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Abstract

effective during the early steps of the colonization.

Backgrounds: Aedes albopictus (Diptera; Culicidae) is a highly invasive mosquito species and a competent vector of
several arboviral diseases that have spread rapidly throughout the world. Prevalence and patterns of dispersal of the
mosquito are of central importance for an effective control of the species. We used site-occupancy models
accounting for false negative detections to estimate the prevalence, the turnover, the movement pattern and the
growth rate in the number of sites occupied by the mosquito in 17 localities throughout Mallorca Island.

Results: Site-occupancy probability increased from 0.35 in the 2012, year of first reported observation of the
species, to 0.89 in 2015. Despite a steady increase in mosquito presence, the extinction probability was generally
high indicating a high turnover in the occupied sites. We considered two site-dependent covariates, namely the
distance from the point of first observation and the estimated yearly occupancy rate in the neighborhood, as
predicted by diffusion models. Results suggested that mosquito distribution during the first year was consistent
with what predicted by simple diffusion models, but was not consistent with the diffusion model in subsequent
years when it was similar to those expected from leapfrog dispersal events.

Conclusions: Assuming a single initial colonization event, the spread of Ae. albopictus in Mallorca followed two
distinct phases, an early one consistent with diffusion movements and a second consistent with long distance,
‘leapfrog’, movements. The colonization of the island was fast, with ~90% of the sites estimated to be occupied 3
years after the colonization. The fast spread was likely to have occurred through vectors related to human mobility
such as cars or other vehicles. Surveillance and management actions near the introduction point would only be
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Background

Measuring species range expansion and the pattern of
dispersal is a central theme in animal ecology and of
particular importance in the management or control
of invasive species [39]. Most mathematical models
for range expansion assume no false negative for de-
tection of a species, that is to say, if a species is
present at a given site, it will always be detected [42].
However, cryptic species or species at the initial phase

* Correspondence: g.tavecchia@uib.es

'Population Ecology Group, IMEDEA (CSIC-UIB), c. Miquel Marqués 21, 07190
Esporles, Spain

Full list of author information is available at the end of the article

( ) BiolVled Central

of the expansion process, might not be detected
under a given density threshold [6, 22], which would
lead to underestimation of the species prevalence, i.e.
number of sites occupied, and the pace of range
expansion, i.e. species growth rate. MacKenzie et al.
(2006; [26]) proposed an approach based on repeated
surveys on sites to estimate the detection probability
and the likelihood of species presence accounting for
a detection probability <1. In contrast to classical
models of range expansion [42], site-occupancy
models are discrete in space and time. However, their
flexibility permits modelling species occurrence as a
function of a continuous spatial or temporal
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covariates [16] allowing the comparison of predictions
of the pattern of colonization similar to those that
characterise classical diffusion models. In a simple
diffusion model [10] range dynamic is driven only by
the intrinsic population growth rate and by the ran-
dom short-distance movements of individuals [11, 42].
This model predicts that colonization probability co-
varies negatively with the distance from the central
point or the observed initial site of occupation [27].
In many species, however, random short-distance
movements are coupled with long-distance dispersal
events, leading to a second type of models character-
ized by multiple centres of diffusion, an expansion
process often referred to as ‘hierarchical diffusion’ or
‘stratified dispersal’ [14, 42]. At a small spatial scale, a
negative association between colonization probability
and distance from the site of first colonization does
not necessarily occur during stratified dispersal
because the species can be absent at intermediate dis-
tances. However, a diffusion process from each new
colonised site would still exist. A third pattern of
range expansion is the one resulting from ‘leapfrog’
dispersal movements, with no or little subsequent dif-
fusion [7]. This model predicts high colonization and
extinction probability but low diffusion. In this model,
the overall occupancy probability would increase as a
result of range expansion but with no apparent rela-
tionship with the distance from the initial occupied
site and without a clear diffusion process.

