Wasmann E. Kritisches Verzeichniss der myrmekophilen und termitophilen Arthropoden. Mit Angabe der Lebensweise und mit Beschreibung neuer Arten. Berlin: Felix L. Dames; 1894.
Book
Google Scholar
Hölldobler B, Wilson EO. The ants. Cambridge, MA: Harvard University Press; 1990.
Book
Google Scholar
Kistner DH. Social and evolutionary significance of social insect symbionts. In: Hermann HR, editor. Social insects. New York, NY: Academic Press; 1979. p. 339–413.
Chapter
Google Scholar
Parker J. Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecol News. 2016;22:65–108.
Google Scholar
Rettenmeyer CW, Rettenmeyer ME, Joseph J, Berghoff SM. The largest animal association centered on one species: the army ant Eciton burchellii and its more than 300 associates. Insect Soc. 2011;58:281–92.
Article
Google Scholar
Parker J, Grimaldi DA. Specialized myrmecophily at the ecological dawn of modern ants. Curr Biol. 2014;24:2428–34.
Article
CAS
PubMed
Google Scholar
Thomas JA, Schönrogge K, Elmes GW. Specializations and host associations of social parasites of ants. In: Fellowes MDE, Holloway GJ, Rolff J, editors. Insect evolutionary ecology. Reading: Proceedings of the Royal Entomological Society’s 22nd symposium: CABI; 2005. p. 475–514.
Kistner DH. The social insects’ bestiary. In: Hermann HR, editor. Social insects. New York, NY: Academic Press; 1982. p. 1–244.
Google Scholar
Nash DR, Boomsma JJ. Communication between hosts and social parasites. In: D’Ettorre P, Hughes DP, editors. Sociobiology of communication: an interdisciplinary approach. New York, NY: Oxford University Press; 2008. p. 55–79.
Chapter
Google Scholar
Schmid-Hempel P. Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. New York, NY: Oxford University Press; 2011.
Google Scholar
Ivens ABF, von Beeren C, Blüthgen N, Kronauer DJC. Studying the complex communities of ants and their symbionts using ecological network analysis. Annu Rev Entomol. 2016;61:353–71.
Article
CAS
PubMed
Google Scholar
Witek M, Barbero F, Markó B. Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insect Soc. 2014;61:307–23.
Article
Google Scholar
Elizalde L, Patrock R, Disney R, Folgrant P. Spatial and temporal variation in host–parasitoid interactions: leafcutter ant hosts and their phorid parasitoids. Ecol Entomol. 2017; https://doi.org/10.1111/een.12477.
Müller CB, Adriaanse ICT, Belshaw R, Godfray HCJ. The structure of an aphid-parasitoid community. J Anim Ecol. 1999;68:346–70.
Article
Google Scholar
Parmentier T, Dekoninck W, Wenseleers T. A highly diverse microcosm in a hostile world: a review on the associates of red wood ants (Formica rufa group). Insect Soc. 2014;61:229–37.
Article
Google Scholar
Parmentier T, Dekoninck W, Wenseleers T. Do well-integrated species of an inquiline community have a lower brood predation tendency? A test using red wood ant myrmecophiles. BMC Evol Biol. 2016;16:12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Parmentier T, Dekoninck W, Wenseleers T. Arthropods associate with their red wood ant host without matching nestmate recognition cues. J Chem Ecol. 2017;43:644–61.
Article
CAS
PubMed
Google Scholar
Akino T. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol News. 2008;11:173–81.
Lenoir A, d’Ettorre P, Errard C, Hefetz A. Chemical ecology and social parasitism in ants. Annu Rev Entomol. 2001;46:573–99.
Article
CAS
PubMed
Google Scholar
von Beeren C, Maruyama M, Kronauer DJC. Community sampling and integrative taxonomy reveal new species and host specificity in the army ant-associated beetle genus Tetradonia (Coleoptera, Staphylinidae, Aleocharinae). PLoS One. 2016;11:e0165056.
Article
PubMed
PubMed Central
CAS
Google Scholar
von Beeren C, Maruyama M, Kronauer DJC. Cryptic diversity, high host specificity and reproductive synchronization in army ant-associated Vatesus beetles. Mol Ecol. 2016;25:990–1005.
Article
PubMed
Google Scholar
Tishechkin AK, Kronauer DJC, von Beeren C. Taxonomic review and natural history notes of the army ant-associated beetle genus Ecclisister Reichensperger (Coleoptera: Histeridae: Haeterinae). Coleopt Bull. 2017;71:279–88.
