org/10.1093/sysbio/syw037.
Article
PubMed
PubMed Central
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–22. https://doi.org/10.1093/molbev/msx281.
Article
PubMed
Google Scholar
Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004;21(6):1095–109. https://doi.org/10.1093/molbev/msh112.
Article
CAS
PubMed
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 gateway computing environments workshop, GCE, vol. 2010. https://doi.org/10.1109/GCE.2010.5676129.
Grunewald S, Spillner A, Bastkowski S, Bogershausen A, Moulton V. SuperQ: computing Supernetworks from quartets. IEEE/ACM Trans Comput Biol Bioinform. 2013;10(1):151–60. https://doi.org/10.1109/tcbb.2013.8.
Article
PubMed
Google Scholar
Bastkowski S, Mapleson D, Spillner A, Wu T, Balvociute M, Moulton V, SPECTRE. A suite of PhylogEnetiC tools for reticulate evolution. 2017; https://doi.org/10.1101/169177.
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2005;23(2):254–67. https://doi.org/10.1093/molbev/msj030.
Article
PubMed
Google Scholar
Rasnitsyn AP, Quicke DLJ. History of insects. Dordrecht, The Netherlands: Kluwer Academic Publisher; 2002.
Book
Google Scholar
Behrensmeyer AK, Turner A. Taxonomic occurrences of Elateriformia and Scarabaeiformia recorded in the Paleobiology database Fossilworks. 2015. See. http://fossilworks.org
Whalley PES. The systematics and palaeogeography of the lower Jurassic insects of Dorset, England. Bull Br Mus Nat Hist. 1985;39:107–89.
Google Scholar
Heer O. Die Urwelt der Schweiz. Friedrich Schulthess: Zürich; 1865.
Google Scholar
Prokin AA, Makarov KV, Ponomarenko AG, Bashkuev AS. New beetle larvae (Coleoptera: Coptoclavidae, Caraboidea, Polyphaga) from the upper Triassic of Germany. Russ Entomol J. 2013;22(4):259–74.
Google Scholar
Ho SYW, Phillips MJ. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol. 2009;58(3):367–80. https://doi.org/10.1093/sysbio/syp035.
Article
PubMed
Google Scholar
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969–73. https://doi.org/10.1093/molbev/mss075.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3. https://doi.org/10.1093/molbev/msw260.
PubMed
Google Scholar