We used dynamic site-occupancy models [27] to
measure the rate of expansion of the Asian Tiger
mosquito Aedes (Stegomya) albopictus (Skuse, 1894)
(Diptera; Culicidae) in the Island of Mallorca (Balearic
Islands, Spain). We contrasted models consistent with
different types of range expansion patterns to investi-
gate the underlying dispersal process. The Asian Tiger
mosquito is a daytime-active mosquito native to the
tropical and subtropical region of southern Asia [13],
and is considered to be one of the most invasive spe-
cies in the world [23]. Its current distribution in-
cludes all continents except Antarctica [20]. In
Europe, the species was first detected in Albania in
1979 [1], with no records reported in the rest of the
continent until 1990s, when it appeared in Italy [19]
from where it rapidly spreads to Southern and
Central Europe [29, 41]. The first detection in main-
land Spain occurred in 2004 in Sant Cugat del Vallés
(Catalonia, Spain; [2]). Currently its distribution in
Spain includes most of the Mediterranean coast as
well Northern areas of the Iberian Peninsula ([8],
2016). In Mallorca (Balearic Islands) the species was
first detected in 2012 in 5 municipalities [30] and it
rapidly spread to Ibiza in 2014 (Barcelé et al., 2015)
and Menorca in 2016 [3]. Despite being able to feed
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upon different hosts depending on their availability
[45], Ae. albopictus adults obtain blood preferably
from humans [32]. The expansion of the Tiger mos-
quito in Europe has recently created public concerns
for its possible role in the transmission of the Zika
virus, responsible of microcephaly in newborns of
infected mothers (ECDPC, 2016) and as a potential
vector for Dengue and Chikungunya viruses [34, 46].
Understanding the spread of invasive mosquito species
would thus provide important information needed for a
successful control and prevention campaigns. At a large
spatial scale, the presence of Ae. Albopictus is associ-
ated with the level of rainfall and day time surface
temperature and its dispersal is facilitated by human
activities [44]. However, pattern of dispersal and distri-
bution at small spatial scale and from the early steps of
the colonization process are largely unknown. The iso-
lated character of recently colonized Balearic Islands
offers the unique opportunity to follow the invasion
process and to determine the mechanisms underlying
species diffusion.

Our first aim was to estimate the prevalence of the
occupation, i.e. the proportion of sites occupied, and
the annual rate of spread, i.e. the proportional change
in the number of sites occupied per year. We subse-
quently investigated the expansion processes by mod-
elling the colonization probability as a linear function
of the distance from the site of first reported occu-
pancy. If the expansion followed a diffusion process,
we expected the probability of occupancy to abate
with the distance from the first reported occupied
site. Indeed, diffusion is a slow process for Ae albo-
pictus [28] even when compared with other Aedes
species [12]. Also, under random short-distance dis-
persal, models in which the probability of occupancy
at a given site is a function of the occupancy of the
neighbourhood would provide a good description of
the data [4, 47]. Alternatively, if range expansion oc-
curred mainly by leapfrog dispersal, we expected nei-
ther the distance from the initial points nor models
depending on neighbourhood covariates to be
adequate.

Methods

Mosquito prevalence and occupancy rate

Mallorca Island is the largest and most populated island
of the Balearic archipelago, Eastern Spain, with a surface
of 3640 km? and about 860 x 10° inhabitants (in 2015).
Since the first record of Ae. albopictus in Mallorca in
2012, a network of 784 oviposition traps (described in
[30]) was deployed in 40 municipalities to monitor the
species distribution and range expansion. The monitor-
ing scheme changed over the years resulting in data
sparseness. As a consequence, we first restricted the



