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Abstract

Corticosteroid-binding globulin (CBG) is a high-affinity plasma protein that binds glucocorticoids (GCs) and regulates
their biological activities. The structural and functional properties of CBG are crucial to understanding the biological
actions of GCs in mediating stress responses and the underlying mechanisms. In response to stress, avian CBGs
modulate the free and bound fractions of plasma corticosterone (CORT, the main GC), enabling them to mediate the
physiological and behavioral responses that are fundamental for balancing the trade-off of energetic investment in
reproduction, immunity, growth, metabolism and survival, including adaptations to extreme high-elevation or high-
latitude environments. Unlike other vertebrates, avian CBGs substitute for sex hormone-binding globulin (SHBG) in
transporting androgens and regulating their bioavailability, since birds lack an Shbg gene. The three-dimensional
structures of avian and mammalian CBGs are highly conserved, but the steroid-binding site topographies and their
modes of binding steroids differ. Given that CBG serves as the primary transporter of both GCs and reproductive
hormones in birds, we aim to review the biological properties of avian CBGs in the context of steroid hormone
transportation, stress responses and adaptation to harsh environments, and to provide insight into evolutionary
adaptations in CBG functions occurred to accommodate physiological and endocrine changes in birds compared with
mammals.
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Corticosteroid-binding globulin (CBG) is a major
determinant of glucocorticoid (GC) actions during
stress
The stress response in vertebrates, including activation
of the hypothalamic-pituitary-adrenal (HPA) axis and
sympathetic adrenomedullary (SA) system, enables them

to cope with various environmental perturbations and
challenges, facilitating physiological and behavioral adap-
tations. The HPA axis is governed by the secretion of
the corticotropin-releasing hormone (CRH) from the
hypothalamus, which triggers the release of the adreno-
corticotropic hormone (ACTH) from the anterior pituit-
ary into the circulation. In turn, ACTH exerts its actions
on the adrenal cortex and initiates the rapid release of
glucocorticoids (GCs) into the blood. As the principal
active forms of GCs, cortisol and corticosterone (CORT)
are fundamental for orchestrating a series of behavioral
and physiological activities in response to environmental
challenges and restoring the homeostatic balance [1].
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During acute stressful situations, rapid elevations in
plasma GCs exert a plethora of central and systemic ac-
tivities that are vital for promoting survival, such as
acute enhancement of metabolic processes, inflamma-
tory reaction, and energy mobilization. Subsequently, the
negative feedback of GCs on the hypothalamus and pitu-
itary effectively inhibits the adrenal secretion of GCs,
allowing a return to behavioral and physiological homeo-
stasis. On the other hand, chronic activation of the HPA
axis and long-term elevated concentrations of GCs cause
deleterious effects on reproduction, immunity, develop-
ment, metabolic activities, behavior, etc., resulting in ser-
ious or even life-threatening sequelae [2].
The HPA axis is involved in many physiological func-

tions making an organism’s response to environmental
changes appropriate for its reproductive status. There
exists a reciprocal relationship between the HPA and the
hypothalamic-pituitary-gonadal (HPG) axes. Activation
of the HPA axis and GC secretion, especially in response
to extreme stressors, has an inhibitory effect on gonadal
hormone secretion through central actions in the hypo-
thalamus and pituitary, causing potential cessation of
reproduction and facilitating survival under extreme cir-
cumstances [3, 4]. Alternatively, sex hormones such as
testosterone and estrogen can modulate the response of
the HPA axis by influencing the response and secretion
of releasing factors and GCs [3, 5], thereby blunting
stress responses to preserve reproduction.
In the systematic circulation, biologically active ste-

roids are transported by steroid-binding proteins, includ-
ing corticosteroid-binding globulin (CBG, also known as
transcortin) and sex hormone-binding globulin (SHBG),
with the former transporting GCs and progesterone, and
the latter carrying androgens and estrogens. Mendel’s
Free Hormone Hypothesis states that free hormone in
the plasma is biologically active [6]; on the other hand,
the protein-bound hormone concentration also affects
intracellular hormone concentrations and its biologic ac-
tivity [7]. Plasma CBG and SHBG bind steroids with
high affinity and specificity, and play important roles in
controlling steroid access to target tissues [8, 9].
The steroid-binding properties of CBG in the plasma

