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Abstract

Background: Wrasses represent the second largest family of marine fishes and display a high diversity of complex
colours linked to ecological functions. Recently, red autofluorescent body colouration has been reported in some of
these fishes. However, little is known about the distribution of such fluorescent body patterns in wrasses or the
animals’ ability to perceive such colours.

Results: Against this background, we (1) investigated long-wavelength emission autofluorescence in thirteen species
of pseudocheilinid wrasses and (2) characterised the spectral absorbance of visual pigments in one of the examined
species, the fairy wrasse Cirrhilabrus solorensis. Spectrophotometric analysis revealed that fluorescent body colouration
is widespread and diverse within this clade, with considerable variation in both fluorescent pattern and maximum
emission wavelength between species. Characterisation of visual pigments in retinal photoreceptors showed a single
class of rod and three spectrally distinct cone photoreceptors, suggesting possible trichromacy.

Conclusion: Combining the emission characteristics of fluorescence body colouration and the spectral sensitivity data
of retinal cells suggests that the visual system of C. solorensis is sensitive to pseudocheilinid fluorescence.
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Background
Wrasses (Labridae) represent the second largest marine
fish family, containing more than 600 species within 82
genera [1]. They are one of the most morphologically
and ecologically diverse clades of marine teleosts [2–4]
and are a dominant group in reef fish communities [5].
Wrasses display a staggering diversity of complex col-
ours virtually unique to this family [6, 7]. These colours
have been linked to important ecological functions such
as camouflage and aggressive mimicry [8], interspecific
signalling [9] as well as courtship and male competition
[10–12]. Yet, the range of colours that can bear such
ecological functions is limited by two factors: the ability
to generate colours under water and the visual capabil-
ities of the fish.
Many wrasses live in the spectrally restricted part of

the ocean – the ‘stenospectral zone’ [13] – where reflect-
ive colours do not appear as they do at the surface [14].
That is because with increasing depth, the long-

wavelength (>600 nm) part of downwelling sunlight is
quickly absorbed by sea water, which is most transparent
to blue light of wavelengths at around 480 nm [15–17].
This lack of long-wavelength sunlight below about 10 to
20 m depth inhibits red and orange reflective colour-
ation, which consequently appears grey or black under
these conditions [18]. In contrast, recently described red
fluorescence in a wide variety of reef fishes – including
wrasses – [19, 20] constitutes a fundamentally different
mechanism, where fluorescent structures absorb ambi-
ent short-wavelength blue light and re-emit photons at
longer wavelengths. This process can enable the display
of red colour even at depths devoid of red sunlight.
Hence, fluorescence can generate conspicuous colour
contrasts, particularly in the near monochromatic light
environment prevalent in most parts of the ocean [18].
Yet for now, there is only limited data on both the per-
ception and function of red fluorescence in fishes.
Research on the visual capabilities of reef fishes has ad-

vanced greatly with the use of microspectrophotometry
(MSP) to measure the spectral absorbance of individual
photoreceptors. This has led to a growing body of data
with photoreceptor sensitivities of more than 80 reef fish
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species characterised to date [21–25]. However, despite
the high number of species and the ecological importance
of labrids, only few studies have analysed photoreceptor
sensitivities in wrasses [7, 26] and therefore the visual cap-
abilities of this family is mostly unknown.
This study investigates long-wavelength (>640 nm)

fluorescence in 13 species of pseudocheilinid wrasses.
Pseudocheilines are a monophyletic clade [1] of diurnal
zooplanktivores (but see also [27]) and inhabit the base
of tropical reefs at depths of 20 to 50 m, some venturing
as deep as 200 m [4, 28–32], well within the stenospec-
tral zone devoid of red sunlight. When first describing
fluorescence in reef fishes, Michiels et al. [19] noted two
autofluorescent pseudocheilinid species, Pseudocheilinus
evanidus [33] and Paracheilinus octotaenia [34]. Since
then, fluorescence has been observed in more than 180
reef fish taxa, often in complex, clade-dependent pat-
terns [20] and has been suggested to play a role in intra-
specific communication [19]. Indeed, recent behavioural
experiments have shown that the pseudocheilinid fairy
wrasse Cirrhilabrus solorensis [35] can perceive its own
red fluorescent body colouration and that this fluores-
cent colour affects agonistic male-male interactions [36].
This work aims to characterise the visual system of

the pseudocheilinid wrasse C. solorensis by reporting

microspectrophotometric measurements of the spectral
absorbances of each of the retinal photoreceptor types
as well as the spectral transmittance data on the ocular
media. Linking this information on the visual capabil-
ities of this species with the deep red fluorescence fea-
tured in Pseudocheilines, enables a more complete
analysis of colour perception in labrids in general and
the role of long-wavelength fluorescence in particular.