Tavecchia et al. Frontiers in Zoology (2017) 14:39

analysis to data collected during the 3 months of max-
imum abundance of Ae. Albopictus (September—Novem-
ber) during the period 2012-2015. To further reduce
data sparseness, we used a cluster-by-distance analysis
to group neighboring traps into 70 clusters (‘sites,
hereafter; Fig. 1). The clustering distance threshold
was arbitrarily chosen as a good compromise between
data richness and number of sites monitored. Besides
reducing data sparseness, the clustering allowed a
more straightforward interpretation of the yearly oc-
cupancy rate because the number and the identity of
clusters remained roughly constant throughout the
study (Table 1). Nevertheless the dataset was unbal-
anced and information gaps persisted for some loca-
tions (e.g. 23 locations have been sampled in only 1
year). For each site in the dataset we recorded the
distance from the location of first observation in the
municipality of Bunyola, about 15 Km north the main
city of Palma. Clustering and distance analyses were
conducted using program R v3.3.1 [38].

Modelling site-occupancy accounting for detection
probability

The occupancy dynamic at each site was investigated
using dynamic site-occupancy models [26, 18] in which
the occurrence of mosquitoes at site i on a given time ¢,
z;,, is considered as a latent state governed by the occu-
pancy probability, ¢,. Changes in the occupancy over
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time can be described as in metapopulation dynamics by
the extinction, €, and colonization, y, probabilities.
Hence the initial occupancy state, at time 1, is assumed
to be

zi1~ Bernoulli(\¥)

whereas in subsequent period is:
Zit| zit1~Bernoulli (th.l [1-&.1] + [I'Zi,t-l]Yi,t.l)

The actual observations, y;;, on a site i at time ¢ are
treated as conditional on the occurrence probability and
the probability, p,, to detect the species when present
as:

yi7t| zi7t~Bernoulli(zi,tpt)

By combining the yearly estimates of y and ¢ it is
possible to calculate several derived quantities such
as i) the probability of occupancy in any given year,
Ye=We1(l-g.1) + (1-P1) Ye1 and ii) the proportional
increase in the probability of occupancy A =,1 /W,
[25]. The proportion of sites occupied at equilibrium,
Yeq, that leads to Y=y, can be calculated using
the average colonization and extinction probabilities
as Yeq=Y/(y + €). In an increasing population typi-
cally y; <yeq while ¢ >yq when population is de-
creasing [16, 37].
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Fig. 1 The Island of Mallorca with the location of the 70 sites (black dots) monitored for the presence of Ae. Albopictus. The circles indicate an
area of diameter equal to the average nearest neighbor distance between the sites (3.6 Km). The grey triangle is the site of first observation in
2012. Note that the more eastern locations have been monitored in 2012 only when the species was first reported in Mallorca
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Table 1 Presence-absence data of tiger mosquitoes from 70 unique sites monitored during autumn 2012 to 2015

Year Number of unique sites monitored Observed occupancy rate (%) Maximum distance from first reported observation (km)
2012 38 26 213
2013 39 26 30.1
2014 44 57 316
2015 44 93 415

Modelling the pattern of expansion through site-occupancy
models

The presence of A. albopictus at each site was first
modelled by assuming the initial occupancy, y;, the
extinction, €, colonization, y, and detection, p, prob-
abilities varied over time (years), denoted by the
model Y(t)y(t)e(t)p(t). This general model was used to
estimate the occupancy rate, the turnover, the occu-
pancy growth rate and the extinction probability over
time. The model y(t)y(t)e(t)p(t) does not assume any
diffusion process and it is consistent with a leapfrog
dispersal pattern in which colonization and extinction
change over time but without a particular spatial pat-
tern. We then considered a set of models assuming
that the observed mosquito range resulted from a dif-
fusion process. We first modelled the initial occur-
rence, ¥, and the colonization, y, probabilities as:

logit(Bi,t) =a;+ B, Xis (1)

where 0 refers to the probabilities y; or y and X to
the distance (standardized) from the site of fist observation
(noted ‘dist’ in model notation). This approach was used
by MacKenzie et al. (2006) to model the expansion of
the House finch Carpodacus mexicanus (Miller) in
North America. Although the model would be consistent
with a diffusion process, it does not include the mechan-
ism itself [47]. Following [47], we constrained the
colonization probability, y, at a given site, i, to be
dependent on the yearly occupancy rate, y,, within the
site neighbourhood, as logit(y;,) = a; + S;¥, The autoco-
variate y, is:

