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Abstract

Introduction: The success of a taxonomic group can be promoted by a key character that allows the group to
interact with its environment in a different way and to potentially occupy new niches. The Pomacentridae possess
a synapomorphic trait, the cerato-mandibular (c-md) ligament, which joins the hyoid bar to the inner part of the
lower jaw. It has previously been shown that this ligament is a key trait in communication in damselfishes because
it enables them to slam the oral jaws shut causing teeth collision and sound production. This specific behavior of
mouth closing could, however, also be used for other tasks, such as feeding. Many territorial damselfishes are
referred to as farmers, due to their ability to manage algal crops on which they feed. This study hypothesizes that
the c-md ligament provides an advantage for grazing filamentous algae, and should thus be considered a key trait
for farming behavior.

Results: The kinematic patterns associated with sound production and biting filamentous algae or attached animal
prey are all based on the same mechanism and are associated with a slam of the oral jaws. We observed that

transection of the c-md ligaments makes the fish unable to perform such actions. We also counted biting rates on
filamentous algae in fish with and without the c-md ligament and observed a drop of more than 80% in the latter.

Conclusion: This study shows that the c-md ligament is a key trait both for sound production and for grazing
activities in damselfishes. The buccal jaw slam enables the fish to perform accurate strikes on small filamentous
algae. This kind of bite probably plays a major role in farming activity and allows grazing damselfishes to occupy
distinct niches, possibly increasing their competitive evolutionary success.
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Introduction

The evolutionary success of a taxonomic group can
sometimes be explained by at least one key character
that enables the taxon to interact with its environment
in a different way, and allows it to be more competitive
[1]. Such a character is commonly labelled a “key
innovation”. Although different definitions of key inno-
vations have been proposed [1-7], all of them share the
basic idea that some attributes of the organism have
been important over evolutionary time [8] and that the
key innovation allows the utilization of resources in ways
not previously possible [9,10]. The pharyngeal jaw in
cichlids [11], the intramandibular joint in squamipinnes
such as pomacanthids and acanthurids [12-16], the

* Correspondence: dolivier@ulg.ac.be

'Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH Research
Center, Institut de Chimie (B6C) Université de Liege, B-4000 Liege, Belgium
Full list of author information is available at the end of the article

( BiolMed Central

“beak-like” jaws in parrotfishes [17], the toepads of
geckos [10,18], the presence of molars with a hypocone
in mammals [19] are all classic examples of key innova-
tions in vertebrates.

The Pomacentridae (damselfishes) represent one of
the most successful radiations of coral and rocky reef
fishes [20,21]. Many of them are territorial, ubiquitous
grazers and are considered as a keystone group for the
diversity of benthic communities that include filament-
ous and corticated palatable algal and small invertebrates
[22-25]. These species are often called farmers since they
manage algal crops that they feed on in their territory
[24-28]. The farming behavior involves the defense of a
patch of territory from which roving grazers, such as
acanthurids, scarids or siganids, are chased; cleaning up
of debris; and weeding out undesirable algae [29,30].
Sounds from damselfishes are well-known and occur
during aggressive territory defense and/or courtships
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[31-34]. In the zooplanktivorous Amphiprion clarkii, ag-
gressive sounds result from teeth collision induced by a
buccal jaw slam [35]. This rapid mouth closing move-
ment is due to the cerato-mandibular ligament (c-md)
joining the lateral side of the hyoid bar to the medial
side of the lower jaw (Figure 1), a synapomorphic trait
of the Pomacentridae [36]. The mechanism of the ¢-md
ligament was determined by manipulations of fresh eu-
thanized fish, and high-speed videos using X-ray and vis-
ible light sources. When the neurocranium and the
hyoid apparatus are held at rest, the c-md ligament is
loose and cannot transmit force to the lower jaw
(Figure 2A). Pulling along the working-line of the epaxial
muscle rotates clockwise the neurocranium (in left lat-
eral view). This movement, via a four-bar linkage (see
[37] for details), causes the hyoid bar to rotate counter-
clockwise which induces the mouth opening [37] and
gradually moves away the insertion points of the c-md
ligament until it is fully strained (Figure 2B). In this
state, additional elevation of the neurocranium and/or
depression of the hyoid bar make(s) the taut ligament
close the mouth by inducing rotation of the lower jaw
around its quadrate articulation (Figure 2C). The same
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mechanism of mouth opening and closing can be ob-
tained by pulling along the working-line of the sterno-
hyoideus muscle, but there is no neurocranium elevation
in this case.