Results
Fluorescence characterisation
Fluorescent body patterns varied greatly across species
and, in the few cases examined, between sexes. Fluores-
cence was observed in the fins – especially in the dorsal
and caudal fin rays – and in many cases formed blotches
near the operculum or stripes in the dorsolateral region
of the body. To illustrate different fluorescent patterns
among species, both blue illuminated fluorescence im-
ages and broad-spectrum white light images are dis-
played in Fig. 1.
Peak fluorescence emission in all 13 species examined

ranged from 641 nm in Cirrhilabrus rubrisquamis [37]
to 669 nm in Paracheilinus carpenteri [38] and Pseudo-
cheilinus hexataenia [39]. Moreover, fluorescent bright-
ness differed strongly across species. Fluorescence is

Cirrhilabrus aurantiodorsalis ♂

Cirrhilabrus cyanopleura ♂ †

Cirrhilabrus cyanopleura ♀

Cirrhilabrus lubbocki ♂

Cirrhilabrus rubrimarginatus ♂

Cirrhilabrus rubrisquamis ♂

Cirrhilabrus solorensis ♂

Cirrhilabrus tonozukai ♂

Cirrhilabrus tonozukai ♀

Paracheilinus carpenteri ♂
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Fig. 1 Fluorescent patterns across species. All species investigated photographed under broad-spectrum white light and monochromatic blue
illumination in combination with optical long pass filter (Lee filter 105 “orange”, see methods for details). Relative body sizes are not to scale, but
given in Table 2. ♂ = terminal phase/male; ♀ = initial phase/female; * = unsexed; † = animal died after fluorescence spectrometry
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characterised by wavelength of maximum emission and
fluorescent brightness in Fig. 2.

Microspectrophotometry
Microspectrophotometric data for all photoreceptor clas-
ses found in the fairy wrasse Cirrhilabrus solorensis are
summarised in Table 1 and displayed in Figs. 3 and 4. All
visual pigment absorbance spectra are considered to rep-
resent vitamin A1-based visual pigments (i.e. rhodopsins),
according to the fit of the data to A1 visual pigment tem-
plates [40]. The retina of C. solorensis contains at least
four spectrally distinct visual pigments in three classes of
photoreceptors: one type of rod containing a visual pig-
ment with a mean wavelength of maximum absorbance
(λmax) of the pre-bleach spectra at 492.3 ± 1.0 nm; one
type of single cone with λmax of 514.1 ± 6.6 nm and one
type of twin cone.
The twin cones possess different visual pigments in

their respective cone members with λmax at 497.7 ±
6.3 nm in one member and 532.3 ± 3.0 nm in the other
member. Inspection of individual scans from single cone
outer segments and also the mean spectrum constructed
from all acceptable single cone records suggest the pos-
sibility that single cones express more than one visual
pigment: the absorbance spectrum deviates markedly
from the template on the short-wavelength limb, i.e. has
a greater spectral bandwidth, and the running average of
the peak of the spectrum (507 nm) is different to the es-
timate of λmax obtained by fitting a regression line to the
long wavelength limb (516 nm). Based on the data for
rods and twin cones, we assume that all pigments are
A1-based. We modelled the fit to the mean spectra of a
combination of two A1-based visual pigments (different

opsins) following the methods described elsewhere [41],
which gave predicted λmax values of 485 nm (41 %) and
527 nm (59 %) for the mean pre-bleach spectrum, and
489 nm (44 %) and 530 nm (56 %) for the mean differ-
ence spectrum. Both of the predicted λmax values are
very close to the estimated λmax values of the pigments
contained in the two members of the twin cone. The
photoreceptor classes can be differentiated morphologic-
ally: rods are characterised by their long, cylindrical
outer segments, while single cones feature shorter, con-
ical outer segments. Twin cones comprise two members
that resemble single cones in size and shape but have
closely opposed inner and outer segments. For each re-
ceptor class, approximate sizes of the outer segments are
given in Table 1.