have been determined in mammals and most non-
mammalian terrestrial vertebrates, including amphibians,
reptiles and birds [10]. In humans and rats, CBG binds
as much as 90% of circulating cortisol or CORT [10, 11].
In addition to GCs, CBG also transports progesterone
with a comparably high affinity [10, 12, 13]. The CBG
protein shares little sequence homology with other ster-
oid carriers, and belongs to the serine proteinase inhibi-
tor A (SERPINA) superfamily, but lacks proteinase
inhibitory properties [14]. Crystal structure investiga-
tions of rat or human CBG have revealed that it folds
into a stressed SERPIN conformation when it binds GCs

and progesterone, with the reactive center loop (RCL)
fully exposed from the central β-sheet A; whereas it
adopts a relaxed conformation when RCL undergoes
proteolysis and inserts within the protein core, causing
the irreversible release of its bound steroids [15–17]. In
this allosteric mechanism that modulates steroid binding
and release, helix D plays a key role via coupling RCL
movement and the integrity of the steroid-binding site
[18]. Therefore, the function of CBG in terms of its spe-
cific ligand binding and targeted steroid release links
with the positioning of the RCL prior to and after prote-
ase cleavage [18]. Importantly, proteolytic cleavage of
CBG results in a marked but not a complete loss of ster-
oid binding activity, characterized by a ten-fold lower af-
finity. Thus circulatory GCs are buffered by two pools,
intact CBG with a high affinity and to a far lesser extent
by proteolytically cleaved CBG with a low affinity [19].
The latter pool, as a backup buffer to that of the intact
CBG, is of physiological significance, particularly in in-
flammation and sepsis, representing a mechanism for
the delivery and probably a direct release of the hor-
mone to inflammatory loci [11]. Furthermore, plasma
CBG is a glycoprotein, with 30% of its mass represented
by N-linked oligosaccharide chain [14]. Mammalian
CBGs have five to six N-glycosylation sites, one of which
resides in RCLs in human and rat CBGs [20]. Glycosyla-
tion of CBGs influences steroid-binding activity, and dis-
ruption of a highly conserved N-glycosylation site causes
a loss of steroid binding [20, 21].
It is therefore evident that CBG has functions beyond a

simple plasma steroid transporter, and plays a major role
in bioavailability, local delivery, and cellular signal trans-
duction of GCs [22, 23]. This is evidenced in a mouse
model genetically deficient for CBG, which exhibits fa-
tigue, poor response to septic shock, and an inability to
appropriately respond to excessive free CORT [22]. It has
also been reported that CBG-deficient mice have markedly
reduced total circulating CORT at rest, insufficient GC
signaling, decreased endocrine (free CORT concentration)
and behavioral responses after prolonged stress, as well as
intolerance to life-threatening inflammation [24]. Interest-
ingly, free CORT levels are normal under resting condi-
tions in CBG-deficient mice [24], leading to the debate
that the primary function of CBG seems to be the reten-
tion of a circulating pool readily available in an emergency
situation [25]. In fact, the critical role of CBG as a cortisol
reservoir, in particular for stress-induced CORT delivery
to the brain, has been underlined by the following studies.
CBG-deficient mice are insensitive to stress, have a
blunted CORT response, no free CORT rise in the hippo-
campus and increased CORT clearance, stemming from a
smaller CORT reservoir in blood [26, 27]). Remarkably,
CBG is intrinsically expressed in various brain regions and
in neurons and glial cells of humans and mice [28]. Thus,
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given that CORT unbound to CBG are cleared from the
blood more quickly, the maintenance of a plasma pool of
GCs by CBG should always be considered.
Patients with CBG deficiencies caused by nonsynonymous

