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Abstract

Background: Although the sensory drive hypothesis can explain the geographic variation in echolocation frequencies
of some bat species, the molecular mechanisms underlying this phenomenon are still unclear. The three lineages
of greater horseshoe bat (Rhinolophus ferrumequinum) in China (northeast, central-east, and southwest) have significant
geographic variation in resting frequencies (RF) of echolocation calls. Because their cochleae have an acoustic
fovea that is highly sensitive to a narrow range of frequencies, we reported the transcriptomes of cochleae collected
from three genetic lineages of R. ferrumequinum, which is an ideal organism for studying geographic variation
in echolocation signals, and tried to understand the mechanisms behind this bat phenomenon by analyzing
gene expression and sequence variation.

Results: A total of 8190 differentially expressed genes (DEGs) were identified. We identified five modules from
all DEGs that were significantly related to RF or forearm length (FL). DEGs in the RF-related modules were significantly
enriched in the gene categories involved in neural activity, learning, and response to sound. DEGs in the FL-
related modules were significantly enriched in the pathways related to muscle and actin functions. Using 21,
945 single nucleotide polymorphisms, we identified 18 candidate unigenes associated with hearing, five of
which were differentially expressed among the three populations. Additionally, the gene ERBB4, which regulates diverse
cellular processes in the inner ear such as cell proliferation and differentiation, was in the largest module. We also found
49 unigenes that were under positive selection from 4105 one-to-one orthologous gene pairs between the
three R. ferrumequinum lineages and three other Chiroptera species.

Conclusions: The variability of gene expression and sequence divergence at the molecular level might provide evidence
that can help elucidate the genetic basis of geographic variation in echolocation signals of greater horseshoe bats.

Keywords: Rhinolophus ferrumequinum, Echolocation, Geographic evolution, Adaptation, Transcriptome

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: sunkp129@nenu.edu.cn; fengj@nenu.edu.cn
1Jilin Provincial Key Laboratory of Animal Resource Conservation and
Utilization, Northeast Normal University, Changchun 130117, China
Full list of author information is available at the end of the article

Zhao et al. Frontiers in Zoology           (2019) 16:37 
https://doi.org/10.1186/s12983-019-0336-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12983-019-0336-7&domain=pdf
http://orcid.org/0000-0002-4227-9818
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:sunkp129@nenu.edu.cn
mailto:fengj@nenu.edu.cn


Background
Many evolutionary biologists strive to explain the mech-
anisms of phenotypic divergence [1]. However, what
drives phenotypic divergence remains one of the least
understood biological phenomena [2]. Some evidence
has suggested that different habitats are likely to impose
different selective pressures on isolated populations and
result in geographic variation of phenotypic traits, such
as morphological, physiological, behavioral, and sensory
traits [3, 4]. Elucidating the genetic mechanisms behind
phenotypic divergence that are driven by adaptation is a
primary mission of modern evolutionary biology [5].
Sensory traits in animals directly impact individual fit-

ness by affecting resource acquisition, orientation, mate
choice, and species recognition. Geographic variation in
these traits is usually mediated by adaptive processes
rather than random processes like genetic drift [6].
Therefore, the sensory drive hypothesis, which predicts a
close association between the geographic variation of
sensory signals and environmental variables, has been
proposed to explain how environments affect signal traits
and sensory systems [7].
Acoustic signals, which are an important sensory char-

acteristic, have long attracted numerous researchers who
mainly focused on the geographic variation of calls in
birds, anurans, insects, and bats [8–10]. In particular,
the echolocation calls of bats have drawn attention from
an increasing number of researchers as a new research
model for testing the sensory drive hypothesis. The high
variability in echolocation calls over the distributional
ranges of many lineages is likely due to numerous
factors, including differences in environmental condi-
tions, prey size, variation in body size, age, and sexual
dimorphism [11–14]. Besides those external factors, in-
ternal molecular mechanisms also play an important role
in the geographic variation of acoustic signals, because
phenotypic changes indicate changes in gene expression,
and genotypes can affect gene expression based on inter-
actions between genotypes and the environment [15].
Although studies that evaluated intraspecific gene ex-
pression and genotype variation are scarce, some studies
have found that several genes, such as prestin [16],
TMC1 [17], KCNQ4 [18], CDH23, PCHH15, and OTOF
[19], were related to the adaptation of echolocation and
convergently evolved in some animals that use echoloca-
tion. However, the molecular mechanism underlying
environmentally driven adaptive trait divergence of
acoustic signals within species remains unclear.
The greater horseshoe bat (Rhinolophus ferrumequi-

num), a widespread, constant frequency–frequency
modulating (CF–FM) bat, is an ideal model organism to
help elucidate the molecular mechanisms underlying
acoustic geographic variation and adaptive evolution of
Chiroptera for several reasons. First, R. ferrumequinum

has a broad distribution in the Old World and exhibits
acoustic geographic variation. Different populations have
different dominant frequencies of echolocation calls that
have been reported [20, 21]. Second, Sun et al. [22]
revealed a geographic pattern of R. ferrumequinum echo-
location pulses emitted at rest (resting frequencies, RF),
and, interestingly, they found that RF corresponded to
genetic differentiation. Three genetic lineages, northeast
(NE), central-east (CE), and southwest (SW), were iden-
tified based on several neutral genetic markers [22–24]
and had significantly different echolocation calls. Third,
combined with molecular data, acoustic parameters, and
climatic factors, Sun et al. [22] inferred that ecological
selection and cultural drift were most likely related to the
variation of R. ferrumequinum calls across China. However,
the internal molecular mechanisms of acoustic variation
are still not known. For horseshoe bats, RF is largely genet-
ically determined [25], so the divergence of echolocation
calls between geographical populations might be related to
genotype changes and differential gene expression.
Furthermore, the mammalian cochlea is an exception-

