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Abstract

Introduction: Elucidating the relationship between habitat characteristics and population parameters is critical for
effective conservation. Habitat suitability index (HSI) models are often used in wildlife management and conservation
practice assuming that they predict species occurrence, abundance and demography. However, the relationship
between vital rates such as survival and reproduction and habitat suitability has rarely been evaluated. In this study,
we used pond occupancy and mark-recapture data to test whether HSI predicts occupancy, reproduction and
survival probabilities. Our model species is the great crested newt (Triturus cristatus), a pond-breeding amphibian
protected under the European Habitats Directive.

Results: Our results show a positive relationship between the HSI and reproduction probability, whereas pond
occupancy and survival probabilities were not related to HSI. Mortality was found to be higher during breeding
seasons when newts are in ponds than during terrestrial phases of adult newts.

Conclusion: Habitat suitability models are increasingly applied to wildlife management and conservation practice.
We found that the HSI model predicted reproduction probability, rather than occurrence or survival. If HSI models
indicate breeding populations rather than mere species occurrences, they may be used to identify habitats of
higher priority for conservation. Future HSI models might be improved through modelling breeding populations vs.
non-breeding populations rather than presence/absence data. However, according to our results the most suitable
habitat is not necessarily the habitat where demographic performance is best. We recommend that conservation
practitioners should use HSI models cautiously because there may be no direct link between habitat suitability,
demography and consequently, population viability.

Keywords: Environmental niche model, Habitat suitability index (HSI), Species distribution, Reproduction
probability, Survival probability, Triturus cristatus
Introduction
Understanding the relationship between habitat quality
and demography is central to the monitoring, manage-
ment and recovery of threatened species. Species dis-
tribution models, also known as ecological niche
models or habitat suitability models, relate species
occurrence data to environmental variables. These
models provide useful information on the ecological
requirements of species and are widely used to pre-
dict species distribution, making them valuable tools
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for habitat management, impact assessment and con-
servation practice [1-3].
For practical application and habitat suitability assess-

ments in the field, the output of statistical species distri-
bution models has often been simplified to habitat
suitability indices (HSI). These indices are based on
habitat characteristics that can easily be measured in
the field or derived from digital maps [4]. A HSI is a nu-
merical index, ranging from 0 (unsuitable habitat) to 1
(optimal habitat). In the application of HSI models for
management purposes, it is often assumed that habitat
suitability predicts species performance and demography
[5]. However, the most suitable habitat or habitats where
density is high do not necessarily constitute habitats
where demographic performance is best [6,7]. Moreover,
despite being important for the management of threatened
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species, whether habitat suitability is associated with spe-
cies occurrence [8-12] and demographic parameters, e.g.
reproductive success [5,13,14] and apparent survival
[15,16], has rarely been evaluated. Such tests are import-
ant because several studies did not find the expected link
between habitat suitability and species occurrence or dem-
ography [9,11,17]. Species may not occur in suitable
patches when structured as a metapopulation [18] or they
may be found in unsuitable patches (i.e. so called sinks,
[19]). To predict how species may respond to variation in
habitat quality, it is necessary to understand the demo-
graphic processes through which the environment influ-
ences distributions and population dynamics [19-21].
Hence, vital rates can potentially be informative when val-
idating HSI models [22].
In this study, we contribute to the validation of simple

and easily applicable HSI models as predictive tools
for management purposes. We studied the relationship
between a commonly used HSI [23] and occurrence/
demographic parameters in the great crested newt
(Triturus cristatus). While a positive relationship be-
tween the HSI and newt abundance was reported [23],
this assessment of the HSI is problematic as abundance
is not necessarily a good indicator of habitat quality and
abundance indices ignore imperfect detection [6,24]. Evi-
dence for a relationship between HSI and newt abun-
dance or newt occurrence is mixed. While there was no
relationship between abundance indices and HSI in [25],
a study on great crested newt pond occupancy that
accounted for imperfect detection found that HSI pre-
dicted newt occurrence [12]. However, HSI values dif-
fered only slightly between ponds with and without
newts (mean HSI ± SD: 0.70 ± 0.12 and 0.61 ± 0.13, re-
spectively [12]). Here, we used three variables that are
often used to describe the state of animal populations:
species occurrence, occurrence of reproduction and sur-
vival. At the phenomenological level, we tested whether
the simple HSI for great crested newts, which is based on
only ten habitat characteristics, predicts species occur-
rence even though many habitat characteristics are
known to influence occurrence of crested newt popula-
tions (e.g. [26-28]). Since a species may be found in low
quality habitats within a metapopulation (i.e. sinks [7]),
we further tested the predictive value of the HSI at a
mechanistic level by assessing the relationship between
HSI and occurrence of reproduction as well as between
HSI and apparent survival.
We selected a HSI for an amphibian species because