Article
Google Scholar
von Beeren C, Tishechkin AK. Nymphister kronaueri von Beeren & Tishechkin sp. nov., an army ant-associated beetle species (Coleoptera: Histeridae: Haeteriinae) with an exceptional mechanism of phoresy. BMC Zool. 2017;2:3.
Article
Google Scholar
Akre RD, Rettenmeyer CW. Behavior of Staphylinidae associated with army ants (Formicidae: Ecitonini). J Kansas Entomol Soc. 1966;39:745–82.
Google Scholar
Maruyama M, Parker J. Deep-time convergence in rove beetle symbionts of army ants. Curr Biol. 2017;27:920–6.
Article
CAS
PubMed
Google Scholar
Jacobson HR, Kistner DH. A redescription of the myrmecophilous genus Tetradonia and a description of a new, closely related, free living genus Tetradonella (Coleoptera: Staphylinidae). Sociobiology. 1998;31:151–279.
Google Scholar
Seevers CH. The systematics, evolution and zoogeography of staphylinid beetles, associated with army ants (Coleoptera, Staphylinidae). Fieldiana Zool. 1965;47:137–351.
Google Scholar
Vander Meer RK, Wojcik DP. Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science. 1982;218:806–8.
Article
CAS
Google Scholar
Di Giulio A, Maurizi E, Barbero F, Sala M, Fattorini S, Balletto E, et al. The pied piper: a parasitic beetle’s melodies modulate ant behaviours. PLoS One. 2015;10:e0130541.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barbero F, Thomas JA, Bonelli S, Balletto E, Schönrogge K. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science. 2009;323:782–5.
Article
CAS
PubMed
Google Scholar
Gotwald WH Jr. Army ants: the biology of social predation. Comstock Pub. Associates: Ithaca, NY; 1995.
Google Scholar
Kistner DH, Jacobson HR. Cladistic analysis and taxonomic revision of the ecitophilous tribe Ecitocharini with studies of their behavior and evolution (Coleoptera, Staphylinidae, Aleocharinae). Sociobiology. 1990;17:333–480.
Google Scholar
Pérez-Espona S, Goodall-Copestake WP, Berghoff SM, Edwards KJ, Franks NR. Army imposters: diversification of army ant-mimicking beetles with their Eciton hosts. Insect Soc. 2017; https://doi.org/10.1007/s00040-017-0588-1:1%2D17.
Rettenmeyer CW. Insect mimicry. Annu Rev Entomol. 1970;15:43–74.
Article
Google Scholar
Schneirla TC. Army ants: a study in social organization. Topoff HR, editor. San Francisco, CA: W. H. Freeman & Co.; 1971.
Google Scholar
Bulova S, Purce K, Khodak P, Sulger E, O’Donnell S. Into the black and back: the ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae). Sci Nat. 2016;103:31.
Article
CAS
Google Scholar
Wasmann E, Aachen S. Die Ameisenmimikry. Naturwissenschaften. 1925;13:944–51.
Article
Google Scholar
Hefetz A. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) - interplay of colony odor uniformity and odor idiosyncrasy. A review Myrmecol News. 2007;10:59–68.
Blomquist GJ, Bagnères A-G. Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge: Cambridge University Press; 2010.
Book
Google Scholar
Leonhardt SD, Menzel F, Nehring V, Schmitt T. Ecology and evolution of communication in social insects. Cell. 2016;164:1277–87.
Article
CAS
PubMed
Google Scholar
von Beeren C, Schulz S, Hashim R, Witte V. Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecol. 2011;11:30.
Article
PubMed Central
Google Scholar
Mayr G. Ueber Eciton-Labidus Wien Entomol Ztg. 1886;5:115–22.
Google Scholar
Fabricius JC. Species insectorum, exhibentes eorum differentias specificas, synonyma auctorum, loca natalia, metamorphosin, adjectis observationibus, descriptionibus. Hamburgi et Kilonii,impensis CE Bohnii; 1781.
Google Scholar
Roger J. Die neu aufgeführten Gattungen und Arten meines Formiciden-Verzeichnisses nebst Ergänzung einiger früher gegebenen Beschreibungen. Berl Entomol Zeit. 1863;7:131–214.
Article
Google Scholar
Borgmeier T. Die Wanderameisen der Neotropischen Region (Hym. Formicidae): Eine taxonomisch-biologische Studie nebst Bemerkungen ueber Grundfragen der Systematik. Stud Entomol. 1955;3:1–716.