ally sensitive organ that detects a very wide variety of
sound intensities. The strongest intensity that does not
damage the ear is 1012 larger than the threshold level of
detectible sound, and can discriminate both infrasonic
and ultrasonic sounds in different species [26]. There-
fore, the cochlea is an important organ that participates
in the hearing process by receiving acoustic signals. For
bats, the specialization of cells in the ears and brain
improves the response to the frequencies of the sounds
they emit. Rhinolophus ferrumequinum, as a CF–FM bat,
has cochleae with a specific area known as an acoustic
fovea. The acoustic fovea is well-known for its key role
in the process of Doppler-shift compensation behavior,
because it makes the bats highly sensitive to a narrow
range of frequencies [27, 28]. Although no study can
definitively support that bat populations with different
RF have different genetic features of the cochleae, sig-
nificant genetic differences were detected between bat
species with different RF in the cochleae [29]. Moreover,
a study that focused on the cochleae of inbred mice with
hearing variation revealed the existence of anatomical-
and frequency-specific genes, and also demonstrated that
there is at least one specific genome-wide locus that is
significantly associated with each frequency in inbred
mouse strains [30]. Even though there was no clear
evidence that difference in RF of populations was mirrored
by genetic differences in the cochlea, it would be appropri-
ate to test the cochlea to reveal molecular mechanisms of
acoustic variation of bats because of the role of the cochlea
in hearing.
To explore the molecular mechanisms of the diversity

of echolocation calls, we conducted RNA sequencing
(RNA-Seq) in this study. Among novel sequencing
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technologies, RNA-Seq is outperforming the traditional
hybridization-based microarray method, because it can
evaluate gene expression without prior knowledge of the
sequence [31, 32]. Furthermore, RNA-Seq can reveal
genotype information and does not require prior genomic
or genetic resources, and can be used as a cheaper alterna-
tive that enables identification of single nucleotide poly-
morphisms (SNPs) located in transcribed regions [33].
Recently, it has become easier to apply this approach to
many organisms because of the development of appropri-
ate statistically grounded pipelines for data analysis [34,
35]. Moreover, a recent study have demonstrated that
small sample sizes are sufficient to assess interpopulation
divergence when thousands of biallelic SNP markers were
used [36]. Therefore, high-throughput genomic sequen-
cing of RNA has great potential to elucidate evolution in
non-model organisms.
In this study, we performed transcriptome sequencing

of R. ferrumequinum cochlea samples collected from
representative populations of three genetic lineages in
China. We propose that the diversity of echolocation
calls among R. ferrumequinum populations is, to a large
extent, related to (i) regulation of gene expression and
(ii) sequence divergence. Therefore, we analyzed gene
expression and orthologous gene sequences to identify
genes that may be involved in shaping the geographic
variation of acoustic signals. Our results will provide
insight into the underlying mechanism that produces
geographic variation in echolocation calls.

Methods
Sample collection and phenotyping
We set mist nets to capture bats at dusk in unproductive
habitats and collected 14 individuals in total from all
three populations, which included representatives of all
three clusters based on our previous study [22]. To
reduce the impact of gender and age on gene expression,
we sampled adult males of similar sizes and weights. We
captured five individuals from a representative popula-
tion of the NE genetic lineage in Jilin Province (sample
IDs JL01–JL05, E 125.89°, N 43.28°) and one population
of the CE lineage in Henan Province (sample IDs
HN01–HN05, E 113.94°, N 35.71°). In Yunnan Province,
we collected four individuals from a representative
population of the SW lineage (sample IDs YN01–YN04,
E 99.86°, N 26.53°). All sampling was conducted during
the summer (late July to late August 2017).
The echolocation calls of greater horseshoe bats emit-

ted at rest have simple structures and are ideal for sono-
graphic analysis. Additionally, these calls have a narrow
range of frequencies that are consistent with the max-
imal sensitivity of frequencies of the cochlear acoustic
fovea. Therefore, we recorded calls emitted at rest using
Avisoft-UltraSoundGate (Avisoft Bioacoustics, Glienicke,

Germany) with a sample rate of 441 kHz at 16 bits/sam-
ple. We put the microphone (CM16/CMPA, Avisoft
Bioacoustics, Berlin, Germany; flat frequency response:
10 Hz–200 kHz, ± 3 dB) approximately 30 cm in front of
bats at rest, and the recordings were transferred to and
saved on a computer.
We selected high-quality calls based on the criteria pro-

posed by Russo et al. and Jiang et al. [37, 38] and analyzed
them using Avisoft-SASLab Pro v 5.2.12 [39]. More specif-
ically, initial calls were not considered for analysis, and
only the second call per group was chosen when calls were
emitted in groups. Moreover, we excluded calls with a CF
portion that lasted less than 10ms. For each bat, 30 high-
quality calls were arbitrarily selected and measured for the
CF components in the dominant second harmonic from
the power spectra of a call. Then, the mean RF value of
each individual was used in the analysis. Given that body
size may act on acoustic features of bat echolocation calls,
we also measured the forearm length (FL) of each bat.
Then, we pairwise compared average RF and FL values
among the three populations by Mann–Whitney U test.
After we finished recording echolocation sounds and
measuring FL, bats were sacrificed, and their whole coch-
leae were separately preserved in RNAlater (Tiangen
Biotech, Beijing, China) within 25min post-mortem for
RNA-Seq data generation. All samples were subsequently
stored at − 80 °C until RNA extraction.