amphibians are the most endangered vertebrates [29] re-
quiring both terrestrial and aquatic habitats during their
life cycles, thus making them a particularly well suited
indicator group for habitat quality [30]. Great crested
newts are protected under the European Habitats
Directive and may serve as umbrella species for wetland
conservation [28]. If the HSI can identify habitats where
demographic performance is good, it could be used to
select habitats harbouring healthy populations (e.g. so
called source populations [7]) for conservation purposes.
However, if the HSI and demography are unrelated, then
this would call for refined habitat suitability models.

Results
We recorded capture histories of 1838 individuals from
2009 to 2011 in our study area, of which 124 individuals
were recaptured at least once. Adult newts were cap-
tured at 18 sites, ranging from one to 507 individuals
per pond. Larvae were found at 13 sites, ranging from
one to 105 individuals caught on a single capture event.
At six sites we found merely adult newts without larvae
whereas only larvae were detected at one pond. At three
sites we detected neither adults nor larvae. HSI values
ranged from 0.43 to 0.93 in 2009, from 0.41 to 0.93 in
2010 and from 0.44 to 0.94 in 2011 for surveyed sites
(Table 1).

Modelling occupancy and reproduction probabilities
We first selected a model that best explained detection
probability, while keeping occupancy and reproduction
probabilities constant. Akaike model weights (w) sug-
gested that model {ψ (.), R (.), δs, p

[1] (CE), p [2] (CE)}
was best supported by the data (w = 0.93; see Additional
file 1), whereas remaining models received little support
(w ≤ 0.04). The number of capture events (CE) was
included in the top ranking model, indicating that
sampling effort positively influences the probability to
detect newts in waters occupied without reproduction
(logit (p [1]) =-1.59 (SE = 1.06) + 0.40 (SE = 0.19) x CE)
as well as in waters with successful reproduction (logit
(p [2]) = 0.72 (SE = 0.63) + 0.38 (SE = 0.20) x CE). The
probability of detecting newts was generally higher for
a site with reproduction (0.75 - 0.98 for CE = 1–8)
than without reproduction (0.23 - 0.83 for CE = 1–8).
The probability of correctly identifying sites as breeding
sites increased gradually from the start to the end of
breeding seasons (δ = 0.10 (SE = 0.07), δ = 0.56 (SE = 0.14),
δ = 0.80 (SE = 0.13) and δ = 0.89 (SE = 0.07) for early May,
late May, early June and late June, respectively).
In the second step of the analysis, we used the struc-

ture of the top-ranking model for detection probabilities
and determined the effect of the HSI on ψ and R. Model
{ψ (HSI), R (HSI), δs, p

[1] (CE), p [2] (CE)} best explained
the data (w = 0.77; Table 2). However, while the effect
of the HSI on reproduction probability was well sup-
ported by the data, the confidence interval of the es-
timate of the positive effect of the HSI on occupancy
probability included zero (Table 3). The probability
of reproduction was higher in ponds with higher HSI
values (Figure 1).