1
Ve =7 2 ety ie @
and it is defined as the probability of occupancy of
the neighbouring patch j, and [/ is the number of
patches located in the neighbourhood. The neighbour-
hood can be made by the adjacent patches [4] or by
the total patches in the study area as an average
measure of the overall occupancy rate [47]. Although
at different scales, both models are consistent with ei-
ther a gradual range expansion through diffusion or a
stratified diffusion processes. In theory, if all adjacent
cells contribute equally, the two models would only

differ in the definition of the neighborhood. In our
case, however, this similarity does not hold because
the sites monitored were unequally spaced and a fur-
ther clustering was necessary to define the adjacent
sites. To do this, we considered a grid made of 4 x 4
km cells (n=263), a rounded measure of the average
nearest neighbour distance between sites. In the ma-
jority of the 70 sites monitored (n=56), there was a
single site per cell, while 7 cells contained two sites.
In this respect the two autoregressive functions can-
not be compared because they refer to a different
number of sites.

We used a Bayesian framework to estimate model
parameters [17]. Bayesian analyses were conducted in
WinBUGS [24] using uninformative priors for model
parameters (uniform distribution from -20 to +20 for
linear predictors and 0 to 1 for probabilities). The
posterior distributions of parameters were sampled,
using 3 chains and 25,000 simulations (the first 5000
discarded as a burnin period). Model selection in
Bayesian analyses is not straightforward [43]. Across
nested models, selection can be done using the
Deviance Information Criterion (DIC), a generalisa-
tion of the Akaike’s Information Criterion (AIC; [5])
for hierarchical models. However, comparisons be-
tween models with and without an autoregressive
structure cannot be performed using the DIC because
the DIC is computed at different levels in the hier-
archy of data and parameters. Model adequacy was
thus assessed by inspecting the estimates and their
standard deviations. We report the DIC of all models,
but we warn readers that this should not be taken as
a strict criterion for model explanatory power.

Results

Mosquito prevalence and occupancy rate

The observed edge of the mosquito distribution, i.e. the
site at the greatest distance from the initial reported
occupancy, was expanding during the study period at
an average rate of 6.1 km per year (Fig. 2). Observed
site occupancy rate assuming a detection probability of
1.00 were 0.26 (n=38), 026 (n=39), 057 (n=44)
and 0.93 (n=44) in 2012, 2013, 2014 and 2015, respect-
ively (Table 1). However, the site-occupancy model,
Y(t)y(te(t)p(t), assuming all parameters time-dependent
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Fig. 2 Maximum distance of a observed occurrence from the point of first observation by year. The solid line indicates the expected values
assuming a linear diffusion. The speed of the observed expansion is 6.2 km per year (slope of the regression line)

revealed that the detection probability varied from
0.23 in 2013 to 0.85 in 2015, being less than 1 in all
years (Table 2). As expected, this model led to esti-
mated occupancy probabilities higher than those ob-
served (0.35, 0.59, 0.57 and 0.90 in 2012, 2013, 2014
and 2015, respectively; Table 2). The probability of
local extinction was generally high (average 0.38), but
it dropped to 0.07 in 2015 (Table 2). The initial occu-
pancy rate in 2012 (Y010 = 0.351) was lower than the
expected occupancy rate at equilibrium (Yy.q=0.661)
confirming the observed range expansion over the
study area. The average growth rate in the occupancy
probability was 1.50, equivalent to a 50% increase per
year in the number of sites occupied by the species
per year. However, this rate of increase was not constant
and the range expansion greatly increased after the
initial colonization and during the last year (periods
2012-2013 and 2014-2015, Table 2).