RNA-Seq library preparation and sequencing
We homogenized each cochlea sample and extracted
total RNA using a TRIzol Kit (Promega, Madison, WI,
USA) according to the manufacturer’s instructions. After
checking the amount of RNA degradation by RNase-free
agarose gel electrophoresis and capillary electrophoresis
with a 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA), we performed a poly (A)-capture to
remove rRNA; then, mRNA was reverse-transcribed into
first-strand cDNA using random primers. Next, we synthe-
sized the second-strand cDNA using DNA polymerase I,
RNase H, dNTP, and second-strand buffer. After purifica-
tion using a QiaQuick PCR Extraction kit (Qiagen, Hilden,
Germany), the cDNA fragments were end-repaired,
poly(A)-tailed, and ligated to Illumina sequencing adapters.
The ligation products were -elected by agarose gel electro-
phoresis and PCR amplification. Sequencing was carried
out on an Illumina HiSeq X Ten (Illumina, San Diego, CA,
USA) with 2 × 150-bp paired-end reads. All raw reads were
deposited in the NCBI Short Read Archive (SRA) Database
under SRA accession PRJNA515764.

Transcript assembly, quantification, annotation, and
differential expression testing
First, we filtered and trimmed barcoded RNA-Seq reads
and low-quality reads. We removed reads that were
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contaminated by Illumina adapters, contained more than
10% unknown nucleotides (N), or had more than 40%
low-quality (Q-value ≤10) bases using trimmomatic v
0.36 [40]. Next, filtered reads from all 14 individual
cDNA libraries, which included individuals of all the
three groups, were loaded into Trinity v 2.4.0 to assem-
ble a de novo reference transcriptome with default
parameters. To avoid redundant transcripts, we kept the
longest isoform for each “trinity gene” identified by
Trinity using a Perl script and defined the longest tran-
script as a unigene. This de novo reference was used to
obtain expression profiles. Moreover, we also assembled
a reference transcriptome for each population in the
same way for positive selection analysis. To evaluate and
compare the completeness of the gene set of our four
transcriptomes, we used Benchmarking Universal Single-
Copy Orthologs (BUSCO v 3.1.0) to search for orthologs
in the “laurasiatherian_odb9” database, which includes a
collection of 6253 single-copy Laurasiatherian orthologs.
All generated unigenes in these four unigene sets were
aligned with an E-value of 1E− 5 to the following protein
databases: Nr [41], Swiss-Prot [42], KEGG [43], and
COG/KOG [42] by BLASTx [44].
We then performed pairwise comparisons to identify

differentially expressed genes (DEGs) in the Bioconduc-
tor package edgeR with default parameters [45], which
scored well in a recent comparison [46]. In this study,
unigenes with false discovery rate (FDR) ≤ 0.05 and an
absolute value of a log2-fold change > 1 were considered
DEGs. More specifically, the de novo reference tran-
scriptome assembled with all of the samples was used as
the reference sequence, and we calculated the reads per
kilobase per million mapped reads (RPKM) of each sam-
ple by mapping high-quality clean reads to the reference
transcriptome using the short read alignment tool in
Bowtie2 with default parameters [47]. According to the
plot showing the sample relationships based on multidi-
mensional scaling (MDS), we filtered outlier samples.
Then, we performed pairwise comparisons for the three
populations to select DEGs. For each comparison (HN
vs. JL, HN vs. YN, and YN vs. JL), the former population
always had a higher call frequency than the latter. We
considered a unigene with higher expression in the
former population to be upregulated and vice versa to
be downregulated. The P-value was corrected by the
Benjamini and Hochberg method [48]. We visualized the
gene expression profiling of all DEGs by heatmap ana-
lyses of hierarchical clustering.

Weighted gene co-expression network analysis
A weighted gene co-expression network analysis (WGCNA)
[49] was used to identify unigenes and gene networks asso-
ciated with RF and FL. First, we extracted the expression
values of DEGs obtained from three pairwise comparisons

and calculated Pearson’s correlation matrix for all genes.
Next, the correlation matrix was transformed by raising all
values to a soft-thresholding power (β = 9 in this study) to
obtain an adjacency matrix. Then, we transformed the adja-
cency matrix into a topological overlap matrix (TOM) and
identified modules using 1-TOM as the distance measure
with a deepSplit value of 2 and a minimum size cut-off of
50 for the resulting dendrogram. After identification by
clustering, groups of co-regulated genes (modules) were
merged with a height cut-off of 0.25. Then, we searched
biologically meaningful modules by evaluating Pearson’s
correlation between modules and phenotypic features. We
focused on those modules that were strongly correlated
with the phenotypic features. Subsequently, to get a better
understanding of how those genes impact phenotypic
features, genes in all modules were studied using heatmap
analyses of hierarchical clustering, GO functional enrich-
ment, and KEGG pathway analysis (P < 0.01, FDR < 0.01).
We also merged those modules that were significantly
correlated with RF or FL to perform GO term enrichment
analysis (P < 0.01, FDR < 0.01).

SNP identification and filtering
As described in detail in Maestre et al. [34], SNPs were
called from RNA-Seq data without a reference genome
using KisSplice v 2.4.0 [35] and KisSplice2RefTranscrip-
tome v 1.3.2 [34]. To remove sequencing errors, we
filtered rare variants by setting the cut-off to 5%. Then,
we aligned SNPs to the de novo reference transcriptome
assembled with all of the samples using BLAT suite.34
[50] with default parameters to predict amino acid
changes. The output file was manually converted to a
VCF file, and the following filters were applied: 1) SNPs
that were located in the noncoding region of transcripts
were removed; 2) rare variants were filtered out, as they
are more likely to be sequencing error, and only markers
with MAF > 5% were retained; 3) only those SNPs with
less than 10% missing data across all sites were included
in further analyses; and 4) to reduce linkage, SNPs were
pruned using the “snpgdsLDpruning” function in the R
package SNPRelate v 1.18.1 with a linkage disequilibrium
threshold of 0.1. The filtered VCF file was converted into
the formats supported by software used in further analyses
with PGDSpider v 2.1.1.5 [51].