Table 1 Number of captured newts (Triturus cristatus) and
HSI values for 22 sampling sites surveyed between 2009
and 2011

Sampling
site

No. of adult
newts

Max no.
of larvae

HSI 2009 HSI 2010 HSI 2011

1 118 0 0.46 0.46 0.46

2 7 0 0.45 0.41 0.46

4 1 0 0.61 0.61 0.61

8 1 0 0.61 0.61 0.61

9 45 1 0.83 0.82 0.83

10 145 4 0.93 0.93 0.93

11 325 5 0.91 0.93 0.94

12 19 0 0.56 0.56 0.56

13 0 13 0.75 0.76 0.68

13b 104 105 0.93 0.84 0.84

14 191 49 0.79 0.80 0.80

15 27 3 0.83 0.83 0.80

16 0 0 0.47 0.48 0.48

17 52 3 0.78 0.80 0.79

18 122 3 0.76 0.78 0.78

19 0 0 0.43 0.43 0.44

20 79 6 0.82 0.82 0.79

21 57 1 0.66 0.74 0.76

A 8 2 0.50 0.52 0.51

B 32 0 0.53 0.53 0.54

C 507 18 0.55 0.54 0.54

D 0 0 0.48 0.48 0.48

Sampling sites, number of captured adult newts, maximum number of larvae
caught on a single capture event and HSI values for 3 years of CMR
study (2009–2011).

Table 2 Selection of multiseason-multistate models for
estimating occupancy and reproduction probabilities of
great crested newts

Model AIC ΔAIC w K

ψ (HSI), R (HSI), δs, p [1] (CE), p [2] (CE) 261.34 0.00 0.77 12

ψ (.), R (HSI), δs, p [1] (CE), p [2] (CE) 263.89 2.55 0.22 11

ψ (HSI), R (.), δs, p [1] (CE), p [2] (CE) 269.31 7.97 0.02 11

ψ (.), R (.), δs, p [1] (CE), p [2] (CE) 278.04 16.70 0.00 10

Probability of pond occupancy (ψ) and probability of reproduction, given
presence (R) were held constant (.) or modelled as functions of habitat
suitability index (HSI). The structure of the top-tanking model for detection
probabilities {ψ (.), R (.), δs, p

[1] (CE), p [2] (CE)} was used to evaluate the effect
of HSI on ψ and R. Probability of correctly identifying a site as breeding site,
given successful reproduction (δ) was modelled different in each capture
period and probabilities of detecting occupancy, given occupancy without
reproduction (p [1]) and with successful reproduction (p [2]) were modelled as
functions of the number of capture events per capture period (CE). AIC: Akaike’s
information criterion; ΔAIC: difference of the AIC value of the current and the best
model; w: AIC weight; K: number of parameters.

Table 3 Parameter estimates (on the logit scale) of the
top ranking multiseason-multistate model for estimating
occupancy and reproduction of great crested newts

Logit link function Beta Estimate 95% CI

logit (ψi) = βINT + βHSI x HSI βINT -4.04 -9.27 – 1.20

βHSI 9.38 -0.36 – 19.12

logit (Ri) = βINT + βHSI x HSI βINT -5.50 -9.70 – 1.29

βHSI 8.44 2.24 – 14.65

ψ: probability of pond occupancy; R: probability of reproduction, given
presence. INT: Intercept; HSI: Habitat Suitability Index. CI: confidence interval.
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Modelling survival probabilities
The general model with time-dependent apparent
survival and recapture probabilities (Φt, pt) fitted the
data well (goodness-of-fit test results: χ2 = 7.74, DF = 44,
P = 1). There was neither evidence for transients
(GOF test: z = 0.36, P = 0.72) nor an effect of capture
at a previous occasion (GOF test: z =-0.48, P = 0.63).
Akaike model weights (w) suggested that the model as-

suming a seasonal effect on apparent survival {Φs, p (.)}
was best supported by the data (w = 0.987; Table 4).
Monthly survival probabilities were lower during the
months that newts spend in the pond (aquatic phase;
March – June: Φaqu = 0.54; 95% CI = 0.44 – 0.63)
than the months that adults spend in their terrestrial
habitat (terrestrial phase; July – February: Φterr = 0.99;
95% CI = 0.42 – 1.00; Table 5). A model with an effect of
HSI on survival probabilities was not well supported by
the data (ΔAICc ≥ 8.79). Annual apparent survival was
calculated using the formula: Φaqu