The cerato-mandibular ligament is considered a key
character in communication in pomacentrids. Neverthe-
less, its involvement in other tasks remains unexplored.
As the c-md ligament is involved in production of a bite
motor pattern, we may expect that a scraping species
that feeds on filamentous algae could also use this par-
ticular mechanism of mouth closure to feed. We thus
hypothesize that the same mechanism might be used in
two distinct behaviors: feeding and sound production.
Studying the kinematics associated with prey capture al-
lows for a better understanding of the behavioral perfor-
mances associated with feeding ecology. For example,
chaetodons are known to possess a wide range of
biomechanical specializations associated with several
trophic guilds [38,39]. The jaw kinematics of poma-
canthids have been associated with their specialization
on cryptobenthic resources [12]. Similarly, an under-
standing of the unexplored prey-capture kinematics in
pomacentrids could shed light on their feeding ecology.

Neurocranium

A

Hyoid apparatus

Pectoral girdle

Figure 1 Representation of the cerato-mandibular (c-md) ligament in Pomacentridae. A) Left lateral view of Stegastes rectifraenum skull and
pectoral girdle. The left oral jaws, suspensorium, opercles and hyoid bar have been removed allowing view of the right part of the hyoid
apparatus in the buccal cavity. The opercles, the suspensorium, the oral jaws, the hyoid apparatus and the c-md ligament (in green) of the right
side are 3-D reconstructed. B) and C) Zoom on the 3-D reconstruction from a lateral and transverse view.
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Figure 2 lllustration of the cerato-mandibular ligament mechanism.
As for the figure 1, the left oral jaws, suspensorium, opercles and hyoid
bar have been removed to allow a view of right part of the hyoid
apparatus in the buccal cavity. White cones indicate two muscle groups:
epaxial muscles (EP) and sternohyoideus muscle (SH). In A. no
movements occurs and the c-md ligament is loose. In B. Pulling on the
epaxial muscle (1) induces a rotation of the neurocranium (2) provoking
a rotation of the hyoid apparatus (3) which results in mouth opening (4)
and in the straining of the c-md ligament. In C. additional pulling on the
epaxial muscles (1) induces higher rotations of neurocranium and hyoid
apparatus (2 and 3) which results, as the c-md ligament is now fully
strained, in mouth closing (4). The same phenomenon of both mouth-
opening and closing can be obtained by pulling along the working-line
of the sternohyoideus muscle (represented in A) but there is no
neurocranium elevation in this case. The angle measuring the relative
movement of the two insertion points of the c-md ligament is represented
by dotted lines. The angle measuring the relative movement between
the neurocranium and the hyoid apparatus is represented by full lines.
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Stegastes species appear to be a good model to investi-
gate this duality in function. Fish from this genus hold
permanent territories for the culture of filamentous
algae (see [21]) and this taxon is particularly well known
to include active sound producing species that use sound
in many different behavioral contexts such as courtship,
territorial defense (against conspecifics and heterospeci-
fics) and chases [40-44].

Here, we investigated the role of the c-md ligament in
the feeding behavior of the Cortez damselfish Stegastes
rectifraenum, an endemic species of the eastern Pacific
living on rocky or coral reefs and reported to be a
farmer species [45]. Sound production was also de-
scribed in this study since it had not been published
previously. We found that oral jaw slams because of the
c-md ligament, and that this behavior is necessary for
both sound production and the grazing of filamentous
algae in S. rectifraenum. Beyond its functional role, we
illustrate that the mouth-closing mechanism involving
the c-md ligament (1) may mitigate the functional trade-
off of force and velocity transmission to the lower jaw
and (2) might be the key trait for the farming behavior
in pomacentrids.

Methods

Experimental and animal care protocols followed all
relevant international guidelines and were approved by
the ethics commission of the University of Liege (proto-
col no.113).

Specimens and husbandry

Twenty-two adult individuals (Standard Length ~ 10 cm)
were caught at Punta Diablo (24°N, 110°0O) near the city
of La Paz in the Gulf of California (México). These fish
were then held in the Centro de Investigaciones Bioldgi-
cas del Noroeste (CIBNOR) in a plastic common flow-
through 750 | tank with shelters (PVC tubes) at ambient
temperature (24 to 26°C), and subject to natural photo-
period (14 L:10D). The 22 species were divided in four
groups for the different experiments: three individuals
were used for the kinematic analysis related to feeding
behaviors, four were used for the kinematic analysis of
sound production, three were used for electromyographic
study and twelve for biting rate experiments. One of these
individuals was used for 3-D reconstruction.

3-D reconstruction of the head morphology

To illustrate the insertions and shape of the c-md liga-
ment, one individual (SL: 9.7 cm) was scanned at the
National Museum of Natural History in Paris with a
pCT-scan (VItome|x 240 L, GE Sensing & Inspection
Technologies Phoenix Xlray). Prior to being scanned,
the specimen was submerged in a 5% phosphomolybdic
acid solution for ten days to improve contrast between
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the different tissues. The imaging system was set at
250 kV and the specimen was scanned at isotropic reso-
lutions of 32 pm. Volume and surface rendering was
performed with AMIRA 5.4.0 (VSG, FEI company).

