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Abstract

by chemical signals.

Background: The Asian house rat (Rattus tanezumi) and the brown rat (Rattus norvegicus) are closely related
species and are partially sympatric in southern China. Over the past 20 years, R. tanezumi has significantly
expanded northward in China and partially replaced the native brown rat subspecies, R. n. humiliatus.
Although invasive species are often more aggressive than native species, we did not observe interspecific
physical aggression between R. tanezumi and R. n. humiliatus. Here, we focused on whether or not R.
tanezumi was superior to R. n. humiliatus in terms of nonphysical competition, which is primarily mediated

Results: We performed two laboratory experiments to test different paradigms in domesticated R. tanezumi and R. n.
humiliatus. In Experiment 1, we caged adult male rats of each species for 2 months in heterospecific or conspecific pairs,
partitioned by perforated galvanized iron sheets, allowing exchange of chemical stimuli and ultrasonic vocalization. The
sexual attractiveness of male urine odor showed a tendency (marginal significance) to increase in R. tanezumi caged
with R. n. humiliatus, compared with those in conspecific pairs. Hippocampal glucocorticoid receptor (GR) and brain-
derived nutrition factor (BDNF) mRNA were upregulated in R. n. humiliatus and R. tanezumi, respectively, when the rats
were caged in heterospecific pairs. In Experiment 2, we kept juvenile male rats in individual cages in rooms with either
the same or the different species for 2 months, allowing chemical interaction. The sexual attractiveness of male urine
was significantly enhanced in R. tanezumi, but reduced in R. n. humiliatus by heterospecific cues and mRNA expression
of hippocampal GR and BDNF were upregulated by heterospecific cues in R. n. humiliatus and R. tanezumi, respectively.
Although not identical, the results from Experiments 1 and 2 were generally consistent.

Conclusions: The results of both experiments indicate that nonphysical/chronic interspecific stimuli, particularly scent
signals, between R. n. humiliatus and R. tanezumi may negatively affect R. n. humiliatus and positively affect R. tanezumi.
We infer that chronic interspecific interactions may have contributed to the invasion of R. tanezumi into the range of R.
n. humiliatus in natural habitats.
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Background

The brown rat (Rattus norvegicus), the Asian house rat
(R tanezumi), and the black rat (R. rattus) are three
closely related commensal pests [1]. R. norvegicus has
now spread from northern Asia to all continents except
Antarctica, whereas R. tanezumi is mainly distributed in
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eastern, southern, and south-eastern Asia [1-3]. In
China, R. norvegicus is widespread and has differentiated
into four subspecies, including R. n. norvegicus, R. n.
soccer, R. n. humiliatus, and R. n. caraco, whereas R
tanezumi typically lives south of the Yellow River and is
sympatric with R n. norvegicus and R. n. soccer (1, 4, 5].
R tanezumi is also sympatric with R. n. caraco in the
Korean peninsula [6]. R n. humiliatus, which is the
smallest of the four subspecies and lives mainly in Hebei
Province in central North China, is the only subspecies
geographically isolated from R. tanezumi [4, 7]; however,
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R. tanezumi has recently expanded its range to north of
the Yellow River in the south of Hebei Province and par-
tially replaced the native R. norvegicus subspecies (i.e., R.
n. humiliatus) [8-10]. Several factors, including global
warming and higher resistance to common rodenticides
compared with brown rats, are believed to likely contrib-
ute to the invasive success of R. tanezumi [5, 11-15].

Exotic invasive species that successfully expand their
range and displace native species appear to exhibit
superiority in interspecific competition [16]. As
closely related species are more likely to compete
than those that are more distantly related, their com-
petition, coexistence, and invasion have been exten-
sively studied [16-20]. There are several types of
interspecific competition, including indirect resource
competition, interspecific aggression, interspecific terri-
toriality, overgrowth, and chemical competition [16, 21].
In the case of rodents, invasive species are often more ag-
gressive than native species [22]. While spreading from
Asia to Europe and America during the Middle Ages, R
norvegicus generally displaced R. rattus in human settle-
ments, where they out-competed R. rattus via physical
interspecific interactions [11, 23]. It is logical that R.
norvegicus is superior to R. rattus in terms of interspecific
aggression, since the former is larger than the latter [1];
however, invasive R. tanezumi is generally smaller than
native R. n. humiliatus. We did not observe that male R.
n. humiliatus and R. tanezumi displayed interspecific ag-
gression in dyadic encounters in a neutral arena (a com-
mon laboratory method to investigate aggressive
behavior), and they can even live peacefully together for
long periods of time when caged in interspecific male—
male pairs [1, 19] (unpublished data). Thus, it is necessary
to explore whether other types of interspecific competi-
tion (e.g., nonphysical interaction) contribute to the suc-
cessful invasion of R. tanezumi into areas containing R. n.
humiliatus.