4 * Φterr
8 [31]. The corre-

sponding standard error was calculated by applying
the delta method [32]. Annual survival probability was
0.08 ± 0.0006.
Our estimates of apparent survival were probably dis-

torted by emigration. Apparent survival is the product of
true survival and (1 – probability of emigration) [33].
Thus, the annual probability of emigration can be calcu-
lated as 1 – (apparent survival / true survival). Based on
the annual survival estimate for a metapopulation of
crested newts in a similar capture-mark-recapture study
[34], we assumed that true survival would be around
0.55. The annual probability of emigration would then
be 0.85. If we use annual survival rates 10% lower (0.45)
or higher (0.65) than the published estimate [34], then
the estimates of the probability of emigration would be
0.82 and 0.87, respectively.

Discussion
HSI and population parameters in great crested newts
(Triturus cristatus)
Our results suggest that the HSI for great crested newts
is not related to survival or pond occupancy



Figure 1 Relationship between HSI and reproduction probability of great crested newts. Symbols represent estimates and SE. Reproduction
probabilities were estimated for HSI values observed at 22 ponds over 3 years.
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probabilities, but that newt populations are more likely
to breed in ponds with higher HSI values. In contrast,
[23] showed that there is a positive relationship between
the HSI and an index of newt abundance. These results
could be misleading, however, for two reasons. First,
abundance can be a misleading indicator for habitat
quality [6]. Second, imperfect detection was not taken
into account [24]. For example, [23] acknowledged that
macrophyte cover in ponds may have biased their re-
sults. The positive relationship between HSI and abun-
dance reported in [23] could not be confirmed by [25].
In our study, we therefore selected different variables to
Table 4 Selection of Cormack-Jolly-Seber models for
estimating apparent monthly survival of great crested
newts

Model AICc ΔAICc w K

Φs, p (.) 1316.17 0.00 0.987 3

Φs (HSI), p (.) 1324.95 8.79 0.012 3

Φy, p (.) 1331.27 15.11 0.001 4

Φy (HSI), p (.) 1335.81 19.65 0.000 5

Φ (HSI), p (.) 1344.33 28.16 0.000 3

Φ (.), p (.) 1345.94 29.77 0.000 2

Survival probability (Φ) was modelled as constant (.), as varying between years (y)
or between seasons (s), i.e. during months of terrestrial and aquatic phases of
adult newts. In each of this scenarios Φ was also modelled as function of habitat
suitability index (HSI). Capture probability (p) was modelled as constant (.). AICc:
corrected Akaike’s information criterion; ΔAICc: difference of the AICc value of the
current and the best model; w: AICc weight; K: number of parameters.
describe the state of newt populations and we accounted
for imperfect detection.
We found that the best multiseason-multistate occu-

pancy model included HSI as covariate for both the
probabilities of occupancy (ψ) and of reproduction (R).
A previous study which did not differentiate between
the presence/absence of adults and larvae [12] found
that HSI predicted pond occupancy. In our study, the
top-ranking model also included a positive effect of
HSI on pond occupancy but the confidence interval
of this estimate included zero (Table 3). The com-
parison of our results with those of [12] shows that
differentiating between presence/absence of adults
and presence/absence of larvae can give additional
insights into habitat suitability. Our results suggest
that the HSI is a good predictor for reproduction but
not for pond occupancy.
Table 5 Parameter estimates of the top-ranking
Cormack-Jolly-Seber model for estimating survival
probabilities of great crested newts

Model parameter Estimate 95% CI

Φaqu 0.54 0.44 – 0.63

Φterr 0.99 0.42 – 1.00

p (.) 0.07 0.05 – 0.10

Φaqu: monthly survival probability during aquatic phases of adult newts
(March – June); Φterr: monthly survival probability during terrestrial phases of
adult newts (July – February); p: capture probability. HSI: Habitat Suitability
Index. 95% CI: 95% confidence interval.