Environmental variables
Climate variable layers were obtained from the CHELSA
dataset [52], which includes 35 years of high spatial and
temporal accuracy bioclimatic data (from 1979 to 2013).
Given the effect of temperature and relative humidity on
echolocation call frequency [22, 53], 19 climate variables
related to temperature and precipitation (BIO01–BIO19,
Additional file 1: Table S1) were extracted by the R
package ‘raster’ [54] for each sampling site. First, we
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performed an association analysis between climate vari-
ables. Because of the high correlation between many of
the climate variables, a principal component analysis
(PCA) was performed to summarize the environmental
data and identify the data that explained the highest
proportion of the environmental variance. The first prin-
cipal component (PC) for climate variables was used as
the climate variables in gene–environment association
(GEA) analyses.

Discovery of SNPs putatively under divergent selection
Detected SNPs under selection are likely to have high
false-positive rates caused by inaccurate population struc-
ture control or spatial autocorrelation of allele frequencies.
Recently, use of a combined analysis approach has been
increasing to obtain more robust results [55–58]. We used
two different genome scan methods to detect loci puta-
tively under divergent selection: outlier tests and GEA
analyses. An outlier test was implemented in the program
PCAdapt v 3.1.0 [59]. After choosing the number of PCs,
the test statistic was computed based on the number K of
PCs (in our case, K = 2). Based on the correlations
between SNPs and the first two PCs, we computed and
corrected P-values by Bonferroni correction (α < 0.1) [60].
The programs Bayenv2 and LFMM v 1.5 were used to

perform the GEA test. For Bayenv2 [61], 100,000 MCMC
cycles were first run to obtain a covariance matrix.
Bayenv2 used five independent runs with 50,000 iterations
to estimate Bayes factors (BF) for each SNP, and the SNPs
with an average BF > 3 were considered to be associated
with the first climate variable PC. In LFMM [62], the
number of latent factors that best described the popula-
tion structure in the dataset was set based on the results
of STRUCTURE v 2.3.4 [63, 64], Tracy–Widom tests were
implemented in SmartPCA in EIGENSOFT v 6.1.4 [65]
using the mean genomic inflation factor (λ) [66]. LFMM
was run five times, and, as suggested in Frichot & François
2015 [67], we re-adjusted the P-values using the expected
value of the FDR equal to q = 10%. Finally, we applied
functional enrichment analyses for the outliers predicted
using OmicShare tools [68] to test for over-representation
of GO and KEGG functional categories.

Identification of one-to-one orthologous genes
Genomic protein sequences of R. sinicus, Hipposideros
armiger, and Pteropus alecto were downloaded from
NCBI. We obtained the longest transcript of each gene
using a Python script and identified one-to-one ortholo-
gous genes among three R. ferrumequinum populations
and three other species using the best reciprocal hit
method (E-value, 1E− 5). For each predicted single-copy
orthologous gene, we performed multiple alignments
with PRANK v 170,427 (parameters: -f = FASTA -F
-codon -noxml -notree -post) [69]. To reduce the rate of

false-positive predictions, Gblocks v 0.91b [70] was used
to filter out sequencing errors, incorrect alignments, and
non-orthologous regions based on codons with the fol-
lowing parameters: -t = C -b3 = 1 -b4 = 6 -B5 = N. After
trimming, only the alignments with lengths greater than
100 bp were used for further analysis.

Phylogenetic tree and positive selection analyses
The phylogenetic tree was constructed using concatenated
sequences of all filtered single-copy orthologous genes
common to the three populations of greater horseshoe bat
and three other bat species. Maximum likelihood analyses
were run using the JTT + I + G + F model in RAxML v
8.2.10 [71], and relative support of internal nodes was
assessed by rapid bootstrap (−f a –× 12,345) of 1000
replicates.
Using our tree topology as the guide tree, branch-site

model in PAML4 (parameters: null hypothesis: model = 2,
NSsites = 2, fix_omega = 1, omega = 1; alternative hypoth-
esis: model = 2, NSsites = 2, fix_omega = 0, omega = 1) [72]
was used to detect positive selection in the one-to-one
orthologous genes. The three R. ferrumequinum popula-
tions were used as the foreground branches. We used a
likelihood ratio test to detect positive selection on each
foreground branch, and the genes with FDR less than 0.05
were considered positively selected genes (PSGs). After
identifying PSGs, the empirical Bayes method was imple-
mented to calculate posterior probabilities and record
positively selected sites. We also performed enrichment
analysis on the PSG dataset.