Google Scholar
Weber NA. A new Panama Eciton (Hymenoptera, Formicidae). Am Mus Novit. 1949;1441:1–8.
Google Scholar
Reichensperger A. Beitrag zur Kenntnis der Myrmekophilenfauna Brasiliens und Costa Ricas III.(Col. Staphyl. Hist.). Arb morph taxon Ent Berlin-Dahlem. 1935;2:188–218.
Google Scholar
Reichensperger A. Neue Beiträge zur Artenkenntnis und zur Lebensweise myrmekophiler Histeriden. Verh d III Int Entomol Kongr (Zürich). 1926;2:184–203.
Google Scholar
Watkins JF II. The army ants of Mexico (Hymenoptera: Formicidae: Ecitoninae). J Kansas Entomol Soc. 1982;55:197–247.
Google Scholar
Watkins JF II. The identification and distribution of new world army ants (Dorylinae: Formicidae). Waco, TX: The Markham Press Fund of Baylor University Press; 1976.
Google Scholar
Longino J. Ants of Costa Rica. http://ants.biology.utah.edu/~longino/AntsofCostaRica.html. 2010.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Marine Biol Biotechnol. 1994;3:294–9.
CAS
Google Scholar
von Beeren C, Stoeckle MY, Xia J, Burke G, Kronauer DJC. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana). Sci Rep. 2015;5:8297.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock, S, Buxton, S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9
Parker M, Stones-Havas S, Starger C, Meyer C. Laboratory information management systems for DNA barcoding. In: Kress WJ, Erickson DL, editors. DNA barcodes: methods and protocols. Methods in molecular biology, vol. 858; 2012. p. 269–310.
Chapter
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franks NR. Reproduction, foraging efficiency and worker polymorphism in army ants. In: Hölldobler B, Lindauer M, editors. Experimental Behavioural ecology and sociobiology. Fortschritte der Zoologie. Stuttgart, New York: G Fischer Verlag; 1985. p. 91–107.
Google Scholar
von Beeren C, Hashim R, Witte V. The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry. J Chem Ecol. 2012;38:262–71.
Article
PubMed
CAS
Google Scholar
von Beeren C, Maruyama M, Hashim R, Witte V. Differential host defense against multiple parasites in ants. Evol Ecol. 2011;25:259–76.
Article
Google Scholar
Team RDC. R: a language and environment for statistical computing R Foundation for Statistical Computing, 2.13. Vienna; 2011. isbn:ISBN 3-900051-07-0. URL http://www. R-project. org
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583–621.
Article
Google Scholar
Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6:241–52.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300.
Google Scholar
Pohlert T. The pairwise multiple comparison of mean ranks package (PMCMR). R package. 2014; http://CRAN.R-project.org/package=PMCMR.
Google Scholar
Van den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A. 1963;11:463–71.
Article
CAS
Google Scholar
Carlson DA, Bernier UR, Sutton BD. Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol. 1998;24:1845–65.
Article
CAS
Google Scholar
Schulz S. Composition of the silk lipids of the spider Nephila clavipes. Lipids. 2001;36:637–47.
Article
CAS
PubMed
Google Scholar
Dunkelblum E, Tan SH, Silk PJ. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol. 1985;11:265–77.
Article
CAS
PubMed
Google Scholar
Brückner A, Heethoff M. A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology. 2017;27:33–46.
Article
CAS
Google Scholar
Lachenbruch PA, Goldstein M. Discriminant analysis. Biometrics. 1979;35:69–85.
Article
Google Scholar
Anderson MJ. Permutational multivariate analysis of variance volume 26. Auckland: Department of Statistics, University of Auckland; 2005. p. 32–46.
Google Scholar
Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:325–49.
Article
Google Scholar
Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5.
Article
CAS
PubMed
Google Scholar
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community ecology package. 2007;10:631–7.
Google Scholar
Anderson M, Gorley RN, Clarke RK. Permanova+ for primer: guide to software and statistical methods. Primer-E: Plymouth; 2008.
Google Scholar
Brückner A, Heethoff M, Blüthgen N. The relationship between epicuticular long-chained hydrocarbons and surface area-volume ratios in insects (Diptera, Hymenoptera, Lepidoptera). PLoS One. 2017;12:e0175001.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kühsel S, Brückner A, Schmelzle S, Heethoff M, Blüthgen N. Surface area–volume ratios in insects. Insect Sci. 2017;24:829–41.