Ocular media transmittance
The spectral transmittance of ocular media taken from
two whole C. solorensis eyes is shown in Fig. 5. The
wavelength of 0.5 transmittance (T0.5) is 389 nm and no
wavelengths shorter than approximately 360 nm can
reach the retina.

Discussion
The Pseudocheilines investigated here display a high di-
versity of deep red fluorescence: our data show variation
in fluorescent peak emission and fluorescent brightness
among species. In Cirrhilabrus cyanopleura [42], C.
solorensis and C. tonozukai [43], both terminal-phase
males and initial-phase females were analysed and dis-
tinct differences in relative fluorescence intensity and
pattern, but not peak emission wavelength, were ob-
served between sexes. These differences across species
and sexes suggest that red fluorescence can potentially
serve species recognition as well as mate choice and cor-
roborate a potential signalling function [19, 20, 36, 44, 45].
Our microspectrophotometric data show that the fairy

wrasse C. solorensis possesses three spectrally distinct
cone visual pigments in one class of single cone and one
class of twin cone. Although abundant in most teleost
fish, birds, reptiles and marsupials, the exact function of
twin- or double cones is not fully understood [24].
While twin cones have long been associated with achro-
matic perception tasks such as luminance and polarisa-
tion detection [46–48], recent behavioural experiments
have shown that one species reef fish can use twin cones
for colour discrimination [49, 50]. It has thus been sug-
gested that some fishes with one type of visual pigment
in single cones and two different pigments in each mem-
ber of twin cones are effectively trichromatic [49]. The
photoreceptor visual pigment λmax values of absorbance
values of C. solorensis presented here are similar to exist-
ing data on other reef fish families [26] and generally
match the blue dominated light environment, but lack a
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Fig. 2 Wavelength of maximum fluorescent emission across species.
Size of circles depicts relative fluorescent brightness
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distinct UV cone receptor found in some shallow water
species [26, 51]. This indicates that the visual system of
fairy wrasses is well adapted to their stenospectral habi-
tat, as predicted by the sensitivity hypothesis [21, 52].
The range of wavelengths an animal can perceive is

not only dependent on the sensitivity of its visual pig-
ments, but also on the wavelengths that can reach the
retina [53] and so any interpretation of microspectropho-
tometric measurements must regard the ocular media
spectral transmittance. Our data on whole eye samples in
C. solorensis show a relatively high spectral transmittance
across most of the spectrum with a short wavelength cut-
off at approximately 360 nm. These results are consistent
with previous work on ocular media in labrids, specifically
data on Cirrhilabrus punctatus [54, 55].
Is the potentially trichromatic visual system of pseudo-

cheilinid wrasses sensitive to their own long-wavelength
fluorescence? When correcting the cone absorptance of
C. solorensis for ocular media transmittance and com-
bining the resulting spectral sensitivities with the fluor-
escence emission of the same species, there is a partial
overlap at the long-wavelength sensitive twin cone mem-
ber B (Fig. 6). While it is hard to predict how such an
overlap is processed by the visual system, our physio-
logical data indicate that the visual system of C. soloren-
sis is sensitive to at least part of the fluorescence emitted
by the Pseudocheilines characterised here. This notion is
supported by our recent behavioural study in C. soloren-
sis, where red fluorescent body colouration has been
shown to affect male agonistic reactions [36]. Microspec-
trophotometric measurements on the red fluorescent goby
Eviota atriventris [56] indicate that this species, too, is
capable of seeing its own fluorescence [19].
It has been argued that λmax values of photoreceptors

are often shorter than expected due to physiological
constraints of long-wavelength sensitive pigments, which
are affected by thermal noise [17, 57]. However, it is
important to note that colour vision is not the result
of how much a certain receptor is stimulated in isola-
tion, but how much it is stimulated in relation to
other receptor types [58]. By implication, even rela-
tively weak long-wavelength absorbances can be suffi-
cient to perceive a signal.

Conclusion
Our findings illustrate the presence and remarkable di-
versity of long-wavelength fluorescence in Pseudochei-
lines and provide descriptive data on their visual system,
for the first time showing potential trichromacy in lab-
rids. These physiological measurements lay the founda-
tion for future experiments on the potential functions of
red fluorescence in reef fish.