Table 2 Modelling the occupancy dynamics of the tiger mosquito in Mallorca Island. { = occupancy probability, y

Modelling the pattern of expansion through site-occupancy
model

The DIC of the general model (DIC model 2
Y(t)y(t)e(t)p(t) = 353.89) improved slightly when the ini-
tial probability of occupancy was model as a function of
the distance from the point of first reported observation
(DIC model 1 y(dist)y(t)e(t)p(t) =352.29; Tab. 3). The
estimates of a and B (a=-3.581, f=-5.537) with the
upper 95% credible intervals of B lower than 0.00
(+95%CI = -1.978) indicate that the probability of occu-
pancy in the first year declined as a function of distance.
Estimates showed a sharp decline in the occupancy rate,
with no occupancy expected at mid-distance between
the first reported observation and the farthest site
monitored (c. 23 km; Fig. 3). However, the probability of
colonization of empty patches in subsequent years did
not depend on the distance from the first reported
observation (DIC y(dist)y(dist)e(t)p(t) = 362.03; Table 3-

= colonization

probability, € = extinction probability. Effects: t = time effect, dist = distance from the site of first observation, m.p = autocovariate
based on the average occupancy rate in the whole area, D = autocovariate based on the adjacent occupancy rate (see details in
‘Methods’). Note that W(covariate) refers to occupancy rate in 2012 only, the occupancy probabilities for the subsequent years are

calculated as derived parameters (see text for details)

Model Type of dispersal Autocovariate Notation DIC Reference
1 Initial diffusion + leapfrog No P(dist)y(e®)p(t) 352.29 [26]
2 Leapfrog No POYOEeDp(t) 353.89 [26]
3 Diffusion No Y(dist)y(dist)e(t)p(t) 362.03 [26]
4 Diffusion No PO)y(diste®)p(t) 363.84 [26]
5 Leapfrog / Diffusion Yes PEOYmM. Ye®)p(t) 37432 [47]
6 Stratified Diffusion Yes P)y(D)e®p(t) 406.18 [4]
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Table 3 Estimates from model Y(t)y(t)e(t)p(t), assuming all
parameters variable over time. Credible interval (Cl) at 2.5% and
97.5% are reported. Parameters: ; = occupancy probability at
time /, y; = colonization probability, e.g. the probability that an
empty site is occupied between i and i + 1, g = extinction
probability, e.g. the probability that an occupied size at i is
not-occupied at i + 1, \; = the growth rate of occupied size
between jand i + 1, Yoq = 0ccupation probability at equilibrium
(see text for details)

Parameter Mean Sd 2.5% quantile 97.5% quantile
V2012 0351 0.102 0.184 0.58
Y2013 0.587 0.159 0.291 0.887
V2014 0568 0.071 0428 0.704
V2015 0.899 0.044 0.800 0.968
Y2012 0.667 0.201 0.258 0.980
Yao13 0.669 0.182 0.251 0.974
Y2014 0.862 0.075 0.686 0973
€012 0.566 024 0.059 0935
€013 0.509 0.133 0.252 0.769
5014 0.073 0.051 0.007 0.197
P2012 063 0.118 0384 0.839
Pao13 0.26 0.103 0.112 0510
P2014 0.80 0.048 0.693 0.882
P2015 0.85 0.033 0.782 0.909
Ao12 1.846 0.833 0.685 3.867
Moi3 1057 0388 0.580 2047
2014 1610 0.220 1.261 2113
Peq 0.661 0.066 0.548 0.804

Fig. 4). Models including an autoregression structure in
which colonization probabilities were modelled as a
linear function of the average neighbouring occupancy
rate in the form o + B1,,” delivered positive but unreal-
istic standard deviations for the s parameters (mean +
sd: B1,2073 =191 + 11.3, Py1,2074 =4.637 = 9.51 and P 2055
=-6.667 * 9.46). Similar imprecise estimates were ob-
tained when only adjacent cells were considered (Fig. 5).