Interspecific chemical interactions, including commu-
nication signaling and allelopathy, are widespread among
prokaryotes, plants, and invertebrates, and are important
in the invasion of exotic species [12, 14, 24]. For
mammals, odor-mediated communication between dif-
ferent species (e.g., during predator and prey interac-
tions) is also important, and the general laws of
chemical ecology apply [25, 26]. Rodents use scent sig-
nals extensively in species recognition and interspecific
competition [25, 27-30]. In rodents, scent signals, in-
cluding urine volatile compounds and major urine pro-
teins, are distinctive between closely related species and
even between subspecies, including R. n. humiliatus and
R. tanezumi [31-38] (unpublished data). The scent sig-
nals released by animals can function in heterospecific,
as well as conspecific interactions, without the physical
presence of the donor [37, 39-41]. Therefore, in rodents,
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where physical antagonism does not exist, interspecific
competition may rely partially or completely on inter-
specific odor-based effects.

Interspecific competition can induce physiological
stress responses and inhibitory effects on some pheno-
typic traits of competitors [20, 42]. In rodents, male
scent signals have crucial roles in mediating sexual be-
havior and are often correlated with reproductive suc-
cess [43—-46]. If interspecific interactions induce strong
chronic social stress, they can impair the attractiveness
of the odor of male urine to females, and the production
of urinary sex pheromones, and consequently disturb ro-
dent reproductive behavior [47-50]. Conversely, changes
in the sexual attractiveness of males subjected to inter-
specific competition may indicate stressful states in their
competitors.

Competition-induced stress can activate the hypothal-
amic—pituitary—adrenal (HPA) axis to release endocrine
hormones and neurotransmitters and alter gene expres-
sion in some regions of the rodent brain [25, 51-54].
After chronic competition, shifts in glucocorticoid levels
are not always detectable in rodents [20]. The hippo-
campus is exquisitely sensitive to stressors, due to direct
emotional input from the basolateral amygdala (BLA)
and glucocorticoids (GCs), and because of its high
density of GC receptors [55, 56]. The mRNA expres-
sion of hippocampal glucocorticoid receptor (GR),
brain-derived neurotrophic factor (BDNF), and the
BDNF receptor (TrkB) can be affected by stressors
through modulation of the HPA axis and emotion-
related input from the BLA [52-54]. Levels of GR,
BDNF, and TrkB are closely related to emotional be-
havior, neuronal development, and plasticity, and can
thus reflect emotional states in rodents [55, 57-59].
Stressors often impart different effects on adult and
juvenile animals [60]. Early exposure to aversive stim-
uli often causes long-term alterations in many aspects
of behavior, such as behavioral regulation, neuroendo-
crine responsiveness to stress, and mRNA expression
of central nervous system genes related to behavioral
change in rodents [61].

In the current study, we aimed to explore the po-
tential roles of chronic nonphysical/chemical competi-
tion in the natural invasion process of R. tanezumi
replacing R. n. humiliatus using laboratory experi-
ments. Therefore, we performed two long-term exper-
iments to test different paradigms in our laboratory.
In Experiment 1, two adult male rats of the same or
different species were caged together, partitioned by a
perforated galvanized iron sheet; in Experiment 2,
juvenile males of these two rat species were exposed
to heterospecific or conspecific odors. To examine
the effects of these exposures, we then evaluated
changes in the sexual attractiveness of male urine
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odor and determined the mRNA levels of hippocam-
pal GR, BDNEF, and TrkB, as well as serum cortisol
concentrations.

Results

Effects of chronic interspecific interaction on body weight
Experiment 1: After two months of interaction, the body
weight was not significantly different between the con-
trol and treatment groups of either R. n. humiliatus or
R. tanezumi (Fig. 1a).