Sounds recordings

Recordings were conducted on fish (sets of 4 to 10) kept
in the plastic communal tank until their use in other ex-
periments. All electrical devices were switched off during
the recordings. The hydrophone (HTI-96-Min; sensitiv-
ity: —164.4 dB re: 1 V/ puPa; flat frequency response range
between 2 Hz and 30 kHz) was positioned in the middle
of the tank and connected to a TASCAM DR-05 port-
able digital recorder (recording bandwith: 20 Hz to
20 kHz + 1.0 dB). Sounds were digitized at 44.1 kHz (16
bit resolution) and analysed with the Avisoft-SASLab
Pro version 5.2.07 software. A low-pass filter of 2 kHz
was applied to all recordings. The duration (in millisec-
onds) of pulses was measured from the oscillograms and
dominant frequency (i.e. frequency conveying the most
acoustical energy) was obtained from power spectra (fil-
ter bandwith 300 Hz, FFT size point 256, time overlap
96.87% and a flat top window). The behavior accom-
panying sound production was recorded with a video
camera GoPro (HD Hero3 White, Woodman Labs, USA;
29 frames per second).

High-speed movies recordings

Three of the 22 fish were placed in separate flow-
through 140 | aquaria for kinematic analysis of feeding
behavior. Each tank had a shelter in front of which was
placed a corridor of 20 c¢m in length, 50 cm in height
and 10 cm of width. The fish were trained to leave their
shelter to gain access to food placed at the extremity of
the corridor. Two kinds of food were given: filamentous
algae on small rock (natural diet) and pieces of shrimp
fixed to tweezers. A high-speed video camera (Model
NX4-S1, IDT, Tallahassee, USA; 640x456 pixels) was
used to record feeding behaviors at 500 frames per sec-
ond (fps). Four kinds of feeding events were studied in
three individuals. Grazing of filamentous algae (FA) and
biting fixed pieces of food (shrimps) (FPF) were first an-
alyzed. The same behaviors were studied anew in the
same individuals after the surgical transection of the c-md
ligaments (FA* and FPF¥). For the c-md ligaments transec-
tion, the fish were anesthetized with 200 ppm of tricaine
methanesulfonate (MS-222). The individuals were then
operated using a dissecting microscope by inserting a thin
blade between the lower jaw and the hyoid bar to cut the
c-md ligament in its middle part. This operation was per-
formed on both right and left sides. Disinfectant (Ingredi-
ent Propolis Alcohol) was then injected in the buccal
cavity. Because previous examinations have shown that an
intact c-md ligament closes the mouth when the fish is
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manipulated only by pulling backward on the epaxial or
the sternohyoideus muscles, it was possible to check the
success of the surgery with these manipulations. The fish
that were successfully operated were then placed in a re-
covery bucket with oxygenated seawater. Once the fish
started to move again, they were placed in their individual
tank and their recovery was monitored for 30 min. The
animals were then left at rest for a period of 24 h. After
this time individuals were presented with food and their
behavior was recorded with the high-speed video camera.
At the end of experiment, all fish were euthanized and dis-
sected to check the section of the c-md ligaments and to
ensure that other structures were not damaged. Five films
were recorded for each event and for each fish (n =3). We
analyzed only video sequences with fish in lateral view and
when all points of interest were clearly visible. To study
the kinematic pattern associated with sound production, a
fish was isolated in a corridor as long as the entire tank
(in the same aquarium as those used for feeding behavior).
A shelter was placed in the corridor, allowing the fish to
establish its territory. After two days, a grid was placed in
the corridor in order to isolate both the fish and its shel-
ter. A second fish was then introduced into the second
part of the corridor to provoke aggressive behavior from
the resident. Movements associated with sound produc-
tion were then video recorded. The grid was used to pre-
vent fighting among the fish.

Analysis of the films

The goal of the current study was to compare the kine-
matic patterns used in different behaviors. The use of
regular (from an external view) high-speed video allowed
us to obtain more data and to perform quantitative stud-
ies. Although with this method we could not directly
measure the movement between the c-md insertion
points (angle in dotted lines on Figure 2), we were able
to monitor movements of the structures causing the
movement of these elements i.e. the neurocranium and
the hyoid apparatus. We decided to use the angle meas-
uring the relative movement between the anterior parts
of the neurocranium and the hyoid apparatus (angle in
full lines on Figure 2) as a proxy for the relative move-
ment between the c-md insertion points.