Article
PubMed
Google Scholar
Galilei G. Discorsi e dimostrazioni matematiche intorno à due nuove scienze attenenti alla mecanica & i movimenti locali. Leida: Elsevier; 1638.
Google Scholar
Crozier RH, Dix MW. Analysis of two genetic models for the innate components of colony odor in social hymenoptera. Behav Ecol Sociobiol. 1979;4:217–24.
Article
Google Scholar
Reichensperger A. Ecitophilen aus Costa Rica (II), Brasilien und Peru (staph. Hist. Clavig.). Rev Entomol. 1933;3:179–94.
Google Scholar
Stadler B, Dixon T. Mutualism: ants and their insect partners. Cambridge: Cambridge University Press; 2008.
Book
Google Scholar
Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N. Specialization, constraints, and conflicting interests in mutualistic networks. Curr Biol. 2007;17:341–6.
Article
PubMed
CAS
Google Scholar
Rettenmeyer CW. Arthropods associated with Neotropical army ants with a review of the behavior of these ants (Arthropoda; Formicidae: Dorylinae). PhD thesis. University of Kansas; 1961.
Maruyama M, Akino T, Hashim R, Komatsu T. Behavior and cuticular Hydrocarbons of myrmecophilous insects (Coleoptera: Staphylinidae; Diptera: Phoridae; Thysanura) associated with asian Aenictus army ants (Hymenoptera; Formicidae). Sociobiology. 2009;54:19–35.
von Beeren C, Pohl S, Witte V. On the use of adaptive resemblance terms in chemical ecology. Psyche. 2012;2012:635761.
Google Scholar
Dettner K, Liepert C. Chemical mimicry and camouflage. Annu Rev Entomol. 1994;39:129–54.
Article
CAS
Google Scholar
van Zweden JS, d’Ettorre P. Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnères A-G, editors. Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge: Cambridge University Press; 2010. p. 222–43.
Chapter
Google Scholar
Sharma KR, Enzmann BL, Schmidt Y, Moore D, Jones GR, Parker J, et al. Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna. Cell Rep. 2015;12:1261–71.
Article
CAS
PubMed
Google Scholar
Sturgis SJ, Gordon DM. Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecol News. 2012;16:101–10.
Google Scholar
Witte V, Schliessmann D, Hashim R. Attack or call for help? Rapid individual decisions in a group-hunting ant. Behav Ecol. 2010;21:1040–7.
Article
Google Scholar
Witte V, Leingärtner A, Sabaß L, Hashim R, Foitzik S. Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim Behav. 2008;76:1477–86.
Article
Google Scholar
Witek M, Casacci LP, Barbero F, Patricelli D, Sala M, Bossi S, et al. Interspecific relationships in co-occurring populations of social parasites and their host ants. Biol J Linn Soc Lond. 2013;109:699–709.
Article
Google Scholar
Lenoir A, Chalon Q, Carvajal A, Ruel C, Barroso Á, Lackner T, et al. Chemical integration of myrmecophilous guests in Aphaenogaster ant nests. Psyche. 2012;2012:840860.
Google Scholar
Pérez-Lachaud G, Bartolo-Reyes JC, Quiroa-Montalván CM, Cruz-López L, Lenoir A, Lachaud J-P. How to escape from the host nest: imperfect chemical mimicry in eucharitid parasitoids and exploitation of the ants’ hygienic behavior. J Insect Physiol. 2015;75:63–72.
Article
PubMed
CAS
Google Scholar
Lenoir A, Háva J, Hefetz A, Dahbi A, Cerdá X, Boulay R. Chemical integration of Thorictus myrmecophilous beetles into Cataglyphis ant nests. Biochem Syst Ecol. 2013;51:335–42.
Article
CAS
Google Scholar
Howard RW, McDaniel CA, Blomquist GJ. Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host. Science. 1980;210:431–3.
Article
CAS
PubMed
Google Scholar
Vander Meer RK, Jouvenaz DP, Wojcik DP. Chemical mimicry in a parasitoid (Hymenoptera: Eucharitidae) of fire ants (Hymenoptera: Formicidae). J Chem Ecol. 1989;15:2247–61.
Article
CAS
PubMed
Google Scholar
Witte V, Foitzik S, Hashim R, Maschwitz U, Schulz S. Fine tuning of social integration by two myrmecophiles of the ponerine army ant Leptogenys distinguenda. J Chem Ecol. 2009;35:355–67.