single nucleotide polymorphisms (SNPs) and amino acid
substitutions often present with low plasma cortisol levels,
are overweight, and suffer from chronic pain and/or fatigue.
For example, homozygous or heterozygous carriers of CBG
Lyon (D367N) and/or W12stop (W12 null mutation) have
chronic asthenia, fatigue, hypotension, low morning total
plasma cortisol levels, abnormal regulation of HPA axis and
reduced cortisol peak levels upon ACTH stimulation [29,
30]. Mutations causing CBG deficiencies include transcortin
Leuven (L93H) [31–34], Lyon (D367N) [29, 30, 35–37] and
E102G [38] that have reduced steroid-binding affinity or
capacity; G237V [39] and W371S [35] characterized by no
detectable cortisol-binding activity; W12stop [30, 36] and
L5stop [40] that are not produced due to null mutations;
A51V [38, 41] that has reduced protein production and se-
cretion. Most of these CBG deficiencies are considered rare,
except for CBG A51V, which occurs at a relatively high fre-
quency of approximately 1:36 in over 2000 Han Chinese
[38]. Furthermore, the CBG rs7161521 SNP is also reported
to be associated with diurnal and stress-induced salivary cor-
tisol and HPA axis activity in children [42]. Thus, these mu-
tations that influence CBG production or its cortisol-binding
activity raised the functional importance of CBG. Free corti-
sol levels in individuals carrying D367N are within normal
ranges [29], suggesting a net result or a homeostatic balance
of reduced total cortisol level and appropriate response of
the hypothalamic/pituitary adrenal axis.
Overall, mammalian CBGs have been characterized at

the molecular level. SerpinA6 genes, which encode CBG,
originated as a result of SerpinA gene duplications in early
terrestrial vertebrate genomes [43]. Unlike mammalian
CBGs, bird CBGs bind progesterone and androgen with
high affinities and determine their biological activities [13,
44]. Moreover, accumulating evidence has documented
the function of avian CBGs in endocrine and neural re-
sponses to stressors. The main goal of this review is to ad-
dress the conserved/specialized functions of avian CBGs
and to provide some insight into how they evolved to
control steroid transport and bioavailability in response to
environmental and physiological stressors.

Coping with changing environments and adaptive
stress responses in wild birds
When an unpredictable circumstance such as predation or
adverse weather conditions occurs, a short-term stress re-
sponse so called the “fight-or-flight” response is triggered
within seconds to minutes in vertebrates. In birds, CORT is
the primary GC involved in the modulation of stress re-
sponse. In wild-caught birds subjected to a standardized
capture-handling-restraint stress protocol, CORT levels

usually increase within several minutes of initial capture and
handling, then sustain until 30 to 60min, and decline after-
wards [45, 46]. Such an acute stress response is generally
beneficial for immediate survival. However, if the stressor
continues, CORT levels remain elevated and the bird enters
long-term chronic stress response [47].
As volant vertebrates, birds have the widespread distri-

bution range covering diverse environments globally, and
display extraordinary diversities and plasticity in pheno-
typic traits and behavior, allowing them to adapt to the
most extreme environments on the Earth, from the polar
region to the Himalayan alpine. Under extreme condi-
tions, birds have evolved various coping strategies of stress
physiology, among which the dependence on extreme
habitats is related to the balance between stress response
patterns and reproductive requirements [48]. For instance,
the Snow Petrel, Pagodroma nivea, is a long-lived bird
with very low fecundity and often breeds in ice fields on
or near the Antarctic continent. Young birds show in-
creased CORT levels in response to acute stress and a ten-
dency of nest abandonment, but this breeding disruption
is also compromised in older individuals [48]. Indeed, it
has been widely recognized that the GC response of arctic
birds to unpredictable perturbation factors, such as in-
clement weather, patchy food and predators, is suppressed
while breeding, allowing continued nesting and successful
reproduction [49–52].
Over the last two centuries, urbanization, character-