Unglaub et al. Frontiers in Zoology  (2015) 12:9 Page 5 of 10
We also found newts in ponds with very low HSI
values, seemingly not representing suitable habitat
(Table 1). Bentonite mats, applied to the soil of one
pond in 2001, prevented periodical drying and allowed
for the existence of large fish populations. Occasional
high water levels led to the colonization of formerly fish-
less ponds by native and invasive fish. Fish are well
known to negatively affect the distribution and abun-
dance of great crested newts and other amphibians (see
reviews in [28] and [35]) which is why the presence
of fish leads to lower HSI values for affected ponds
(see SI7). Accordingly, the number of captured newts
decreased in those waters over our monitoring
period, but still we regularly found some adult newts
even in ponds with predatory fish. However, ponds
occupied by predatory fish are unlikely to represent
suitable habitat for crested newts. Since the goal of
HSI models is to predict suitable habitat rather than
mere species occurrence, they should not simply in-
dicate whether a pond is occupied or not.
The model developed by [23] emphasizes primarily the

aquatic habitat where adult newts congregate for a few
months during spring and early summer to reproduce
[36]. As would therefore be assumed, our results suggest
that the HSI represents a good tool to detect ponds
where newts are more likely to reproduce successfully
(Figure 1). Hence, it is probable that newts occurring in
ponds with lower HSI values do not breed, or that larvae
do not survive in these waters until metamorphosis. As
spatial variation in newt reproductive success may
be common [37], the HSI could allow conservation man-
agers to identify breeding populations or, conversely,
populations constituting sinks because of a lack of
reproduction [7]. This kind of information is certainly
valuable for the effective conservation and recovery of
threatened species. Taken together, our results for occu-
pancy and reproduction probabilities suggest that the
HSI does a good job because it appears to differentiate
between populations with high and low probabilities of
reproduction.
If the HSI indicates suitable habitat, then one may ex-

pect a positive relationship between HSI and survival.
However, we did not find such a relationship (Table 4).
Ponds with higher HSI values appear to hold larger pop-
ulations [23] and survival might be negatively affected by
density dependence. Other environmental factors, such
as climate may have a stronger effect on survival than
habitat quality [34]. To date, there is no data that would
allow to test this, or any other hypothesis, for the ab-
sence of an effect of the HSI on survival. Remarkably,
annual apparent survival was low in our study, suggest-
ing that about 85% of great crested newts may have emi-
grated. This is an extraordinarily large proportion.
However, emigration in the context of our study refers
to the place where the newts were captured (i.e. the
ponds) and is therefore emigration from the breeding
population rather than emigration from the study area.
In other words, if a newt did not enter the pond any-
more during the three years of our study, it was consid-
ered an emigrant. In a short-term study such as ours, it
is not possible to distinguish between temporary and
permanent emigration [38,39]. Newts may have avoided
the ponds and skipped reproduction in the later years of
our study in response to the invasion and increase of
fish populations. This interpretation of the emigration
rate as skipping reproduction in some years is supported
by the fact that we observed very few cases of among-
pond movement (i.e. 11 individuals). Skipping
reproduction might be a strategy to deal with predatory
fish because survival on land was high and ponds were
temporary, and therefore fish-free, in the past. To test
this hypothesis, it would be necessary to extend the
mark-recapture study to the terrestrial habitat. To our
knowledge, the present study is the first to directly com-
pare survival probabilities during aquatic and terrestrial
phases of pond-breeding amphibians. Our study shows
that survival probabilities were lower during aquatic
than during terrestrial phases of adult great crested
newts (monthly survival 54% and 99%, respectively).
Monthly survival of 99% (or 92% across the eight
months of the terrestrial phase) is unexpectedly high but
[40] reported an estimate of annual survival of 99.6% in
a cohort of Ambystoma maculatum salamanders. While
our results suggest that mortality occurs primarily in the
water during the breeding season, [36] found that annual
survival in a metapopulation of crested newts in the UK
was determined by winter weather, i.e. environmental
conditions during the terrestrial phase of adults. Hence,
factors determining survival may vary spatially [41]. If
spatial variation in survival is common, then conserva-
tion management should take population-specific differ-
ences into account [42].