Experiment 2: After two months of interaction, the
body weight of immature males exposed to a heterospe-
cific odor was higher than that of the control group (¢ =
2.232, n=6 for each group, p =0.050) in R. n. humilia-
tus, whereas body weight did not differ between the con-
trol and treatment groups in R. tanezumi (Fig. 1b).

Sexual attractiveness of male urine odor
Experiment 1: In R n. humiliatus, female attraction to
male urine did not differ between the control and treat-
ment groups (Fig. 2a), while in R. tanezumi, females ex-
hibited a trend towards preferring males caged with R. n.
humiliatus over those caged with their own species (z =
1.726, n =12, p = 0.080, marginal significance) (Fig. 2a).
Experiment 2: In R. n. humiliatus, heterospecific odor
stimulation significantly suppressed the sexual attractive-
ness of male urine to conspecific females compared with
conspecific odor stimulation (z =2.884, n = 16, p = 0.004)
(Fig. 2b). Conversely, the sexual attractiveness of male
urine was significantly greater after heterospecific odor
stimulation in R. tanezumi (z=2.373, n=18, p=0.018)
(Fig. 2b).

Serum cortisol and testosterone levels

Experiment 1: A radioimmunoassay demonstrated that
serum testosterone and cortisol levels were not signifi-
cantly different between the control and treatment
groups for either R n. humiliatus or R. tanezumi (3a
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and b). However, serum cortisol concentration was
higher in both the control and treatment groups of R.
tanezumi than those of R. n. humiliatus (control group:
t=2.938, n=12 for each species, p=0.008; treatment
group: t=3.395 n=9-10 for each species, p=0.004)
(Fig. 3a).

Experiment 2: Similarly, interspecific odor stimulation
had no apparent effect on serum testosterone or cortisol
levels within species for either R. n. humiliatus or R.
tanezumi (Fig. 3c and d). R. tanezumi also had a higher
serum cortisol concentration than R. »n. humiliatus in
both the control (£=3.173, n=6-7 for each species, p =
0.009) and treatment (¢ = 3.445, n = 6-8 for each species,
p =0.005) groups (Fig. 3c).

Gene expression of GR and BDNF in the hippocampus
Experiment 1: Quantitative real-time PCR demonstrated
that GR mRNA expression was slightly upregulated in
the hippocampus of R. n. humiliatus rats exposed to het-
erospecific stimuli (¢=1.901, n =8 for each group, p =
0.078, marginal significance), whereas hippocampal
BDNF was significantly upregulated in R. tanezumi ex-
posed to heterospecific stimuli (z=3.361, n =8 for each
group, p =0.001) (Fig. 4a and b). Hippocampal TrkB
mRNA expression exhibited no significant changes
within either rat species (Fig. 4a and b).

Experiment 2: Similar to the results of Experiment
1, hippocampal GR mRNA expression (£=4.125, n=6
for each group, p=0.009) in R #n humiliatus and
BDNF mRNA expression (¢=1.911, n=7-8 for each
group, p = 0.078, marginal significance) in R tanezumi
were upregulated (Fig. 4c and d). Hippocampal TrkB
mRNA expression showed no change within either rat
species.

Discussion
Our results from binary choice tests suggest that chronic
nonphysical competition between R. tanezumi and R. n.
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humiliatus exerts completely opposite effects on their
male scent signals, which were enhanced in R. tanezumi,
but inhibited in R #n. humiliatus. The results from
Experiments 1 and 2 were not identical; however, they
were generally consistent with one another. As sexual
attractiveness is often correlated with reproductive suc-
cess and fitness in male animals, the reproductive suc-
cess of R n humiliatus may be suppressed due to
reduced sexual attractiveness, and augmented in R. tane-
zumi due to increased sexual attractiveness resulting
from chronic interspecific competition. Such asymmetric
competition effects on scent signals and reproductive
behavior may have facilitated the invasive R. tanezumi
population to replace that of the native R. n. humiliatus
[41, 43, 62—-65]. Our results, therefore, warrant further

investigation in the laboratory and the field [46, 66].
Although rodents can emit species-specific ultrasonic
vocalizations that are behaviorally important for mating,
nursing, aggression, defense, and emotion within species,
the effects of ultrasound-mediated chronic competition
between closely related species appear to be very weak
[67-69]. Therefore, we believe that nonphysical chronic
interspecific interactions between R. tanezumi and R. n.
humiliatus are likely to have been primarily mediated by
chemical signals in our experiments.