Each image of the videos was digitized with the soft-
ware Motion Studio 64. Five landmarks were chosen
(Figure 3) to quantify cranial movements. 1) the hyo-
mandibular articulation on the neurocranium; 2) the an-
terior part of the neurocranium; 3) protrusion of the
urohyal (representative of the hyoid apparatus); 4) the
anterior part of the preopercular horizontal limb and 5)
the anterior tip of the dentary. The hyomandibular ar-
ticulation (landmark 1) is close to the joint between the
post-temporal and supracleithrum bones of the pectoral
girdle, which is the pivot point of the neurocranium
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Figure 3 lllustration of the landmarks to measure kinematic
variables and electrodes positions for electromyography study.
1: Dorsal suspensorium articulation; 2: Neurocranium; 3: Protrusion of
the hyoid apparatus; 4: Anterior part of the horizontal limb of the
preopercular; 5: Dentary of the lower jaw. The angle a measures the
relative distance between the neurocranium and the protrusion of
the hyoid apparatus, the angle 6 measures the lower jaw rotation,
the black landmark indicates the articulation between neurocranium
and pectoral girdle. The white square indicate where the electrodes
were placed for the electromyography study (EP: epaxial muscle; SH:
sternohyoideus muscle and AM,: one of the main subdivisions of
the adductor mandibulae muscle).

(Figure 3). The landmarks allowed for the measurement
of eight variables including maximum angles (°), speed
(°s™), acceleration (°s™?) and timings (ms), which were
then used to describe each kinematic pattern. #1) the
maximum relative movement between the neurocranium
and the hyoid apparatus (MRM), which was measured
through the angle o (Figure 3); #2) the maximal lower jaw
depression, which was measured through angle 0
(Figure 3); #3) the mean angular closing speed of the
lower jaw; #4) the maximum angular acceleration by
which the neurocranium and the hyoid apparatus move
away from one another; #5) the time between the bite and
the MRM; #6) the synchronization between the hyoid ap-
paratus and the lower jaw displacements, measured as the
time between maximum acceleration of the hyoid appar-
atus movement (measured as a distance) and the max-
imum acceleration of the lower jaw elevation; #7) the
mouth closing duration and #8) the mouth opening dur-
ation. Each analysis starts with the onset of mouth open-
ing and finishes at the time of the seizure of food items or
the teeth collision for sound production.

To reduce the dimensionality of the dataset and to de-
termine the degree of correlation between kinematic
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variables, we performed a principal components analysis
(PCA) using the underlying correlation matrix (Statis-
tica, version 10). As the c-md ligament is not involved in
the mouth opening phase, the variable “mouth opening
duration” was not included in the PCA. The scores of
the two main PCs were used to test the differences in
the kinematic patterns among sound production and the
various prey capture events. In addition, we were inter-
ested to know which variables were different. Only one
variable (maximal lower jaw depression) did not violate
the assumption for parametric analysis using the nor-
mality test in Statistica v.10. For this reason an ANOVA,
followed by a Bonferroni post-hoc test, was used for this
variable and a Kruskal-Wallis test followed by a multiple
comparisons of mean ranks post-hoc test was applied
for the others. Each strike has to be categorized accord-
ing to our kinematic variables as similar (or not) to the
motion performed during sound production. For this
reason, we considered each video an independent data
point.

Bite rates

Bite rates of individuals were compared before and after
the c-md ligaments transection to assess the functional
importance of the c-md ligament in the grazing fila-
mentous algae. A flow-through 750 1 aquarium was di-
vided into four parts, and one fish was placed in each
compartment. Two days later and over a period of five
days, rocks with filamentous algae were placed at three
intervals of 30 min duration (09:00 am.; midday and
03:00 pm) in each compartment. The feeding periods
were filmed with a GoPro camera and bite rates were
counted during the last 15 min of each video. In order
to allow the fish to acclimate to these feeding trials, bit-
ing rates were not counted the first day. To avoid expos-
ing fish repeatedly to the same rocks, rocks were placed
in different compartments for each feeding period. Dur-
ing the first set, the c-md ligament was present in all
fish. At the end of the first set, two fish were anesthe-
tized with 200 ppm of MS-222 and their c-md ligaments
were cut following the same methodology used in high-
speed video recording experiments. After a recovery
period of three days, bite rates were counted for four
days. At the end, fish without c-md ligaments were eu-
thanized with an overdose of MS 222 (400 ppm) and
dissected to check the success of the surgical operation
and verify that no other structures had been damaged.
Simultaneously, the ligament was cut in the two
remaining individuals and two new (intact) individuals
were placed in the empty compartments. The experi-
ment lasted a total of five weeks and 10 fish were stud-
ied. This protocol allowed the comparison of the
behavior of each fish with and without the ligament.
Each week, intact fish were used in the experiment,
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allowing the detection of any abnormal bite rates which
could be due to a lack of filamentous algae on rocks.
New rocks were sampled each week at Punta Diablo and
were stored in a similar tank to the one used for the ex-
periment. Bite rates were counted in eight fish because
the last two individuals were only used to check if intact
fish kept feeding. At the end of the experiment, 24
sequences of 15 min were analyzed per fish, 12 with the
c-md ligament and 12 without. A control group made of
2 additional individuals was also monitored. These indi-
viduals were anesthetized with the same dose of MSS-
222 (200 ppm) and then released in their compartment.
Their bite rates were then counted for four days. As the
assumptions for parametric analyses were not violated,
an ANOVA analysis followed by a Bonferroni post-hoc
test was performed on the bite rates of three groups.