ized by human population aggregation and urban expan-
sion, has driven unprecedented environmental and
ecological changes. Consequently, wild birds have had to
face emerging stressors caused by profound changes in
their habitats and food resources. A number of bird spe-
cies that have adapted to urbanization are manifested by
their strong dispersal abilities and a high level of risk-
taking [53]. In a large-scale study of the juvenile House
Sparrow (Passer domesticus) in urban and rural sites,
feather CORT levels are positively correlated with the
extent of urbanization and stress-induced plasma CORT
levels, suggesting the impact of urban environmental
conditions on stress physiology and sensitivity [54].
However, other studies show inconsistent profiles of
stress physiology in different populations. The European
Blackbird (Turdus merula) in urban areas have lower
plasma CORT levels than their conspecifics living in for-
ests [55]. The human commensal population of the
House Sparrow shows lower stress-induced free CORT
levels than its non-commensal population living in an-
cestral habitats [56]. In the urban populations of the
Song Sparrow (Melospiza melodia) and the adult House
Sparrow along the urbanization gradient, no detrimental
effects of urbanization on stress physiology are observed
[57, 58]. Notably, in the extreme environment of the Ti-
betan Plateau, there are no significant differences in
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acute adrenocortical responses in the Eurasian Tree
Sparrow (Passer montanus) relative to the lowland popu-
lations, further suggesting a mask effect by human activ-
ities, food resources and shelter [46, 50]. Overall,
different urban birds have different coping styles and
urbanization-adapted stress physiology. The reduced
stress response could be an adaptive strategy for species
that adjust to and thrive in the urban environment,
avoiding deleterious effects caused by chronic stress.

The function of CBGs in avian stress responses
While modulating CORT synthesis/sensitivity of the
HPA axis to feedback is one mechanism, altering CBG
activity is another way for modulating the stress sensitiv-
ity to respond to environmental perturbations. In birds,
CBG has been proved to function as a dynamic compo-
nent and an essential mediator of the stress physiology
in response to unpredictable perturbations. As afore-
mentioned, free CORT is the biologically active fraction,
while the CBG-bound fraction is a biologically relevant
reservoir. Thus, the measurement of free GC concentra-
tions in stress response has constraints and is not fully
reliable [59]. In this respect, plasma levels of total
CORT, free CORT and the binding affinity/capacity of
CBG are all fundamental measurements in evaluative
and comparative field studies to assess stress physiology
of different bird species [59, 60]. For example, in the
House Sparrow, CBG levels change correspondingly with
total CORT levels, resulting in static free CORT concen-
trations year-round, whereas in the White-crowned
Sparrow (Zonotrichia leucophrys), levels of CBG and free
CORT change simultaneously when total CORT levels
remain stable [61]. It is becoming clear that in response
to stressors, changes in circulating GC levels and CBG
capacity act in species-, life-history stage- and habitat
environment-specific manners.

Avian CBGs in species-specific stress responses
In response to the acute stress, the CBG binding capacity
can also change when the total CORT increased signifi-
cantly, which would result in remarkable variations in the
circulating free CORT levels. Although the majority of
bird species can remain CBG capacity invariable in re-
sponse to acute handling stress, several species exhibit a
decrease in the CBG binding capacities (reviewed by [62]).
For example, several species such as the Common Tern
(Sterna hirundo), the Red Crossbill (Loxia curvirostra), the
Zebra Finch (Taeniopygia guttata), the American Kestrel
(Falco sparverius) and the Laysan Albatross (Phoebastria
immutabilis), CBG steroid-binding capacity significantly
declines within 30–60min of capture stress, serving to in-
crease free CORT levels in response to acute stressors [62,
63]. Some other species remain static CBG capacities in
response to the acute stress of capture-handling-restraint