Methods
Fluorescence characterisation of 13 species of Pseudo-
cheilines (Table 2) took place at the University of Tübin-
gen, Germany, approved by local state authority under
permit no. ZO 1/12. Microspectrophotometric (MSP)
and spectrophotometric (ocular media transmittance)
measurements of Cirrhilabrus solorensis were carried
out at the University of Western Australia, following
procedures approved by the UWA Animal Ethics Com-
mittee (RA/3/100/1220). All animals were obtained from
ornamental fish traders (von Wussow Importe, Pinne-
berg, Germany and Oceanreef, Wangara, Australia).

a) Fluorescence characterisation
For fluorescence characterisation, each fish was first
sedated using cooled water and then placed onto its
right flank in a water-filled petri dish lined with
non-reflective black cloth. Spectrometric
measurements were taken with a cooled, low-noise
spectrophotometer (QE65000, Ocean Optics, Florida,
USA), a bifurcated fibre optic cable (Ocean Optics
QR400-7-VIS-BX) with a waterproof probe and
SpectraSuite software (Ocean Optics, v. 2.0.132). A
green light laser excitation source (CPS532 Thorlabs,
New Jersey, USA) was combined with a short pass
filter to clean up the excitation signal (BrightLine HC
533/SP, AHF Analysetechnik, Tübingen, Germany) at
the incoming arm and a long-pass filter (EdgeBasic
532R-25, Semrock, New York, USA) in the outgoing
arm that leads the emitted light from the sample into
the spectrometer. Each measurement was taken with
the probe tip submerged and held at an angle of 45°
relative to the surface of the fish (see also [13]). Every
animal was measured repeatedly on several predefined

Table 1 Characteristics of photoreceptor classes in the retina of C. solorensis; n = 10 receptor cells per photoreceptor type; values are
shown ± one standard deviation

Rod Single cone Twin cone, member A Twin cone, member B

Mean λmax of pre-bleach absorbance spectra (nm) 492.3 ± 1.0 nm 514.1 ± 6.6 nm 497.7 ± 6.3 nm 532.4 ± 3.0 nm

Mean absorbance at λmax of pre-bleach spectra 0.033 ± 0.007 0.030 ± 0.012 0.024 ± 0.006 0.025 ± 0.004

Mean λmax of difference spectrum (nm) 496.6 ± 2.7 nm 516.2 ± 6.8 nm 499.2 ± 5.4 nm 533.7 ± 2.7 nm

Absorbance at λmax of mean difference spectrum 0.023 ± 0.006 0.029 ± 0.012 0.021 ± 0.006 0.021 ± 0.005

Approximate dimensions of receptor outer segment 2 × 14 μm 1.5 × 3 μm 1.5 × 3 μm 1.5 × 3 μm

Gerlach et al. Frontiers in Zoology  (2016) 13:13 Page 4 of 8



locations: the eye, dorsal part of the head, the
operculum, both ventral and dorsal parts of the lateral
body as well as each fin. Within all individuals, peak
fluorescent emission was highly consistent across
these body parts. Hence, for each species investigated,
a single summarising measurement of peak
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fluorescence emission (λmax) and maximum fluorescent
brightness was obtained [13].
Following spectrometry, each animal was transferred
into a small, custom-built photo chamber featuring
a scale bar. The fish was then photographed under
broad spectrum white light and monochromatic blue
light from two 450 nm LED torches (mini compact
LCD, Hartenberger, Köln, Germany) each in
combination with a short pass filter (Thorlabs
FD2C) for a sharper excitation cut-off. A digital still
camera (Canon EOS 7D) and an EF-S 60 mm f/2.8
macro lens was used in combination with an optical
long-pass filter (LEE filter no. 105, Hampshire, UK)
for fluorescence images. The latter attenuated the
excitation light (<550 nm) and enhanced the

visibility of long wavelength fluorescence [36].
Pictures were used to graphically illustrate different
fluorescent patterns and to assess standard length
(LS, i.e. the distance from the snout to the caudal
peduncle) in ImageJ v. 1.45 s [59].