Discussion

The expansion of the tiger mosquito

The range expansion of the Tiger mosquito in the island
of Mallorca has been rapid, with an estimated occupancy
of monitored sites probability that increased from 0.35
in 2012 to nearly 0.90 in 2015 and an average annual
growth rate in the occupancy of 1.50. Interestingly, local
extinction probability was relatively high (except from
2014 to 2015) suggesting a high turnover in the occu-
pied sites. During the first year, when the number of
mosquitos was presumably small, treatments with insec-
ticides by private citizens and local administration might
have caused temporary extinction of the species in some
monitored sites. At present we ignore the intensity and
influence of these actions. Extinctions can also have oc-
curred naturally because newly colonized locations are
expected to be occupied by a small number of mosqui-
tos. However, colonization probability was also high,
leading to a fast re-colonization of locations from which
the species disappeared. Under a simple diffusion model
[42], the colonization probability should negatively co-
vary with the distance from the site of first observation
(MacKenzie et al. 2006). Our results indicated that the
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distribution of occupied sites during the first year
responded to what predicted from a simple diffusion
model with random short dispersal movements. In con-
trast, from 2013 to 2015 the colonization of new sites
did not occur as a diffusion process, at least not at the
spatio-temporal scale considered here. The fast range
expansion is better described by leapfrog dispersal move-
ments, in which an increasing number of sites are occu-
pied each year, but without a clear relationship with the
distance from the initial colonization. Autoregressive
models delivered unrealistic standard deviations of par-
ameter estimates indicating that a gradual diffusion
process is unlikely to have shaped the current distribu-
tion at least at the spatial scale considered here.
Collantes et al. 2015 [8] mentioned a possible diffusion
process of dispersal of A. albopictus from its first detec-
tion site in mainland Spain in 2004. However, no ana-
lyses were conducted for demonstrating such type of
dispersal. Other authors also reported leapfrog dispersal
movements at larger spatial scale (>500 km) from the
site of first detection in Catalonia to the Valencia region
(Bueno-Mari et al., 2013). The same pattern of progres-
sive and gradual invasion since the initial point com-
bined with sporadic “jumps” has been also proposed by
Roche et al. [35] on a study of the distribution of Ae.
albopictus in continental France and Corsica. In com-
parison to other mosquitos, Ae. albopictus show a low
dispersal capability [12]. According to Marini et al. [28],
for example, the average flight distance of Ae. albopictus
is 119 m per day. However, passive transportation of
eggs, through translocations of used tires [33] and adults
mosquitoes in vehicles [32] are probably the mecha-
nisms of leapfrog dispersal movements. Despite our con-
clusions are drawn on a smaller spatial scale than the

one previously considered, they are in agreement with
what is known of the colonization pattern of the species.
However, they are based on the assumption of a single
initial colonization event in 2012. We cannot exclude
that subsequent colonization (i.e. independent introduc-
tions; see for example [15, 36]) occurred after 2012. At
the moment it is unknown whether or where this hap-
pened, but multiple introductions from mainland
through the local airport or the two main ports of Alcu-
dia and Palma would be consistent with a stratified dif-
fusion as predicted by models with auto-covariates The
change in colonization and extinction probability in the
last year of the study might partly be due to natural
causes. For example the amount of rainfall during the
summer 2015 was particularly high and can partially ex-
plain the high colonization and recapture probabilities
(see below). The short period of the study does not
permit to fully investigate a relationship between
colonization and rainfall but an important role of
weather variables has been found in the oviposition
dynamics of Ae. aegypti in Northwestern Argentina [9]
and in the abundance of Ae albopictus in the French
Riviera (Tar et al. 2013).

Site occupancy models and species range expansion

The pattern of range expansion of any given species
depends on several characteristic such as landscape het-
erogeneity [11], interspecific competition ([47], 2014),
species life-history traits [22], climatic and human-
related factors [36, 40].