HSI as a general conservation tool
Habitat suitability models are increasingly applied to
wildlife management and conservation planning [3,8].
Guisan et al. [3] outlined the steps that are necessary to
increase the use of such models to guide conservation
decisions. They noted that modelled occurrence prob-
abilities do not always correlate with demographic pro-
cesses determining population viability [21,43], a finding
we regard to be of particular importance for the use of
HSI models in conservation practice. We suggest that a
focus on the occurrence of a species may not always
provide the best models for conservation applications.
First, a species may occur in sink habitats [7] and sec-
ond, a species may not occur in suitable patches as a
consequence of extinction and colonization dynamics in
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metapopulations [18] or due to interspecific competition
[19]. Consequently, it is not surprising that many studies
did not find the expected correlation between modelled
habitat suitability and individual performance, demog-
raphy or population viability ([9, 11, 17 and references in
[3]). Establishing a link between reproduction and habitat
suitability seems to be an important step forward [14]. We
suggest that modelling the probability of reproduction ra-
ther than the probability of occurrence in habitat suitabil-
ity models using techniques that estimate a true
probability rather than a relative suitability score might
give valuable additional insights [44-47]. This might be a
better way to identify suitable habitat and to increase the
utility of these models for conservation.

Conclusions
HSI models are increasingly applied as predictive tools
for management purposes, assuming that habitat suit-
ability predicts species performance and demography.
However, the validity of this assumption has rarely been
evaluated. We studied the relationship between a com-
monly used HSI [23] and occurrence/demographic pa-
rameters in a pond-breeding amphibian protected under
the European Habitats Directive, the great crested newt
(Triturus cristatus). Our results show a positive relation-
ship between the HSI and reproduction probability (i.e.
the occurrence of larvae), whereas pond occupancy and
survival probabilities were not related to HSI. This is
both good and bad news for conservation managers. The
good news is that HSI models may indicate breeding
populations rather than mere species occurrences, thus
identifying habitats of higher priority for conservation
purposes. Modelling breeding populations vs. non-
breeding populations rather than presence/absence data
might help to identify habitats harbouring healthy popu-
lations and to improve the utility of HSI models for the
conservation of threatened species (for similar conclu-
sions, see [48,49]). The bad news is that the most suit-
able habitat is not necessarily the habitat where
demographic performance is best. Since there may be no
direct link between habitat suitability and demographic
processes determining population viability, we recom-
mend that conservation practitioners should use HSI
models cautiously.

Methods
Study species and determination of HSI
The great crested newt (Triturus cristatus) is a pond-
breeding amphibian species, listed in Annexes II and IV
of the European Habitats Directive (92/43/EEC). EU
member states are therefore required to monitor
the conservation status of this species. Accordingly,
monitoring and management of great crested newt pop-
ulations would benefit from informative and easily
applicable tools and consequently, from a validated HSI.
The HSI for the great crested newt incorporates ten
habitat features (see Additional file 2; [23]), which are
assessed for a pond and converted to suitability index
(SI) scores on a scale from 0.01 to 1.0. SIs are site loca-
tion relative to species distribution (i.e. whether a popu-
lation occurs at the edge or in the centre compared to
the distributional range; SI1), pond area (SI2), pond per-
manence (SI3), water quality (SI4), shading of pond per-
imeter (SI5), number of water fowl per 1000 m2 (SI6),
impact of fish (SI7), pond density within a radius of
1 km (SI8), proportion of suitable terrestrial habitat
within surrounding 500 m (SI9) and macrophyte cover
(SI10). The HSI for great crested newts is calculated as
geometric mean of these ten suitability indices:

HSI ¼ SI1 � SI2 � SI3 � SI4 � SI5 � SI6 � SI7 � SI8 � SI9 � SI10ð Þ1=10

We calculated the HSI for each pond in each year of
the study. Since this index was originally developed for
the UK, we had to transfer the statements regarding the
location relative to species distribution (SI1) to Germany.
According to [23], study sites with a high probability of
great crested newt occurrence within each 10 km square
are scored with 1.0 for SI1 and sites with a low probabil-
ity of newt occurrence are scored with 0.5. Within
Germany, our study sites are located in an area of an
intermediate probability of newt occurrence. Therefore,
we fixed SI1 to 0.75 for all ponds. Since the original HSI
[23] only provides values for ponds of an area of up to
2000 m2, we had to omit SI2 for eight ponds of greater
size and calculated the ninth rather than the tenth root
of the product instead.