b) Microspectrophotometry of visual pigments
Five male Cirrhilabrus solorensis (LS = 4.5–6.1 cm)
were used for MSP analysis. Animals were
dark-adapted for 1 h prior to being euthanised with
an overdose of tricaine methanesulphonate salt
(MS222). Retinal tissue samples were collected as
described in detail elsewhere [23, 24]. In short, both
eyes of each specimen were removed and dissected
under infrared (IR) illumination using an IR image
converter mounted on a dissecting microscope in
order to avoid bleaching of photopigments. One eye
was immersed in Hickman’s teleost ringer (420
mOsmol kg−1) for immediate dissection and MSP
analysis, while the other eye was stored in a
light-tight container at 4 °C for use at the following
day. The eye was hemisected and both the lens and
the vitreous humour removed. The retina was then
extracted, dissected into several small pieces
(approximately 1–3 mm2) and each piece
transferred into a drop of teleost ringer solution
containing 8 % dextran (MW 282,000; Sigma
D-7265) sitting on a glass coverslip. A second
coverslip was placed on top of the retinal sample
and the edges sealed with nail varnish. Individual
samples thus prepared were stored at 4 °C (see
[23]) and analysed within the same day.
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Table 2 List of species, sex and standard length (LS) of fish
examined

Species Sex LS (mm)

Cirrhilabrus aurantidorsalis male 62.0

Cirrhilabrus cyanopleura male 81.9

Cirrhilabrus cyanopleura female 52.9

Cirrhilabrus lubbocki male 45.8

Cirrhilabrus rubrimarginatus male 55.5

Cirrhilabrus rubrisquamis male 62.3

Cirrhilabrus solorensis male 67.6

Cirrhilabrus solorensis female 84.1

Cirrhilabrus tonozukai male 47.0

Cirrhilabrus tonozukai female 36.3

Paracheilinus carpenteri male 53.6

Paracheilinus cyaneus male 50.3

Paracheilinus filamentosus male 61.0

Paracheilinus flavianalis male 66.5

Pseudocheilinus evanidus unsexed 27.4

Pseudocheilinus hexataenia unsexed 32.5
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Absorbance spectra (330–800 nm) of visual
pigments within photoreceptor outer segments were
measured using a computer-controlled, single-beam,
wavelength-scanning microspectrophotometer (for
details, see [60]). For each photoreceptor cell
examined, a sample and baseline scan was made
from cellular and tissue-free regions of the preparation,
respectively [60, 61]. The baseline transmittance was
subtracted from the sample resulting in a pre-bleach
spectrum. In order to ensure that the measured
spectrum originated from a photolabile visual pigment,
each outer segment was then bleached with full
spectrum (‘white’) light for 2 min and subsequent
sample and baseline scans were used to create a
post-bleach spectrum. This post-bleach spectrum was
subtracted from the pre-bleach spectrum to calculate
a bleaching difference spectrum for each
photoreceptor outer segment [23, 61]. Individual
absorbance spectra were normalised and then
analysed as described in [60] and [23]. Briefly,
peak and long-wavelength offset absorbances were
determined by fitting a variable-point unweighted
running average to the data [62]. Following the
methods of Govardovskii [40], a regression line
was then fitted to the normalised absorbance
spectrum between 30 and 70 % of the normalised
maximum on the long-wavelength limb to predict
the wavelength of maximum absorbance (λmax).
Only spectral measurements that satisfied established
selection criteria (e.g. free from distortion and
confirmed as photolabile, see [62]) were included in
the final analysis. Ten such difference spectra were
averaged from separate cell outer segments to
calculate mean λmax values of each photoreceptor
type. For display purposes, averaged spectra were
overlaid with a vitamin A1-based rhodopsin
template [40].

c) Ocular media transmittance
Spectral transmittance measurements (330–800 nm)
were collected from one male C. solorensis (LS =
6.8 cm) euthanised with an overdose of MS222 and
both eyes were immediately enucleated to avoid
tissue degradation [53]. A small (approximately
2–3 mm2) piece of sclera was cut out of the back of
each eye near the optic nerve and the underlying
choroid, pigment epithelium and retina was removed
to create an opening for the incident measuring beam.
The light transmitted through the ocular media, lens
and cornea was then measured in air [53, 54] with an
Ocean Optics S2000 spectroradiometer and a xenon
light source (Ocean Optics PX-2) using the setup
described in detail by Theiss et al. [23]. The integration
time was set to 2.5 ms with 100 scans averaged for
each measurement. Three of such averaged

measurements were taken per eye, resulting in a
total of six averaged ocular media transmittance
spectra. Each spectrum was then normalised at
700 nm and the wavelength of 0.5 transmittance
(T0.5) was determined [53, 54].
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