It is not surprising that analytical models of range
expansion are a necessary oversimplification of the
underlying biological processes. They allow, neverthe-
less, some generalizations and the estimates of important
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Fig. 5 Predicted site occupancy probabilities according to the autoregressive model as in eq. 3 assuming an effect of the neighboring sites

(see text for details). Black dots are the monitored sites. Note that areas far away from a monitored site display the average estimate of site

occupancy. The estimated average occupancy probability by a non-autoregressive model was 0.35, 0.59, 0.57 and 0.90 in 2012, 2013,

2014 and 2015, respectively (Table 2)

parameters that modulate the range expansion [22].
Here we used dynamic site-occupancy models to esti-
mate occupancy rate and colonization speed of the Tiger
mosquito accounting for imperfect detection. In contrast
to classical models [14], site-occupancy models are
discrete in space and time. However, we constrained par-
ameter variability as a function of a site-dependent co-
variate to deliver predictions consistent with different
patterns of colonization as in classical continuous
models, i.e. ‘leapfrog’ versus ‘diffusion’. A clear limitation
of our work was the difficulty in finding criteria for
model selection. However, the problem of contrasting
hierarchical models is not only limited to the present
study and it is a topic under study in statistical theory
and numerical ecology [43]. Additional problems derived
from the fast expansion of the mosquito, the limited
number of sites monitored and/or a possible spatially
consisted driver of the colonization probability. These
factors contribute to reduce the variability in

occupancy rate among sites leading to numerical
problems in model fitting when estimating the effect
of the covariate. Beside these limitations, we showed
the potential of site-occupancy models in estimating
range expansion parameters [26] and can be very use-
ful in the study of disease prevalence and vector dy-
namics [21, 31]. For example, Padilla-Torres et al.
[31] used site-occupancy models to study the preva-
lence of Ae. aegypti and Ae. albopictus. They concluded
that routine surveillance based on rapid larval surveys
led to a lower prevalence of both species and suggest a
combined used of ovitrap-based surveillance with analyt-
ical methods based on imperfect detection. Finally, Mac-
Kenzie and Nichols [27] treated occupancy as a surrogate
of abundance. In our case mosquito abundance is more
likely to be reflected in the probability of detection, which
can be seen as the probability of a trap being used by a
gravid female. This is because the conditional probability
to detect mosquito larvae in the oviposition traps given
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that a female has used the trap is equal to 1.00. This
would explain why in 2015, when the probability of recap-
ture was high (0.85), the extinction probability was low
(0.07). However, the link between abundance and detec-
tion is not straightforward because it would depend on
multiple factors that have not been considered here, i.e.
the habitat characteristics or the availability of alternative
breeding sites. The present work is more descriptive than
predictive and future research should incorporate add-
itional site-dependent covariates in the models such as
habitat type and site attractiveness. This can be done with
static (opposite to ‘dynamic’) single-season occupancy-
model. Single season models would not allow investigating
the expansion process as we did here, but they will avoid
trap-clustering and would permit to model mosquito
presence using fine scale habitat covariates to predict
future distributions.

Conclusions

Assuming a single colonization event in 2012, we con-
cluded that the rapid expansion of Ae. Albopictus in
Mallorca Island occurred in two phases. In a first phase
the distribution appeared consistent with a diffusion
process. This was rapidly followed by leap-frog dispersal
events that resulted in an estimated occupancy probability
of 90% 3 years after the colonization. The two distinct
phases imply that surveillance and management actions
near the introduction point would only be effective during
the early steps of the colonization. The lowest extinction
probability was recorded in the year with the highest
amount of summer rainfall suggesting a role of weather
covariates on the paste of the expansion. Dynamic site-
occupancy models offer a robust analytical framework for
the study of range expansion. They are particularly suit-
able for the study of cryptic species with high turnover as
they permit to frame imperfect detections.
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