Article
CAS
PubMed
Google Scholar
Allan RA, Capon RJ, Brown WV, Elgar MA. Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina. J Chem Ecol. 2002;28:835–48.
Article
CAS
PubMed
Google Scholar
Howard RW, Akre RD, Garnett WB. Chemical mimicry in an obligate predator of carpenter ants (Hymenoptera: Formicidae). Ann Entomol Soc Am. 1990;83:607–16.
Article
CAS
Google Scholar
Elgar MA, Allan RA. Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften. 2004;91:143–7.
Article
CAS
PubMed
Google Scholar
Akino T, Knapp JJ, Thomas JA, Elmes GW. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B. 1999;266:1419–26.
Article
CAS
Google Scholar
Elmes GW, Akino T, Thomas JA, Clarke RT, Knapp JJ. Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia. 2002;130:525–35.
Article
CAS
PubMed
Google Scholar
Schlick-Steiner BC, Steiner FM, Höttinger H, Nikiforov A, Mistrik R, Schafellner C, et al. A butterfly’s chemical key to various ant forts: intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften. 2004;91:209–14.
Article
CAS
PubMed
Google Scholar
Als TD, Nash DR, Boomsma JJ. Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species. Anim Behav. 2001;62:99–106.
Article
Google Scholar
Solazzo G, Moritz RFA, Settele J. Choice behaviour of Myrmica rubra workers between ant larvae and larvae of their Phengaris (Maculinea) nausithous nest parasites. Insect Soc. 2013;60:57–64.
Article
Google Scholar
Nash DR, Als TD, Maile R, Jones GR, Boomsma JJ. A mosaic of chemical coevolution in a large blue butterfly. Science. 2008;319:88–90.
Article
CAS
PubMed
Google Scholar
Ichinose K, Lenoir A. Ontogeny of hydrocarbon profiles in the ant Aphaenogaster senilis and effects of social isolation. C R Biol. 2009;332:697–703.
Article
CAS
PubMed
Google Scholar
Nehring V, Dani FR, Calamai L, Turillazzi S, Bohn H, Klass K-D, et al. Chemical disguise of myrmecophilous cockroaches and its implications for understanding nestmate recognition mechanisms in leaf-cutting ants. BMC Ecol. 2016;16:35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maruyama M, Disney RHL, Hashim R. Three new species of legless, wingless scuttle flies (Diptera: Phoridae) associated with army ants (Hymenoptera: Formicidae) in Malaysia. Sociobiology. 2008;52:485–96.
Google Scholar
Thomas JA, Schönrogge K, Bonelli S, Barbero F, Balletto E. Corruption of ant acoustical signals by mimetic social parasites: Maculinea butterflies achieve elevated status in host societies by mimicking the acoustics of queen ants. Commun Integr Biol. 2010;3:169–71.
Article
PubMed
PubMed Central
Google Scholar
Hölldobler B. Zur Physiologie der Gast-Wirt-Beziehungen (Myrmecophilie) bei Ameisen. II. Das Gastverhältnis des imaginalen Atemeles pubicollis Bris. (Col. Staphylinidae) zu Myrmica und Formica (Hym. Formicidae). Z vergl Physiologie. 1970;66:215–50.
Article
Google Scholar
Stoeffler M, Tolasch T, Steidle JLM. Three beetles—three concepts. Different defensive strategies of congeneric myrmecophilous beetles. Behav Ecol Sociobiol. 2011;65:1605–13.
Article
Google Scholar
Stoeffler M, Maier TS, Tolasch T, Steidle JLM. Foreign-language skills in rove-beetles? Evidence for chemical mimicry of ant alarm pheromones in myrmecophilous Pella beetles (Coleoptera: Staphylinidae). J Chem Ecol. 2007;33:1382–92.
Article
CAS
PubMed
Google Scholar
Hojo MK, Pierce NE, Tsuji K. Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr Biol. 2015;25:2260–4.
Article
CAS
PubMed
Google Scholar
Cushing PE. Spider-ant associations: an updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche. 2012;2012:151989.
Google Scholar
Komatsu T, Maruyama M, Itino T. Behavioral differences between two ant cricket species in Nansei Islands: host-specialist versus host-generalist. Insect Soc. 2009;56:389–96.
Article
Google Scholar
Henderson G, Akre RD. Biology of the myrmecophilous cricket, Myrmecophila manni (Orthoptera: Gryllidae). J Kansas Entomol Soc. 1986;59:454–67.