Study area and sampling procedure
We conducted a capture-mark-recapture (CMR) study
and surveyed 22 lentic water bodies in a former flood-
ing area of the Rhine river near Krefeld, Germany
(coordinates: 51°19’5” N, 6°39’17” E; Figure 2; Additional
file 3), for the presence of great crested newts. The
study area is primarily dominated by grasslands, wood-
lands and wetlands. The northern part, however, is
also influenced by adjacent residential areas and agri-
culture. Adult and larval crested newts can easily be
captured with traps in ponds during the breeding sea-
son from March to July [50]. Detection or non-
detection of adults and larvae was recorded during
multiple capture events from March to June in 2009
and 2010 as well as from April to June in 2011. Sev-
eral visits to each water body were essential to distin-
guish between sites where great crested newts did not
occur and sites where this species has been overlooked
[51]. Therefore, every site was visited between 12 and
66 times during the 3 years of monitoring. Newts were



Figure 2 Overview of the study area near Krefeld (Germany). Illustrated are all 22 surveyed ponds which are mainly located within the FFH-area
of the “Latumer Bruch” (DE-4605-301; coordinates: 51°19’5” N, 6°39’17” E).
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captured using Ortmann’s funnel traps [52], which
were constructed of empty 10 liter paint buckets with
four distinct openings in which half-cut inverted
1.5 liter plastic bottles were inserted functioning as
funnels. These traps were evenly distributed along the
shoreline and remained in the water for 48 hours. The
number of traps deployed per capture event varied ac-
cording to pond area, ranging from one to 36 traps.
After data collection, all individuals were released
immediately.
To allow individual recognition during the CMR study,

we used photographs of the ventral side of newts, which
provides a highly variable but individually unique and
lifelong permanent colour pattern [53]. Recaptured indi-
viduals were identified automatically by the program
AMPHIDENT [54]. AMPHIDENT can reliably detect
recaptures even in large datasets based on a cross-
correlation comparison algorithm (>1500 individuals; [55]).

Modelling occupancy and reproduction probabilities
We used multiseason-multistate occupancy models
[43,44] to estimate the probability that great crested
newts occur in a water body (ψ) and the probability that
newts reproduced successfully (R). The model assumes
that sites fall into one of three categories: absence of the
species, presence without production of offspring, and
presence with production of offspring. With this model,
we can model both the presence/absence of newts and
the presence/absence of reproduction (given occur-
rence). We used the presence/absence of larvae as a
proxy for production of offspring (i.e. the probability
that newts reproduced successfully; larvae are more
likely to indicate successful recruitment than the pres-
ence of eggs). Unlike models based on presence-only
data, which estimate a habitat suitability score, these
models estimate true probabilities [46]. Sampling effort
varied between sites, ranging from three to 45 capture
events during the entire breeding seasons. Therefore, re-
peated detection/non-detection data were simplified for
analysis as follows. For each breeding season per year
(i.e. primary period) we defined four capture periods
(two-week periods: 1–15 May, 16–31 May, 1–15 June
and 16–30 June). If a site was not visited during a cap-
ture period, this was treated as a missing observation. If
multiple capture events were conducted within a capture
period, a site was classified as state m = 0 if no newts
were detected, as state m = 1 if at least one adult was
found and as state m = 2 if at least one larva was de-
tected. Accordingly, every site received a specific detec-
tion history like 1022 0112 0122, where 1 indicates that
adults were detected, 0 indicates that neither adults nor
larvae were found and 2 indicates that larvae were de-
tected. In this way, we retained as much data as possible
without having too many missing observations within a