Results
Transcriptome assembly, quantification, and annotation
After transcriptome quality filtering, we obtained ap-
proximately 4 Gb of clean data for each of the 14 cDNA
samples from the Illumina platform. For each sample,
we obtained 26–36 million paired-end reads. After qual-
ity filtering, approximately 96% of the raw reads
remained, and the sequencing result details are provided
in Additional file 1: Table S2. We used Trinity methods
with standard parameter values for the de novo assem-
blies of all samples and the three separate populations.
Assembly of all samples yielded 70,704 transcripts that
ranged from 201 to 27,462 bp with an N50 of 2532 bp.
For the assembly of the three separate populations, we ob-
tained 53,558–103,932 transcripts with N50 s from 2250
to 2811. Annotation results of unigenes in the four refer-
ence transcriptomes are provided in Additional file 1:
Table S3. The completeness of the four transcriptomes
was assessed using the BUSCO pipeline, which revealed
that the majority of the Laurasiatherian core genes had
been successfully recovered in all four assemblies. Of the
6253 single-copy Laurasiatherian orthologs, 78.0–84.0%
were complete, 6.7–10.3% were fragmented, and 9.3–
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11.7% were missing (Table 1). The good coverage indi-
cated that all four assemblies were high-quality. For all
four unigene sets, almost half had annotation hits to R.
sinicus (Additional file 1: Table S4).

Phenotypic variation and differential gene expression
between populations
The significant differences in RF were detected among the
three R. ferrumequinum populations (Mann–Whitney U
test, P < 0.05 in all cases). The HN population had the
highest RF (mean = 75.5 kHz, SD = 0.36), followed by the
YN population (mean = 73.0 kHz, SD = 0.93); the JL popu-
lation (mean = 68.2 kHz, SD = 0.32) had the lowest RF
(Additional file 2: Figure S1 a). For FL, the YN population
had the longest FL (mean = 61.22mm, SD = 1.90), followed
by the HN population (mean = 60.08 mm, SD = 0.55)
and then the JL population (mean = 58.60 mm, SD =
0.58). A significant difference was detected between HN
and JL (Mann–Whitney U test, P = 0.008) (Additional file 2:
Figure S1 b).
The pairwise comparisons showed significant gene ex-

pression differences among the three populations. Three
samples, JL3, HN4, and YN2, were removed as outliers
based on the MDS plot (Additional file 3: Figure S2).
Based on the remnant samples, 8190 total DEGs were
obtained from pairwise differential expression analysis,
and the heatmap of the hierarchical clustering of all
DEGs indicated that HN was more similar to YN than
to JL based on gene expression patterns (Fig. 1a). For
each comparison, a total of 7039, 4337, and 1611 DEGs
in HN vs. JL, YN vs. JL, and HN vs. YN were detected,
respectively (Fig. 1b, c).

Correlation between gene network modules and
phenotype
Based on all 8190 DEGs (Fig. 1c), a gene co-expression
network was constructed, and 12 gene modules were
created by WGCNA (Fig. 2a). Two of them (M1, M6)
were most significantly correlated with RF (both P <
0.001), and three modules (M3, M4, and M5) were sig-
nificantly correlated with FL (all P < 0.01, Fig. 2b). M1,

with 2281 unigenes, had the highest number of DEGs,
and the heatmap of hierarchical clustering indicated
large differences in gene expression between the three
populations (Fig. 2c). We plotted scaled connectivity on
the X-axis and gene significance (absolute value of the
correlation coefficient, r, between gene expression and
RF or FL) on the Y-axis for each module to visualize the
relationships and significant positive correlations be-
tween gene significance and intramodular connectivity
(Fig. 2d).
To obtain a clearer understanding of how differential

gene expression patterns affect acoustic characteristics
and body size, we then performed GO term and KEGG
pathway enrichment analyses for each gene module. For
unigenes included in M3, M4, M5, and M6, GO and
KEGG enrichment analysis did not reveal any signifi-
cantly enriched gene profile directly related to hearing
(Additional file 1: Table S5 and Table S6). Unigenes in
the M1 were significantly enriched in GO classifications
that covered all three domains of ontology and were
related to synaptic, neuron, membrane, and ion trans-
porter functions, such as “synapse” (GO:0045202, FDR =
1.17E− 35), “neuron part” (GO:0097458, FDR = 1.25E−
43), “membrane part” (GO:0044425, FDR = 1.11E− 33),
and “ion channel complex” (GO:0034702, FDR = 1E− 15)
(Fig. 3a and Additional file 1: Table S5), and the KEGG
pathway was also significantly enriched in synaptic func-
tions (Fig. 3b and Additional file 1: Table S6). We also
found that GO items related to learning were significantly
enriched, such as “learning or memory” (GO:0007611,
FDR = 1.01E− 17) and “learning” (GO:0007612, FDR =
2.83E− 07).
For unigenes in RF-related modules (M1 and M6), the

GO term enrichment analysis results were similar, but
two of those GO terms were associated with the response
to sound: “response to auditory stimulus” (GO:0010996,
FDR = 6.10E− 3) and “auditory behavior” (GO:0031223,
FDR = 6.10E− 3) (Additional file 1: Table S7). For unigenes
in FL-related modules (M3, M4 and M5), statistically sig-
nificant items were related to a variety of functions, and
many items were related to muscle or actin, such as

Table 1 Transcriptome completeness inferred from Benchmarking Universal Single-Copy Orthologs (BUSCO) search. ALL, JL, YN, and
HN represent de novo references used to obtain expression profiles, single nucleotide polymorphisms (SNPs), and the reference
transcriptome for each separate population. The number and percentage represent the number of genes inferred from BUSCO and
their percentage of all 6253 single-copy Laurasiatherian orthologs

BUSCO statistic ALL JL YN HN

Complete BUSCOs 5252 (84.0%) 4880 (78.0%) 5067 (81.0%) 5159 (82.5%)

Complete - single-copy BUSCOs 5170 (82.7%) 4734 (75.7%) 4996 (79.9%) 5027 (80.4%)

Complete – duplicated BUSCOs 82 (1.3%) 146 (2.3%) 71 (1.1%) 132 (2.1%)

Fragmented BUSCOs 416 (6.7%) 647 (10.3%) 489 (7.8%) 427 (6.8%)