In addition, chronic stress often impairs the sexual at-
tractiveness of urine odor and decreases the levels of
volatile pheromones in male mouse urine [47-49]. For
example, both the presence of a predator and its scent
can inhibit the sexual attractiveness of male mouse urine
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[48]. However, low predation risk, reflected as a low
dose of predator scent, has a positive effect, boosting the
sexual attractiveness of male mouse urine [36, 47, 70]. In
intraspecific male—male competition, two opponents can
form a stable dominance—submission relationship, in
which the dominant partner has more volatile phero-
mones in the urine and greater sexual attractiveness
compared with the submissive partner [49, 71]. Here,
particularly in Experiment 2, the sexual attractiveness of
male urine was augmented in R. tanezumi, but sup-
pressed in R n. humiliatus, as a result of exposure to
heterospecific stimuli, indicating that R n. humiliatus
may be stressed by R. tanezumi. Coincidentally, juvenile
R. n. humiliatus rats exposed to R. tanezumi odor gained
more body weight than those exposed to their own spe-
cies in Experiment 2, possibly reflecting the influence of
a stressor [44, 72].

The influence of nonphysical competition-induced
stress was further confirmed by the observation of up-
regulated hippocampal GR mRNA levels in R n. humi-
liatus in response to R. n. humiliatus cues. As reported
in previous studies of competition stress, we detected
alterations in the expression of GR and BDNF mRNA
in the hippocampus, but no differences in blood
cortisol and testosterone levels in R n. humiliatus
experiencing chronic stress due to the presence of R.
tanezumi [20, 55, 56]. GRs are key mediators of the
neuroendocrine response to stress, and stressor-
specific alterations in GR mRNA levels are more

pronounced in male than in female rodents [73]. Hip-
pocampal GR has been implicated in negative feed-
back inhibition of the HPA axis and can mediate the
deleterious effects of blood glucocorticoids on hippo-
campal neuron survival and function [52, 59]. The ex-
pression of hippocampal GR can be affected by
stressful stimuli and is adaptively downregulated to
protect the hippocampus from glucocorticoid hyperse-
cretion in acute stress and in the early stages of
chronic stress [52, 59]. In the late stages of chronic
stress, blood glucocorticoid may return to control
levels and hippocampal GR expression may be upreg-
ulated due to the buffering effect of repeated stress
and habituation effects [74]. Therefore, the upregula-
tion of hippocampal GR mRNA observed in R n
humiliatus in our study may indicate that this species
was physiologically impaired by long-term interaction
with R. tanezumi.

In contrast, hippocampal BDNF mRNA levels were
upregulated in R. tanezumi, particularly in Experiment
1, after exposure to R. n. humiliatus. The neurotrophic
factor, BDNE, is associated with neuronal development,
survival, and plasticity, and has been found to decrease
in response to acute and mild chronic stress, which may
contribute to the neuronal atrophy/death observed in
rodents suffering from chronic stress [57, 58]. Con-
versely, an enriched environment (EE) can ameliorate
stress-induced symptoms, such as anxious behavior and
increase hippocampal neurogenesis and BDNF protein



Guo et al. Frontiers in Zoology (2017) 14:20

levels in mice and rats [36, 70]. In this study, heterospe-
cific cues from R. n. humiliatus enhanced hippocampal
BDNF gene expression in R. tanezumi, and an EE may
therefore improve cognitive function, spatial memory,
and local behavioral adaptation of invasive R. tanezumi.
For example, it is conceivable that, if immature R. tane-
zumi rats of pioneer populations disperse into the range
of R. n. humiliatus, the resulting heterospecific cues will
promote the development and survival of R tanezumi.
Moreover, repeated encounters between adult rats of
these two species during the invasion process may im-
prove the neuroendocrine state and adaptive behavior of
R. tanezumi.

Conclusions

The results of both experiments conducted in this study
imply that chronic nonphysical interspecific stimuli, par-
ticularly scent signals, can have asymmetric effects on R.
n. humiliatus and R. tanezumi, leading to detrimental
effects on the sexual attractiveness and neuroendocrine
system of the former, and favorable effects on the same
factors in the latter. Thus, we infer that chronic inter-
specific interactions may contribute to the invasive suc-
cess and northward expansion of R tanezumi and the
decline of native R. n. humiliatus populations in natural
habitats. These results warrant further investigation in
the field.