[63], e.g., the House Sparrow [63], the European Starlings
(Sturnus vulgaris) [63], the Japanese Quail (Coturnix ja-
ponica) [63], the White-crowned Sparrow [63], the Black-
legged Kittiwakes (Rissa tridactyla) [64], the Albert’s Tow-
hee (Pipilo aberti) [65], the Canyon Towhee (Pipilo fuscus)
[65], the Curve-billed Thrasher (Toxostoma curvirostre)
[65] and the Northern Mockingbird (Mimus polyglottos)
[65]. Interestingly, the CBG binding capacities of Eurasian
tree sparrows can even increase in response to acute stress
in the second nestling stage, although it remains stable in
other life-history stages [66]. Furthermore, the CBG bind-
ing capacity also varies with nutrient status. In the White-
crowned Sparrow, food deprivation at 1, 2, and 6 h signifi-
cantly increases free CORT levels above baseline, whereas
circulating levels of CBG are significantly reduced at 22-h
fasting when free CORT reaches normal levels [67]. Such
discrepancy of CBG changes in response to acute stress
and nutrient status may be explained by some underlying
protective mechanisms, such as the increase of bioavail-
able (free) CORT for minimizing extraordinary levels of
CORT secretion, the regulation of negative feedback, the
increase of glucose utilization, or upregulation of CORT-
dependent metabolic functions (Reviewed by [59]). It is in-
teresting that plasma CBG levels respond very dynamically
in response to stress in some species but not in others,
which suggests either rapid proteolysis of CBG or a
marked increase in its plasma clearance. Considering that
the causes and consequences of the variations in CBG
binding capacity are rather complex that is involved in a
suite of energy-dependent biochemical and molecular
pathways [68, 69], further studies are needed to test the
biological, ecological significance of CBG binding varia-
tions during the acute stress response or energy-
dependent stress.
Apart from the binding capacity, the CBG binding affin-

ity of birds also varies significantly with species (Reviewed
by [62]), e.g., from 1.48 nM (Zebra Finch, Taeniopygia gut-
tata) [63] to 25.4 nM (Pied Flycatcher, Ficedula hypo-
leuca) [70]). The observed species-specific CBG binding
affinity could derive from the CBG protein topological
structures. How the key amino acid sites evolve to in-
crease the CBG binding affinity is critically essential for
better understanding the interspecies differences of CBG
binding affinity. Unfortunately, limited information is
available for explaining this question to date. Further stud-
ies integrating the fields of biological function, phylogeny,
and evolution are needed to uncover these unsolved
questions.

Life-history stage dependent variations of avian CBGs and
stress responses
Birds have evolved a variety of life-history strategies in re-
sponse to seasonality [71, 72]. Theoretically, animals with
fewer reproductive opportunities are expected to invest
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more value over current reproduction. Birds with fewer
breeding chances (short-lived within a lifetime or limited
opportunities to re-nest within a season) should reduce
stress reactivity to minimize the risk of nest abandonment
[64, 73], then CORT and CBG levels change accordingly.
In most avian species, seasonal fluctuations of baseline
and stress-induced CBG capacity and CORT release re-
flect their life-history stage dependent strategies for adapt-
ing to environmental variations through optimizing their
physiological and behavioral states. For example, in the
House Sparrow, capture-handling-restraint stress re-
sponses during the pre-basic molt are lower than those
during the breeding; in addition, the seasonal regulation of
CORT response appears to be correlated with the HPA
axis sensitivity that also varies seasonally [56, 74]. In the
Eurasian Tree Sparrow, seasonal fluctuations of stress re-
sponses also show sex-specific patterns. Male birds have
higher baseline CBG capacities during the nest-building,
the first egg-laying, and the first nestling stages, and in-
creased stress-induced CBG capacities during the second
nestling stage [66]. Females have higher baseline plasma
CBG levels during the nest-building stage, increased
stress-induced CBG during the second egg-laying and the
second nestling stages, but decreased stress-induced CBG
during the nest-building stage [66]. Moreover, CORT re-
sponse and CBG levels also vary with breeding sub-stages,
i.e., maximal free CORT levels are lower during the nest-
building stage than those during the early nestling stages,
and females exhibit lower maximal CORT during the early
nestling compared to later stages, suggesting the intensity
of the adrenocortical response to acute restraint stress is
negatively correlated with reproductive investment during
breeding [75]. In a high-productivity breeding colony of
the Tufted Puffins (Fratercula cirrhata), levels of CBG,
total baseline CORT, free baseline CORT, and total max-
imum CORT are all higher during the pre-egg-laying stage
than for the late incubation and late chick-rearing stages.
Moreover, total baseline levels of CORT during the chick-
rearing stage are 2–4 times higher at the low productivity
colony, suggesting the higher cost of reproduction per-
formance [76]. Overall, it is important to incorporate CBG
and free CORT analysis into studies of the stress response,
which would be better for explaining the relationship of
stress reactivity to life-history strategies [62]. We may re-
ceive bias conclusions if solely relying on a value whereas
in fact, CBG levels and free CORT may differ. Therefore,
ignoring the effect of binding globulins may lead to a mis-
interpretation of the stress responses in birds [62].