Unglaub et al. Frontiers in Zoology  (2015) 12:9 Page 8 of 10
given sampling season [56]. Because of this simplifica-
tion, we used capture effort (CE = number of capture
events per capture period) as explanatory variable for
detection probability.
We used a two-step approach to model selection. We

first modelled the detection process and then the prob-
abilities of site occupancy and reproduction. We devel-
oped an a priori candidate model set (see Additional
file 1) to select a best model for the probability of detect-
ing occupancy given that a site was occupied without
reproduction (p [1]), the probability of detecting occu-
pancy given that a site was occupied with successful
reproduction (p [2]) and the probability of correctly iden-
tifying a site as breeding site given that successful
reproduction did occur (δ). To identify the best detec-
tion model we held occupancy parameters (ψ and R)
constant and evaluated the effect of capture effort on
p [1] and p [2], allowing δ to vary in time. We hypothe-
sized that p [1] and p [2] are influenced by capture effort
(CE), because a higher sampling effort should result in a
higher probability of detecting species occurrence. This
variable accounts for the fact that the number of capture
events varied both within and between ponds. Moreover,
we allowed δ to vary between May and June (δm) as well
as between capture periods (δs), since larvae should be
more abundant and bigger later in the season and are
therefore easier to detect.
In the second step, we determined the effect of the

HSI on occupancy probability (ψ) and reproduction
probability (R), while using the best model for the detec-
tion parameters as determined in the first step. Since we
were mainly interested in the influence of the HSI on
occupancy and reproduction probabilities rather than
in state transitions between years, we modelled vari-
ables describing changes over time (parameters ψm

t+1

and R m
t+1 in the transition probability matrices [45],

with m = state) in the same way as the initial variables
(ψt=1 and Rt=1). Overall, four different models were
considered: a) both ψ and R were modelled as constant;
b) both ψ and R were modelled as functions of the HSI;
c) ψ was modelled as constant and R was modelled as a
function of the HSI; d) ψ was modelled as a function of
the HSI and R was modelled as constant. We hypothe-
sized that sites with a higher HSI value should have
higher probabilities of occupancy and reproduction. Stat-
istical models were implemented in program Presence
6.2 [57].

Modelling survival probabilities
We used Cormack-Jolly-Seber models [58] to estimate
monthly survival and detection probabilities (Φ and p).
Capture data were pooled for the months March, April,
May and June. If a water body was not visited during a
month, detection probability p was set to 0 for this site
and period. If multiple capture events were conducted
within a month, only the first capture of individuals was
counted. Pooling data from several consecutive capture
occasions within a month generally increases precision
but may induce some bias in survival estimates [59-61].
Overall, adults were captured in 18 out of 22 water bod-
ies (Table 1). However, at two of these 18 sites only one
adult was detected, both only once in April 2010. Nei-
ther individual was ever recaptured again during the en-
tire sampling period. Therefore, we excluded these two
ponds from the mark-recapture analysis and estimated
survival probabilities at 16 different sites. Data were too
sparse to include covariates for detection probability.
Therefore, detection probability (p) was always held
constant even though this model may not be the best
description of the observation process. Survival probabil-
ities (Φ) were modelled either as constant, as varying
between years, or as varying between aquatic (March -
June) and terrestrial (July - February) phases of adult
newts (survival was assumed to be constant within both
the aquatic and the terrestrial phase). In the latter case,
the specification of the unequal time intervals between
capture occasions allowed for the calculation of monthly
survival estimates.
For each of these scenarios, we also allowed Φ to be a

function of the covariate HSI. We hypothesized that
there is a positive correlation between the HSI and sur-
vival probabilities. Models were implemented in pro-
gram MARK 6.2 [62].
Since only 11 individuals were recaptured at different

sites and therefore moved from one site to another, we
did not attempt to estimate dispersal probability. If an
individual was detected at a new site, then it was scored
as having died at the first site (by assigning “-1” to the
capture history) and entered as a new individual at the
new site.
Model selection and model notation
Model selection was based on Akaike’s information criter-
ion (AIC [63]). The model with the lowest AIC (or AICc)
was considered the most parsimonious model given the
data. We also used Akaike weight (w) as a measure of rela-
tive support for each model.
Our model notation system follows the standard nota-

tion of [58] and [64] providing information about the
sources of variation used to model each parameter. The
term (.) indicates that a parameter was held constant
(i.e. no covariates).
Additional files

Additional file 1: Model selection of multiseason-multistate models
for estimating detection parameters of great crested newts.
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