Methods

Animals

Wild R. tanezumi and R. n. humiliatus were captured
from Shanxi Province and Beijing (China), respectively.
Each rat species was maintained as an outbred colony of
300-400 rats in our laboratory. The rats used were of
the third generations, weaned at 4 weeks of age, and
caged in groups of same sex siblings prior to use. All
animals were kept in plastic rat cages (37 x 26 x
17 c¢m), in two separate rooms (14:10 h light: dark
photoperiod, lights on at 5:00 am) and were main-
tained at 25 °C+2 °C. Food (standard rat chow) and
water were provided ad [libitum.

Experiment 1 (assessment of chemical signals and
ultrasonic vocalization stimuli in adult animals)
Twenty-two adult male rats of each rat species were ran-
domly selected from the colonies at 14—18 weeks of age,
and 10 paired with the other species and the others
paired with their own species as a control. All pairs of
rats were housed in the same cage for 2 months, and all
cages were partitioned with perforated galvanized iron
sheets containing one 0.3 cm diameter hole per cm? to
allow chemical and ultrasonic interactions (Fig. 5). Body
weights were not significantly different between control
and treatment groups of the same species (R n.
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humiliatus: 169.4 £ 9.069 g vs. 172.5+8.303 g, £ =0.014,
p=0989; R tanezumi: 1354+7.248 g vs. 1272+
4.397 g, t=1.281, p =0.218).

The sexual attractiveness of the odor of the urine from
heterospecific or conspecific caged males was assessed
using twelve estrous female rats of each species. All fe-
male subjects were between 14 and 18 weeks of age and
had estrous cycles of 4—5 days, as determined by a vagi-
nal smear examination. Females were used in experi-
ments on the days that they came into estrus. Sixteen
female rats of each species were used as urine recipients
in Experiment 1.

Experiment 2 (assessment of the effects of odor stimulus on
young animals)

Fifteen immature males (4 weeks old) of each species
were individually caged and randomly assigned into
two groups for 2 months. One group (1 =8) was kept
in a room with the other species, while the other
group (n=7) remained in a room with its own spe-
cies, as a control. Each rat room was 15 m> and
contained approximately 120 rats (Fig. 5). Body
weights were not significantly different between the
two groups of the same species (R. n. humiliatus:
50.66 £ 3.972 g vs. 49.31 £4.533 g, t=0.225, p =0.826; R.
tanezumi: 47.36 £ 6.177 g vs. 46.03 +9.010 g, £=0.338, p
=0.740). Eighteen female rats of each species in estrus
were used as urine recipients in Experiment 2.

Urine collection

Within 3 days after the chronic interspecific interaction
experiments, we individually collected rat urine using
clean metabolic rat cages during the dark phase of the
light cycle. Urine collection continued for 8 h daily.
The urine from the metabolic cage was collected in a
tube immersed in an ice box. Standard rat chow and
water were freely available. Urine samples were stored
at -20 °C until use. Metabolic cages were washed
thoroughly with water between urine collections.

Behavioral tests of sexual attractiveness
Olfactory preference tests were conducted in a two-
choice box that consisted of a plastic rat cage that served
as a start box and two Plexiglas choice tubes (internal
diameter, 7.5 c¢cm; length, 50 cm). The two choice tubes
were symmetrically connected to the long side of the
start box and each tube had a removable perforated gal-
vanized iron sheet partition 5 cm away from the box to
control rat access. An odorant presentation compart-
ment partitioned by a perforated galvanized iron sheet
from the other part of the tube was at the distal end of
each 10 cm tube (Fig. 5).

Female rats were first test acclimated in the start
box for 30 min, then a microscope slide with a urine
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sample (20 uL) was placed into the odorant presenta-
tion compartment of each tube. Female rats were
simultaneously exposed to two urine samples from
males conspecific to them, where one of the samples
was from a male that had been housed with a con-
specific male, and the other with a heterospecific
male. We immediately opened the door to allow the
females to freely respond to the urine. Between trials,
the start box and choice tubes were cleaned thor-
oughly with water and 75% ethanol. All tests were
recorded on video. Investigation times (i.e., the time
each female spent in a choice tube) were determined
from video replay using a Noldus ethovision XT
system (Noldus, Wageningen, The Netherlands). We
recorded the investigation time for 30 min in Experi-
ment 1 and 1 h in Experiment 2 after the female
initially entered either of the choice arms. If a test
female did not enter either choice tube within
30 min (ie. investigation time=0), we did not use
the data.