CBG and CORT levels coping with extreme environmental
conditions - high latitudes
As mentioned above, avian species breeding in harsh envi-
ronments, including high latitudes and elevations, have re-
duced adrenocortical responses to long-term environmental

stress, enabling them to maximize reproductive success as a
physiological trade-off [49, 51, 52]. The Arctic birds during
breeding season, such as the Lapland Longspur (Calcarius
lapponicus), the Common Redpoll (Carduelis flammea), the
Snow Bunting (Plectrophenax nivalis) at Barrow and Toolik
Lake, the Pied Flycatcher (Ficedula hypoleuca) and the Wil-
low Warbler (Phylloscopus trochilus) breeding in Swedish
Lapland (Ammarnäs), diminish the sensitivity of the adreno-
cortical response to acute stress as well as behavioral and
physiological responses to CORT treatment, allowing birds
to adapt to territorial behavior and to breed successfully in
the face of the capricious environment [51, 77, 78]. In a com-
parative study of populations of the White-crowned Sparrow
breeding at different latitudes, baseline and stress-induced
CORT levels are similar; however, CBG binding capacity is
significantly higher in subspecies gamblii breeding at high
latitude than in pugetensis or oriantha breeding at middle or
low latitude [79]. As a result, gambelii, with the shortest
breeding seasons and the lowest free CORT levels among
the three subspecies, is the least sensitive to environmental
perturbations [79]. Arctic birds also suppress their adreno-
cortical response to acute capture-handling-restraint stress,
especially in birds providing most parental care [80]. Besides,
the suppression level varies with the intensity of the parental
care. In the Rock Ptarmigan (Lagopus mutus), the Pectoral
Sandpiper (Calidris melanotos) and the Red Phalarope (Pha-
laropus fulicaria), either females or males that provide most
parental care, show lower stress-induced CORT levels and
GC responses during the breeding season [80, 81].

CBG and CORT levels coping with extreme environmental
conditions - high elevations
In another highly extreme environment, the Tibetan
Plateau, two endemic species, the White-rumped Snow-
finch (Onychostruthus taczanowskii) and the Rufous-
necked Snowfinch (Pyrgilauda ruficollis), show no sig-
nificant variation in adrenocortical response to stress be-
tween the early breeding and the pre-basic molt stages,
which differs from those observed in arctic birds [49].
However, the extent of lowered adrenocortical responses
can vary seasonally. The White-rumped and Rufous-
necked Snowfinches have remarkably suppressed acute
stress-induced CORT levels during the wintering stage
relative to other stages, such as the early breeding, late
breeding and pre-basic molting [82]. Moreover, the
Twites (Carduelis flavirostris) on the Tibetan Plateau
have lowered adrenocortical responses during pre-basic
molt than those during the early breeding [78]. Overall,
blunt adrenocortical responses, as physiological and eco-
logical strategies, allow avian species to cope with ex-
tremes and to obtain maximal reproductive success
through modulating the trade-off of energetic invest-
ment between reproduction and immediate survival. We
predict that the higher binding capacity of CBG in
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extreme circumstances would contribute to reducing
stress-induced free CORT levels for buffering the acute
stress sensitivity.