Missing BUSCOs 585 (9.3%) 726 (11.7%) 697 (11.2%) 667 (10.7%)
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Fig. 1 Differential gene expression analysis of three populations. a Heatmap depicting 8190 differentially expressed genes (DEGs). Upregulated
and downregulated genes are indicated in red and green, respectively; their expression patterns clustered, and their transcription levels are
depicted as logFC values. b Numbers of upregulated and downregulated genes based on pairwise comparison. c Venn diagram showing the
number of DEGs between each two comparisons and the number of shared DEGs

Fig. 2 WGCNA applied to 8190 differentially expressed genes. a Hierarchical clustering of co-expression data. b Table of module–trait
relationships. Resting frequency and forearm length are shown on the X-axis. The value at the top of each square represents the correlation
coefficient between the module eigengene and the trait with the correlation P-value in parentheses. The left panel shows 12 modules and the
number of their genes. The right panel is a color scale for module trait correlation from − 1 to 1. c Heatmap summary and hierarchical clustering
of genes in M1. The hierarchical clustering was generated using Spearman’s correlation coefficients of log2-transformed reads per kilobase per
million mapped reads of expression values. Rows are standardized; red indicates high values and green indicates low values. d Scatterplot of the
intramodular analysis (module membership versus gene significance) of genes found in M1, M3, M4, M5, and M6
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“muscle system process” (GO:0003012, FDR= 6.30E− 14),
“striated muscle cell development” (GO:0055002, FDR=
8.91E− 12), and “actin filament-based movement” (GO:
0030048, FDR= 8.01E− 7) (Additional file 1: Table S8).

Adaptive loci
After applying the filtering criteria as described in the
Methods, we identified 21,945 SNPs distributed across 17,
772 unigenes for use in further analyses. PCA of the 21,945
SNPs revealed two dimensions that clustered by population
(JL, HN, and YN; Fig. 4a). The Δ(K) from the STRUCT
URE run showed that lnP(D) was highest when K = 2 (Fig.
4b), but the bar-plot for K = 2–4 showed that K = 3 repre-
sented the best possible number of populations (Fig. 4c). In
LFMM, we chose K = 2 based on the Tracy–Widom results,
because K = 2 had λ estimates closer to 1.0 than K = 3.
To explain most of the climate variation, PCA was per-

formed to reduce the variables into fewer components. In
our case, climate variations were highly consistent, and the
contribution of the first PC was over 85% (Additional file 4:
Figure S3). The association analysis of SNP markers and
the first PC identified 250 and 948 unique SNP markers
using Bayenv2 and LFMM, respectively. We also identified
an extensive list of 1713 outliers using PCAdapt. Only 349
significant SNP markers were identified by at least two of
the three outlier tests (Fig. 5a), and this finding indicated
that some of these SNP markers were significantly associ-
ated with environmental variation. We predicted that these
SNPs fell within 349 unigenes, and 310 of these significant
SNP markers had annotations in the greater horseshoe
bat transcriptomes (Additional file 1: Table S9). The
identified unigenes represented a broad range of biological

processes, such as immune (i.e., immunoglobulin superfam-
ily member 3-like), transcription (i.e., aquaporin-3), and syn-
aptic (i.e., synaptotagmin-16-like) processes. Furthermore,
18 of these unigenes were annotated in 18 genes that were
thought to be involved in hearing-related processes or devel-
opment of the hearing organ. Five of these auditory genes,
ERBB4 (Unigene0004747), OTOGL (Unigene0036784), IL6R
(Unigene0051178), CKMT2 (Unigene0004892), and LGR6
(Unigene0005403), were significantly differentially expressed
among the three populations, and ERBB4 (Unigene0004747)
was in the M1 of WGCNA (Fig. 5b).

Orthologous gene prediction and constructed
phylogenetic tree
After removing low-quality sequences, we identified 4151
one-to-one orthologous gene pairs in the three popula-
tions, black fly fox (P. alecto), great roundleaf bat (H.
armiger), and Chinese horseshoe bat (R. sinicus). After
multiple sequence alignment and filtering, we retained
4105 one-to-one orthologous genes for model selection.
All of these genes were concatenated into a single super-
gene dataset for model selection. The generated maximum
likelihood tree of the three greater horseshoe bat lineages
and other bat species was determined to be well resolved
based on the high bootstrap value (100%). The phylogen-
etic relationship of those species indicated that JL was
more closely related to HN than YN, and this was consist-
ent with the findings of previous research [22] (Fig. 6).

Positive selection
We detected PSGs among the 4105 orthologous genes
along the JL, HN, and YN branches using our

Fig. 3 GO and KEGG enrichment analyses of genes in M1. a Top 30 enriched GO terms. b All enriched KEGG pathways
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Fig. 4 Genetic differentiation among the three greater horseshoe bats populations. a PCA plot of PC1 vs. PC2 from 21,945 SNPs for all 14
samples. Populations are colored according to genetic group assignment. b Ad-hoc statistics Δ(K) based on STRUCTURE lnP(D) summarized over
10 replications for each K (assumed number of populations). c Population structure for K = 2–4. Vertical lines indicate separate clusters, with
cluster colors indicating various ancestries

Fig. 5 Venn diagrams illustrating the overlap in different outlier detection methods and DEGs. a Venn diagram of loci putatively detected as
being under adaptive divergence. b Venn diagram of outlier genes and DEGs
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reconstructed tree topology, and detected 31, 6, and 12
PSGs, respectively (Additional file 1: Table S10). The
PSGs had a variety of functions, such as in cilia forma-
tion, oxidoreductase activity, and immune process. The
enrichment analyses of candidate PSGs showed that no
category was significantly enriched.