Electromyography

The EMG experiments were performed in one of the
tanks used for kinematic analysis. The new slam mech-
anism of mouth closure described in the clownfish
Amphiprion clarkii [35] showed that the mouth can be
mechanically closed without the use of the adductor man-
dibulae. This has, however, never been tested in vivo.
Therefore, EMG recording electrodes were placed in two
individuals of S. rectifraenum in the subdivision A, of the
adductor mandibulae muscle (Figure 3). This muscle orig-
inates from the crescentic zone of the preopercular, the
quadrate and the symplectic and inserts on to the lateral
face of the coronoid process of the dentary [46]. Using
EMG, we aimed to check the activity of this muscle during
sound production and feeding events. In a third individ-
ual, recording electrodes were also placed in the epaxial
(EP) muscle, close to the neurocranium and in the sterno-
hyoideus (SH), joining the urohyal to the pectoral girdle
(Figure 3). The activity of these two muscles was only re-
corded during sound production event. Bipolar recording
electrodes were made from pairs of 0.05 mm Teflon-
coated stainless steel wire (Science Products GmBH,
Hofheimer, Germany) in which the insulation at the tip (1
mm) of each wire was removed, the wire was inserted into
a 25 gauge hypodermic needle and the exposed tips were
bent back into hooks. Fish were anesthetized with 200
ppm of MS-222 and ventilated with seawater mixed with
anesthetic solution while the electrodes were implanted
and the hypodermic needle tips were removed. A loop of
surgical silk suture thread was inserted in the dorsal trunk
musculature, tied and glued with cyanoacrylate around
electrodes for strain relief to prevent dislodgement of the
electrodes. Fish were revived by ventilation with fresh sea-
water and placed back in the aquarium after a recovery
period of approximately 30 min. Electromyographic re-
cordings were amplified in a four-channel differential
amplifier (High-Gain Differential Amplifier Model 1700,
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A-M Systems, Inc, WA, USA) with 10 000X gain and
band-pass filtered between 100 and 5000 Hz with a 60 Hz
notch filter. At the end of the experiment, the fish were
euthanized and dissected to check if the electrodes had
been placed in the correct muscles.

Sounds in pomacentrids are produced by a jaw slam
that causes teeth collision [32,35,47]; for this reason the
start of the sound corresponds to the bite. The sounds
produced during fighting and during the biting of fila-
mentous algae can be clearly recorded with a hydro-
phone. Although it is softened, the sound corresponding
to the impact of the teeth can also be discerned during
biting of fixed pieces of food. The amplifier and the tas-
cam were connected to an external USB sound card
(Creative model SB0270: Creative labs, Singapore) and
muscles activity and sound were recorded at 44.1 kHz in
Adobe Audition 2.0 software (Adobe, San Jose, CA,
USA). Electromyographic data and sound recordings
were digitized at 10 kHz with Adobe Audition 2.0 soft-
ware and rectified in Excel (2007). Muscle activity dur-
ation and sound onset were measured by calculating
time periods for which the rectified waveform was three
times the average background noise level. The time zero
of muscle activity was defined as the time of the bite
(onset of sound).

Results

Sound

In a tank, S. rectifraenum calls (Figure 4A) were associ-
ated with shelter defense (see Additional file 1) or biting
filamentous algae (see Additional file 2). Pulse durations
were significantly longer when biting filamentous algae
but no significant difference was found between domin-
ant frequency of calls and bites (Table 1, Figure 4B).

Kinematics

Kinematic patterns with intact c-md ligament

The kinematic patterns related to biting fixed piece of
food (FPF), filamentous algae (FA) and sound production
(SP) could be split into three main phases (Figure 5A).
High-speed videos of the three behaviors (SP and biting
on FA or FPF) are available in supplementary data (see
Additional file 3).

Phase 1 Phase 1 consisted only of the depression of the
lower jaw (Figure 5A). The duration of this phase for FA
was approximately half that of FPF (54 + 22 ms vs 86 +
28 ms) but the general aspect of this phase was similar
for both feeding behaviors i.e. fish swam towards the
food and depressed their lower jaw continuously (13 +
5° for FA and 11 + 4° for FPF) (Figure 5A). The kine-
matic pattern during sound production could be divided
into two parts. First, the fish continuously lowered their
mandible for 23 + 14 ms down to 10 + 7°. Second, the
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Figure 4 Waveform of sounds produced by Stegastes rectifraenum. A) Oscillogram of multiple-pulsed aggressive sounds. B) Power spectra of
sound produced during agonistic behavior (green line) and grazing (blue line) showing the same dominant frequency (see arrows).
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lower jaw stayed roughly at the same position until the
end of phase 1 (depresses by 1 + 1° during 24 + 16 ms)
(Figure 5A). Since no relative movement between the
neurocranium and hyoid apparatus (RM) occurred dur-
ing this phase, the c-md ligament stayed loose and could
not transmit any tension to the lower jaw (Figure 5B).