Zebra finch CBG crystal structure illustrates
evolutionary conserved and distinct properties of
avian CBGs
Primary sequences of avian CBGs share limited identity with
mammalian CBGs [83] (Fig. 1). Chicken (Gallus gallus) and
Zebra Finch CBGs have been experimentally isolated and
identified by mass spectrometry and molecular cloning, which
provides evidence that chicken ENSGALG00000010969 and
Zebra Finch ENSTGUG00000012647 (or LOC100228673)
genes encoding CBG are incorrectly annotated as SerpinA4
and alpha-1-antiproteinase 2, respectively [83]. To the best of
our knowledge, CBG in other avian species, as yet, has not
been correctly annotated as CBG or SerpinA6. Notably,
orthologs of CBG have been identified in several reptiles,
whose CBG sequences are more similar to birds than mam-
mals, especially within their steroid-binding sites, and their N-
glycosylation and RCL sequences [83], indicating that
SerpinA6 is an evolutionarily conserved gene.
The crystal structure of Zebra Finch CBG in complex

with cortisol has been solved to 2.4 Å resolution [83].
The three-dimensional structures of Zebra Finch [83],
rat [18] and human [85, 86] CBGs binding with cortisol
resemble each other and exhibit evolutionarily conserved
properties. However, their steroid-binding sites differ in
several important aspects. Firstly, in mammalian CBGs,
a conserved tryptophan residue (W362 in rat and W371
in human) in the steroid-binding pocket, which is critical
for steroid-ligand binding, distinguishes it from other
members of the SERPINA family; however, in Zebra
Finch CBG, this tryptophan is replaced by an asparagine
(N385), and this asparagine residue is present in this
position in other avian CBG sequences. Secondly, among
the 10–12 specific residues of rat CBG that directly par-
ticipate in steroid binding, only 5 are conserved in Zebra
Finch or other avian CBGs, and these differences ac-
count for the distinct high-affinity steroid-binding prop-
erties of avian CBGs for progesterone and androgens as
well as GCs. Thirdly, mammalian CBGs have five or six
N-glycosylation sites, some of which are strictly con-
served and essential for steroid-binding activity [14, 20,
87]. By contrast, Zebra Finch CBG has only three N-
glycosylation sites, one of which, N385, has been proved
to participate in proper protein folding and high affinity
steroid-binding site formation [83].
The GCs in both Zebra Finch CBG and rat CBG crys-

tal structures are at the interface of helix A, helix H and
β-sheet B (Fig. 2). There are also important differences
in the positioning of cortisol in the Zebra Finch CBG
and rat CBG steroid-binding sites. Firstly, in rat CBG,
the cortisol A ring forms a hydrophobic bond with A13

and V17, while in Zebra Finch CBG, it is held by V32
and A36. Secondly, in rat CBG, W362 forms a hydrogen
bond and strong stacking interactions with the surface
of cortisol, whereas in Zebra Finch CBG, N385 forms a
hydrogen bond with the hydroxyl group of cortisol at
C17 [83]. Overall, the Zebra Finch CBG structure reveals
not only an evolutionarily conserved property but also
the distinct steroid-binding activities of bird CBGs when
compared with mammalian CBGs.

Key characteristics of avian CBGs distinct from
mammals: specific transporters of androgens
High affinity binding of dihydrotestosterone (DHT), tes-
tosterone and estradiol to SHBG have been observed in
the blood of amphibians, reptiles and mammals [10]. Re-
markably, in birds, plasma SHBG has never been identi-
fied [10, 13, 44] and gene encoding SHBG appears to be
absent. Thus a specific transporter for androgens and es-
trogens in birds has remained elusive. In the Dark-eyed
Junco (Junco hyemalis), CBG binds to CORT and pro-
gesterone with essentially similar high affinity, i.e., with
the equilibrium dissociation constant for [3H] CORT of
< 5 nM, whereas it binds androgens with approximately
five-fold lower affinity [44]. However, this is still within
the nanomolar range, and more than 90% of circulating
testosterone is assumed to be bound with CBG in this
species [44]. Comparable binding properties of CBG
with CORT, progesterone and testosterone are also ob-
served in 23 avian species belonging to 8 orders and 12
families [13]. A detailed study shows that Zebra Finch
CBG has greater affinities for cortisol and progesterone
(IC50 value of ~ 2 nM) than for CORT (~ 4 nM), and
moderate affinities for testosterone (~ 18 nM) and DHT
(~ 11 nM) [83]. Therefore, avian CBG is considered to
substitute SHBG in transporting androgens and regulat-
ing their bioavailability [44].
In the crystal structure of Zebra Finch CBG, R246