Discussion
Recently, geographic variation in echolocation frequencies
of bats has been frequently observed and widely investi-
gated in the context of allopatric differentiation [4].
According to the sensory drive hypothesis, acoustic signals
vary in association with local climatic conditions, and
animal communication systems are adapted to local envi-
ronments. Different environmental conditions may cause
phenotypic and gene expression diversity between different
populations, such as humans (Homo sapiens) [73] and fruit
flies (Drosophila melanogaster) [74]. However, we know lit-
tle about the molecular mechanisms underlying geographic
variation of acoustic signals, especially in non-model or-
ganisms. Here, we report high-quality cochlea transcrip-
tomic data for three representative populations of three
Chinese R. ferrumequinum lineages. The quality of our
sequencing allowed us obtain precise information about
gene expression, sequence variation, and orthologous genes
(Table 1). Our study will help elucidate genes or sequences
with differential expression among populations that might
be closely related to bat RF and could provide insight into
the genetic basis of geographic variation in acoustic signals.

DEGs related to acoustic signal traits
In this study, we found that gene expression diversity
among different populations and gene expression of
cochleae could contribute to the RF variation of R. ferru-
mequinum echolocation calls. First, we found a significant
change in gene expression patterns among the three pop-
ulations (Fig. 1a), and we obtained a large number of
DEGs using pairwise comparison methods (Fig. 1b and c).
Second, HN and YN populations had the lowest difference
in RF (difference of average RF = 2.5 kHz) and more simi-
lar gene expression patterns than the other two pairwise
comparisons (HN vs JL and YN vs JL; Fig. 1a), even
though this finding was not consistent with the phylogen-
etic relationship inferred from orthologous genes (Fig. 6)
and the STRUCTURE results based on SNPs (Fig. 4b).
Third, we used WGCNA, a very widely used R software
package, to identify groups, known as modules, of corre-
lated genes in suitable data [75]. We found strong associa-
tions between phenotypic traits (RF and FL) and five
different expression gene modules (Fig. 2b). The unigenes
with higher connectivity tended to be more strongly
correlated with RF and FL. This finding indicated that
these unigenes might play potentially important roles in
the acoustic signal phenotype of bats.
Although we could not confirm which unigenes affect RF

variation, our enrichment results showed that unigenes in
M1 were enriched in pathways related to nervous system
activity, such as a neuron, synapse, membrane, transporter,
and channel activity, which are crucial in nerve

Fig. 6 Phylogenetic relationships of four bat species based on all single-copy orthologous genes. A map of China was superimposed over to
show the biogeographic ranges for each greater horseshoe bat population (from Sun et al. [22]), and the sampling sites are shown by red dots.
The percentage of bootstrap replicates that supported each node is shown above the branch

Zhao et al. Frontiers in Zoology           (2019) 16:37 Page 10 of 15



transmission in processes such as hearing. Several studies
have shown that the same neural circuit, “the song system,”
controls the song of all songbirds, and genes activate the
singing pattern [76–78]. Therefore, our results could indi-
cate that the variable echolocation calls among different
populations are regulated by the expression of genes related
to the nervous system that adapt to different environments.
We also identified potentially new GO categories for geo-
graphic variation in echolocation frequencies (learning or
memory, and learning), as they were significantly enriched
in our differentially expressed RF-related gene modules. Al-
though there is no direct evidence that the greater horse-
shoe bat has song-learning abilities, Sun et al. suggested the
possibility of cultural drift of the greater horseshoe bat [22].
Therefore, we cannot rule out the possibility that these bats
have song-learning abilities. Although unigenes in the other
four modules were significantly enriched in several GO
items or KEGG pathways, their functions were not directly
related to hearing, potentially because environmental fac-
tors and the state of the individuals could influence the ex-
pression of those unigenes. However, the expression
changes of those unigenes might also affect hearing in some
unknown ways. Therefore, we should not exclude the pos-
sibility that those unigenes could affect hearing before per-
forming additional function analyses.
Interestingly, the enrichment results of unigenes in RF-

related modules (M1 and M6) indicated another
possibility: that the expression of genes related to sound
response could affect bat RF. In channel catfish (Ictalurus
punctatus), which can hear at higher frequencies, the
genes in the pathway related to sound response were
highly expressed in auditory organs, and could be associ-
ated with hearing [79]. Although experimental studies on
the genes of these GOs are still limited, it would be inter-
esting to study how the differential expression of those
genes affect hearing. For unigenes in FL-related modules,
many of the significantly enriched pathways were related
to muscle and actin. Though we have no direct proof that
FL is related to muscle mass, the regulation of skeletal
muscle cell growth and proliferation can cause variation
in body size [80], which could influence bat RF.

Outlier loci and genes under positive selection
We also attempted to identify the genetic basis of geo-
graphic variation in echolocation frequencies of bats
based on nucleotide variations. In general, larger sample
sizes are thought to be better for population genetic
studies [81]. However, another studied showed that, even
with a very small sample size (i.e., two individuals),
accurate estimates of Fst could be obtained with a large
number of SNPs (≥ 1500) [82]. For threatened species,
species with reduced population sizes, and species that
are difficult to obtain, such as bats, it is hard and detri-
mental to their populations to obtain enough samples.