Phase 2 For all behaviors, this phase was short (9.3 +
3.5, 79+3.2 and 89+5.2 ms for FPF, FA and SP, re-
spectively) and started with an increase in RM between
neurocranium and hyoid apparatus (from 0 to 5.3, 3.6
and 7.5° for FPF, FA and SP respectively) (Figure 5A).
This motion moved the insertion points of the c-md
ligament from their origin which progressively contrib-
uted to the ligament tightening (Figure 5B). During this
phase the lower jaw kept lowering (5.1 +£3.3°, 4.6 + 1.7°
and 3.4 + 5.4° for FA, FPF and SP, respectively).

Phase 3 In all behaviors, the mouth closed in a few ms
(Table 2). A strong acceleration was observed in the RM
between the neurocranium and hyoid apparatus, the RM
reaching maximum amplitude (MRM) simultaneously
with the bite (Figure 5A, Table 2). This movement allows
the ligament to transmit a tension to the lower jaw
which is forced to turn around its articulation and to
close. As the RM increased rapidly, the mouth was
closed in a slam. Maximal accelerations of the backward
movement of the hyoid apparatus and lower jaw eleva-
tion were perfectly synchronized because the c-md liga-
ment joins both structures (Table 2).

Kinematic pattern with the c-md ligament ablated

The ablation of the c-md ligament muted the fish: two
operated fish placed in the same corridor still fighted
but did not produce any sound. Moreover, no biting FA

Table 1 Comparison between sounds produced during agonistic behavior and filamentous algae biting

Agonistic interaction (148)

Biting on filamentous algae (21) U Mann-Whitney test

2466 +9.70
307 £106

Pulse duration (ms)

Dominant frequency (Hz)

30.97 £ 546
289+103

7=381;p <0001
7=-169; p> 005

Number of pulses is indicated in brackets.
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Figure 5 Kinematic analysis of sound production and feeding events in Stegastes rectifraenum. A) Representation of the mean kinematic
patterns (+SD) observed in sound production (black triangle), biting filamentous algae (dark grey square) and biting fixed pieces of food (light
grey circle). The kinematic patterns end at the time of the bite. Figures 1, 2 and 3 represent different phases: during phase 1, only the lower jaw
is moving; phase 2 starts at the onset of the relative movement between the neurocranium and hyoid apparatus and finishes at the end of the
aperture phase (maximum lower jaw depression); phase 3 represents the mouth closure period. A zoomed in portion is shown for the two latter
phases, SD were withdrawn to allow a better visualization of the different patterns. B) Schematic illustration of the skull kinematics during the
different phases (1, 2 and 3). The arrows indicate the movements observed during the corresponding phase. Bolder arrows indicate faster movements.
The left cheek of the fish was withdrawn to allow an inner view in the buccal cavity. The nasal and the infraorbital series bones were also removed, to
have a better view of the upper oral jaw. The protraction movement of the upper jaws is not illustrated. NCR: neurocranium; PG: pectoral girdle; OS:
opercular series; SP: suspensorium; HA: Hyoid apparatus; OJ: oral jaws, the c-md ligament is in black. C) Representation of the mean kinematic pattern
(£SD) for biting fixed pieces of food while the c-md ligament is ablated. The kinematic pattern ends at the time of the bite.

events were observed. However the same surgery did
not impede individuals to bite FPF. Consequently, we
analyzed only the kinematic pattern associated with this
behavior (FPF*).

As in FPF, the fish swam towards the food while the lower
jaw depressed continuously. However, the neurocranium

and hyoid apparatus were not abruptly moved away from
one another, the maximum acceleration of their relative
separation was six times slower than in FPF (Table 2).
Both structures did not continue their movement until the
end of the closure phase since their MRM was never
achieved simultaneously with the bite (Figure 5C, Table 2).
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Table 2 Mean (+SD) of the kinematic variables studied for the different behaviors studied

FA FPF SP FPF*
#1) MRM (°) 8705 82+1.1 141 +33 7506
#2) Max. lower jaw depression (°) 18+34 152+18 145+03 152+ 4.1
#3) Mean closing speed of lower jaw (°s™") 2771£376 1688 + 325 3829+ 1202 396 £ 65
#4) Max. acceleration in RM (10° °s72) 1078 =71 580+ 42 1602 =531 85+ 18
#5) Time between (#1) and the bite (ms) 0 0 0 19+9
#6) Synchronization between hyoid apparatus and lower jaw accelerations (ms) 04+04 11 3+07 1749
#7) Lower jaw closing duration (ms) 3+1 4+02 3+1 39+2

The ¢-md ligament is cut in the group with a *.

No longer being physically connected, the maximum ac-
celerations of the hyoid bar and the lower jaws were not
synchronized (Table 2). Consequently, no slam of the buc-
cal jaw was observed, and the mouth-closing phase lasted
40 + 11 ms (Figure 5C; see Additional file 4).