forms a hydrogen bond with the hydroxyl group of corti-
sol at C21 and the carbonyl group at C20. Remarkably,
substitution of R246 with glutamine significantly de-
creases the binding affinity for progesterone but does
not affect affinities for cortisol and testosterone. There-
fore, R246 might be the key residue that determines the
higher affinity of avian CBGs for progesterone, but not
androgens, than for mammalian CBGs [83]. Given the
compensatory function of bird CBG in transporting an-
drogen, key mechanisms that govern androgen binding
remain to be addressed. Functional studies of distinct
residues of Zebra Finch CBG, such as N385 and other
residues in the steroid-binding pocket, can be performed
via mutagenesis to answer whether they determine
androgen-binding properties.
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Conclusions and perspectives
As reviewed above, CBG functions beyond a mere
plasma carrier protein and regulates biologically active
fractions of circulating steroid hormones, and is there-
fore considered as a primary gatekeeper of steroid ac-
tions [9]. Since in vitro experimental and in vivo
evidence have proved a single amino acid substitution in
key domains of both mammalian and avian CBGs has

profound effects on steroid binding properties, manipu-
lation of CBG function via in-depth molecular, cellular
and genetic studies in birds would provide more bio-
logical and ecological perspectives on how the unique
structure of avian CBG determines its specialized andro-
gen binding function, and how GCs and sex hormones
are regulated during development, breeding, physio-
logical behavior and adaptation in birds.

Fig. 1 Multiple sequence alignment of CBG protein sequences from mammals, chicken and Zebra Finch are created in MEGA 7.0 [84] using the
ClustalW algorithms. Regions involved in steroid binding and release, including helix A (hA), helix D (hD), helix H (hH), β-sheet B (s2B, s3B, s4B, s5B) and
RCL [18, 83], are shown. Residue numbering is defined as those in rat CBG sequence [18]. Residues whose side chains directly interact with cortisol in
the crystal structures of rat CBG and Zebra Finch CBG, are marked by grey boxes. Specific residues in chicken and/or Zebra Finch CBGs different from
those of mammalian CBGs are highlighted in red or magenta boxes, with other residues in mammals marked by boxes in different light colors.
Consensus sequences for N-linked glycosylation are shown in black boxes. Homo sapiens, human; Pan troglodytes, Chimpanzee; Pongo abelii, Sumatran
Orangutan; Nomascus leucogenys, White-cheeked Gibbon; Macaca mulatta, Rhesus Macaque; Rattus norvegicus, Brown Rat; Mus musculus, mouse; Equus
caballus, horse; Bos taurus, cow; Loxodonta africana, African Elephant; Gallus gallus, chicken; Taeniopygia guttata, Zebra Finch
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Evolutionary analysis of the SERPIN superfamily, to
which CBG belongs, has revealed the linkage between sig-
natures of positive Darwinian selection and the molecular
basis of adaptive evolution. Evidence of strong positive se-
lection has been detected in SERPINB4 and B3, as import-
ant drivers of adaptive evolution of mammals [88, 89].
Specially, the RCL region, the critical determinant of tar-
get proteinase recognition, is hypervariable and attributed
to accelerated rates of evolution that drives the functional
specificities and diversification [89–92]. In this regard, in-
tegrated phylogenetic, evolutionary and topographic ana-
lysis of CBGs of multiple organisms over broad taxonomic
groups, such as those of mammals and birds, will provide
the bedrock for understanding evolutionary conservation
and species-specific adaptations in the process of endo-
crine responses to both extreme environmental perturba-
tions and stressors associated with human activities in the
age of Anthropocene.
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