Therefore, high-throughput screening technologies are
promising for estimating genetic diversity and differenti-
ation in such populations from very small sample sizes
or populations undergoing reduction.
In this study, we found 349 candidate loci identified by

at least two outlier tests. The outliers from Bayenv2,
LFMM, and PCAdapt included 1.14, 4.31, and 7.81% of
the total number of loci analyzed from our RNA-Seq
dataset, respectively; these percentages are similar to the
candidate coverage reported in other studies (2.52, 4.87,
and 7.52%, respectively) using at least one of the same
software programs [83, 84]. The overall percentage of
outliers may be affected by species and the dataset. More
specifically, the factors that determine the dataset, such as
false-positive rate, sampling, genome size, power, and
composition, would influence the numbers of SNPs and
then affect the coverage of outliers [85]. The three
methods may yield different results because they theoret-
ically differ. Therefore, those genes recognized by more
than one method are more likely to be under selection.
Although there were not many candidate loci detected by
overlap of the three outlier tests, especially between
Bayenv2 vs. LFMM, Bayenv2 vs. PCAdapt, and all three
methods, those 349 candidate loci detected by more than
one method are likely important in adaptation.
Of all 349 candidate loci, 18 were in the unigenes anno-

tated in 18 genes that are related to maintaining normal
cochlea or neurofunction. Of the 18 genes, PSAP (Uni-
gene0000367) [86], ERBB4 (Unigene0004747) [87, 88],
LGR6 (Unigene0005403) [89], BAK1 (Unigene0040895)
[90], OSTF1 (Unigene0005552) [91], and TSHZ1 (Uni-
gene0008250) [92] are necessary for hearing, with func-
tions involved in the maintenance of nerve cell functions,
hair cell protection, and skeleton formation. Mutations,
deletions, or gene expression changes of MUC19 (Uni-
gene0008431) [93], IL-6 (Unigene0051178) [94], ZNF469
(Unigene0005986) [95], CKMT2 (Unigene0004892) [96],
TMC2 (Unigene0035276) [97], PYCR2 (Unigene0032863)
[98], and OTOGL (Unigene0036784) [99] could lead to
hearing loss. ATE1 (Unigene0043244) [100], TPRN (Uni-
gene0030527) [101], TRIOBP (Unigene0033824) [102],
GREB1 (Unigene0021168) [103], and DPY19L2 (Uni-
gene0017291) [104] are thought to be related to nonsyn-
dromic hearing impairment by damaging structures in the
inner ear. Moreover, five of these unigenes were differen-
tially expressed, and Unigene0004747 (annotated ERBB4)
was in the turquoise module and significantly related to
RF (Fig. 5b). Although the mechanisms underlying how
the environment affects those genes among bat popula-
tions remain unclear, functions of the genes indicated
their importance in hearing, especially those differentially
expressed mutant genes. In the echolocation process,
those genes might affect sensitivity to calls of specific fre-
quencies, their echolocation signals, by regulating neural
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activity or inner ear structure, which receives these signals.
Moreover, it cannot be ruled out that the geographic vari-
ation of acoustic signals is directly or indirectly influenced
by other candidate loci.
The three populations might have undergone differential

selection in different environments, because genes under
positive selection varied in each lineage (Additional file 1:
Table S10). For the genes under positive selection, we
did not identify any enriched GO term or pathway.
Moreover, we do not have direct evidence that those
PSGs had functions related to hearing, but we cannot
rule out the possibility that the candidate genes directly or
indirectly influence greater horseshoe bat hearing.

Limitations of this study
Our results from several analytical methods demonstrated
that there are distinct DEGs and sequence divergences
among populations that exhibit geographic variation of
acoustic signals, and the expression or sequence diver-
gences of these genes may be related to the geographic vari-
ation in echolocation frequencies. However, as is typical for
many non-model studies, our results were constrained by
several technical and statistical factors. For bats, we had to
collect samples from the wild where neither ecological con-
ditions nor age can be strictly controlled. Moreover, the
particularity of bats limits both sampling design and sample
size, which can affect the identification of candidate genes,
and many methods are known to be susceptible to false
positives. By taking these factors into account, we were un-
able to definitively determine which candidate genes dir-
ectly or indirectly affect bat hearing and RF without further
verification. Although we can only speculate until further
physiological studies are conducted, our evidence indicates
that these genes and gene groups may be important in
shaping the geographic variation of signal structure, and
those genes will be the focus of a future study.

Conclusions
Using representative populations of the greater horseshoe
bat in China, we obtained transcriptome data of R. ferru-
mequinum cochleae and analyzed gene expression and
sequence data to examine gene expression changes and
genotypes that contribute to geographic variation in echo-
location calls. We identified some DEG modules and
genomic variation among different populations related to
RF or environment variables that could influence calling.
The DEGs in modules that were significantly related to RF
or FL were significantly associated with neurological and
muscular functions, such as synaptic function, neuronal
function, ion channel function, response to sound, learn-
ing behavior, muscle, and actin functions. As researchers
pointed out in a previous study [22], both environmental
adaptation and song learning are related to acoustic char-
acteristics of greater horseshoe bats. Additionally, muscle

mass, which could be related to body size, might also
affect RF. Although specific genes could not be pin-
pointed, our results still indicated the potential import-
ance of those genes. Genotype variation provided another
way to understand the geographic variation of acoustic
signals, and outlier loci and genes under positive selection
might also be related to features of echolocation calls.
Some of those genes have been reported to be related to
hearing; five of them were significantly differentially
expressed among populations, and ERBB4 was in the
module that was significantly correlated with RF. This
finding indicated the importance of these genes, although
the function of particular amino acid substitutions in these
genes is unknown. In this study, even if RF could partially
explain the changes in gene expression and sequence vari-
ation, future functional experiments will be necessary to
validate their importance. Although there were limitations
of our sampling strategy and analyses, our results partially
explained the intraspecific geographic variation of acoustic
signals and provided a direction for future research.
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