Statistical comparative analysis

High positive values along PC1 (52.87% of variance, eigen-
value: 3.70) are associated with rapid acceleration in the
RM (#4), simultaneity between MRM and the bite (#5),
synchronization between lower jaw and hyoid apparatus
movement (#6) and oral jaw slam (#3 and #7) (Table 3).
This corresponds to the kinematic patterns performed
with intact c-md ligaments (FA, FPS and SP), all of which
are isolated from the pattern observed after transection
(Figure 6, Table 4). However, the acceleration in the RM is
significantly higher in SP than in FPE which mainly ex-
plains why these two patterns differ along PC1 (Table 4).
High positive values along PC2 (16.91% of variance, eigen-
value: 1.18) correspond to greater lower jaw depression
and smaller MRM. SP differs from FA and FPF along this
axis mainly because of its higher MRM (Figure 6, Table 4).

Bite rates
Intact fish had a mean bite rate of 3.01 + 0.98 min!
(n = 8). The ANOVA revealed different bite rates among

Table 3 Component loading scores from the PCA
performed on the kinematic dataset

PC1 PC2
Variance explained (%) 5287 1691
Eigenvalues 3.70 1.18
#1) MRM 0.55 -0.70
#2) Max. lower jaw depression 0.07 0.68
#3) Mean closing speed of lower jaw 0.76 0.13
#4) Max. acceleration in RM 0.83 -0.31
#5) Time between (#1) and the bite -0.82 -0.16
#6) Synchronization between hyoid apparatus -0.77 -0.22
and lower jaw
7) Lower jaw closing duration -0.92 -0.20

Significant loadings (>0.6) are bolded.

intact, severed and control fish (F5;5 = 19.82; p < 0.001).
A significant decrease of 81% (0.59 + 0.71 min™Y) in the
bite rate was observed in individuals with the c-md liga-
ment ablated (p < 0.001) but no effect of anesthetic was
observed (p > 0.05) (Figure 7). In half of the individuals,
the decrease reached more than 90%. These data are prob-
ably underestimated because the GoPro camera does not
allow the differentiation between bites and bite attempts.
Each time it seemed that there was contact between the
head of the fish and the rock, a bite was counted. The de-
crease observed in severed fish could not be due to a lack
of filamentous algae since normal bite rates were observed
in intact fish on the same rocks.

Electromyography

Activation in the adductor mandibulae A, is always
detected either in feeding or sound production events
(N =2; 40 EMGs recorded) (Additional file 5). The acti-
vation starts 9 + 7 ms before the bite and keeps on until
8+ 10 ms after (Figure 8). Activations of epaxial and
sternohyoideus muscles (N =1, six EMGs recorded) start
almost at the same time (16 + 13 ms vs 14 + 9 ms before
the bite) (Figure 8). That is in accordance with the kine-
matic data since movements of the two structures start
at 105 ms, 11+5 ms and 13 + 10 ms before the bite
for FA, FPS and SP respectively. Epaxial and sternohyoi-
deus muscles are activated during the entire closure
phase and until 6 + 3 and 9 + 8 ms after the bite, respect-
ively (Figure 8).

Discussion

Stegastes rectifraenum produces aggressive sounds made
up of one to several pulses. Sounds with the same phys-
ical characteristics were also clearly recorded during the
biting of filamentous algae. Kinematic analysis showed
both kinds of events are produced through the slamming
of the oral jaws, while the transection of c-md ligaments
makes fish unable to perform such patterns.

Sounds in agonistic behavior and grazing
The pulsed-sounds of S. rectifraenum are similar to
those produced by other damselfishes during different



Olivier et al. Frontiers in Zoology 2014, 11:63
http://www frontiersinzoology.com/content/11/1/63

Page 10 of 14

PC 2 (16.91 %)

- 6 4 -2

3t
N

PC 1 (52.87 %)

Figure 6 Plot of principal components 1 and 2 for all groups studied. The variables that load on each axis are indicated by the arrows, each
arrow has a figure representing the variable: #1) maximum relative distance (MRM) between the neurocranium and the hyoid apparatus; #2)
maximal lower jaw depression; #3) mean closing speed of the lower jaw; #4) maximum acceleration of relative separation between the
neurocranium and hyoid apparatus; #5) duration separating the time of the bite and the MRM between the neurocranium and hyoid apparatus;
#6) synchronization between the hyoid apparatus and mandible accelerations; #7) mouth closing duration. The different kinds of behaviors are
color and shape coded: black circles for sound production (SP), dark grey circles for biting filamentous algae (FA), light grey circles for biting fixed
piece of food (FPF) and light grey triangles for biting fixed piece of food while the c-md ligament is ablated (FPF¥).