Blood and tissue sampling

Two days after urine collection, all rats were decapitated
(within 3 min) and blood samples immediately collected.
The hippocampus was immediately dissected, rapidly
frozen in liquid nitrogen, and stored at -80 °C until use.
Blood samples were incubated at 4 °C in a refrigerator
for 12 h and then centrifuged at 3000 rpm for 15 min for
serum collection. Serum samples were stored at -80 °C
until use. In Experiment 1, individual hippocampi from

eight males were used for RNA isolation and quantitative
real-time PCR; in Experiment 2, all of the hippocampi
were used.

Cortisol and testosterone analysis

Serum samples were analyzed in duplicate for cortisol
using an Iodine[**°I] cortisol RIA kit and for testoster-
one using an Iodine['*’I] Testosterone RIA Kit (Beijing
North Institute of Biological Technology, China). In de-
tail, 100 pL of iodine-125 labeled cortisol (or testoster-
one) was incubated with 50 pL of serum at 37 °C for 1 h
in a water bath. Then, 500 uL of immune separating
agent was added to each sample tube and samples incu-
bated at room temperature for 15 min. Sample tubes
were then centrifuged at 3800 rpm for 15 min and the
supernatant discarded. The remaining radioactivity
bound to the tube was measured using a gamma scintil-
lation counter calibrated for iodine-125 using a radio-
immunoassay  system  (XH6080, Xian Nuclear
Instrument Factory, Xi'an, China). For both cortisol and
testosterone, the intra-assay coefficients of variation
were less than 10%, and the inter-assay coefficients of
variation were less than 15%.

Quantitative real-time PCR

Isolation of total hippocampal RNA was performed
using Trizol reagent (Invitrogen, Life Technologies,
Grand Island, NY, USA) according to the manufacturer’s
instructions. Total RNA concentration was determined
using a NanoDrop spectrophotometer (Thermo Fisher
Scientific Inc., Waltham, USA). Reverse-transcription
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Table 1 Primer sequences for real-time PCR

Gene Forward Primer 5’3’ Reverse Primer 5'-3'

GAPDH GACAATGAATATGGCTAC TTTATTGATGGTATTCGAGA
AGCAAC GAAGG

GR AGGCAGTGTGAAATTGTA GAGGCTTACAATCCTCATTC
TCCCAC GTGT

BDNF GAAGGGCCAGGTCGATT GACGGAAACAGAACGAAC
AGGTG AGAA

TrkB GAGACGAAATCCAGCCC CACAGACTTCCCTTCCTCCA
CGACAC CCG

was performed using a PrimeScript® RT reagent Kit
With gDNA Eraser (Perfect Real Time) (Takara Bio Inc.,
Dalian, China), following the manufacturer’s protocol.
The resulting cDNA was amplified using an Mx3005P
quantitative PCR system (Stratagene, La Jolla, CA, USA)
and the relative abundance of the mRNA of the target
genes determined using a SYBR Green RealMasterMix
Kit (Tiangen, Beijing, China) according to the manufac-
turer’s instructions. PCR primers were designed using
NCBI Primer Blast (http://www.ncbi.nlm.nih.gov/tools/
primer-blast) and the sequences are listed in Table 1.
The housekeeping gene, GAPDH, was used as a control
to normalize the relative mRNA levels. Data were ana-
lyzed as previously described [35].

Statistical analyses

The distributions of raw data were examined using
Kolmogorov—Smirnov tests. If data were normally dis-
tributed, ¢-tests for paired-samples were used for the be-
havioral data and independent t-tests were used for the
body weight, serum hormone and mRNA expression
data. If the data were not normally distributed, Wilcoxon
signed-rank and Mann—Whitney U tests were used. All
statistical analyses were conducted using the SPSS soft-
ware package (v15.0, SPSS Inc., Chicago, IL, USA).
Alpha was set at P <0.05.
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