-2

agonistic interactions [33,34,48]. Similarities in dominant
sound frequencies resulting from grazing and agonistic
behaviors imply that the same basic underlying mechan-
ism is used (i.e. the slam of oral jaws). On the other
hand, variation observed in pulse durations could be re-
lated to other aspects of sound production, such as sonic
radiation (see [47]). In all sequences of grazing studied
with high-speed video, the individuals keep their jaws
closed to pull away algae. This probably prolongs the

vibration phenomenon of teeth collision. This is not the
case in the sequences with sound production events
where the mouth is directly reopened after the bite.

What is the role of the c-md ligament?

The three studied kinematic patterns (FA, FPF and SP)
are all characterized by a slam of the oral jaws. In all of
them, the movements of the neurocranium and the
hyoid apparatus are first involved in mouth opening

Table 4 Statistical comparisons between the different behaviors studied along the two main PC factors and the

kinematic variables

FPF+FPF* SP+FPF* FA+FPF* FA+SP SP+FPF FA+FPF

Anova results

Fis0=158 p>005

(2) Max. lower jaw depression

Kruskal-Wallis results

Hssq
PC1 48.03; *
PC2 17.50; *
(1) MRM 24.74; %
(3) Mean closing speed of lower jaw 37:%
(4) Max. acceleration in RM 4462; *
(5) Time between (1) and the bite 4267 *
(6) Synchronization between hyoid apparatus and lower jaw 1852; *
(7) Lower jaw closing duration 38.90; *

ns ns * * * ns
ns * ns * * ns
* * * ns ns ns
* * * ns ns ns
* * * ns ns ns
* * * ns ns ns

Summary of ANOVAS/Kruskal-Wallis and Multiple comparisons of mean ranks post-hoc tests, significant p-value (<0.05) are indicated by a *.
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Figure 7 Bite rates on filamentous algae in Stegastes rectifraenum.
Bite rates (mean + SD) in individuals with the c-md ligament (in black),
in individuals with this ligament ablated (in white) and in a control
group (grey). Rates significantly different are indicated by a *.

(phase 2) and then, thanks to the c-md ligament, they
induce a slam of the oral jaws, closing the mouth in a
few ms with an average speed that can reach more than
3000°s™" (phase 3). In comparison, Labridae or Clariidae
close their mouth at the speed of 673°s™" and 1304°s™",
respectively [49,50]. The closure duration of S. rectifrae-
num is also shorter than in piscivorous fishes like Poeci-
liidae, Lepisosteidae, Belonidae or Sphyraenidae (2 to
4 ms vs 7 to 21 ms; [51,52]), for which a strike success
relies on jaws closure with high angular velocity and
short duration.

The c-md ligament can close the mouth in a slam only
if it is tightened quickly, and this depends on the speed
in the relative movement between the neurocranium
and the hyoid apparatus. Although a strong acceleration
in this relative movement is observed in the three behav-
iors, some differences still exist. In sound production the

SH I—*—I

EP +—

AM, HE -
1
|
T T T T
20 10 0 10
Time (ms)

Figure 8 Electromyographic pattern during sound and biting
events in Stegastes rectifraenum. Timing of muscle activity relative
to the time of the bite (T, dashed line). The data of all behaviors
(sound and feeding) are pooled together. The period between the
muscle activation onset and offset (mean = SD) is filled in black and
represent the muscle activity duration. SH: sternohyoideus muscle,
EP: epaxial muscle and AM,: one of the main divisions of the
adductor mandibulae muscle.
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amplitude of the RM is higher than in both feeding be-
haviors and the acceleration in this movement is higher
than in FPF. Thus the movement of SP is exaggerated in
comparison to the two others. We would expect these
differences to result in a faster mouth closure, inducing
stronger collision between teeth and a louder sound that
would be useful to scare away an intruder or reinforce
dominance. However our statistical tests do not reveal
any differences in the average speed of mouth closure
among the three behaviors (Table 4). This lack of a stat-
istical difference may simply be a consequence of the
limited temporal resolution in the videos because 500
fps may be too slow for this fast movement.

Without the c-md ligament, individuals close their
mouth much more slowly. Unexpectedly, no acceleration
in the RM was observed. It was expected that the indi-
viduals would try to perform the usual bite pattern and
that only the oral jaw slam would not be present, but
the entire pattern was affected. The results obtained
through the bite rates experiment confirm that the c-md
ligament is a key trait for grazing filamentous algae in S.
rectifraenum. Indeed, the bite rates decrease by more
than 80% in the severed fish (Figure 7); this rate dropped
to almost zero in half of the fish tested. This assumption
is reinforced by the fact that we were unable to record
high-speed video data of filamentous algae bites from
severed fish. Conversely, fish did not have difficulty in
the seizure of FPF (no failure observed) and fed without
hesitation on fixed piece of shrimp, even if the pattern
performed was different (no oral jaw slam). That was the
main reason why we studied biting on FPF in addition
to grazing FA.

What is the role of the adductor mandibulae?

Although it is mechanically possible to both open and
close the mouth by pulling along the working line of the
epaxial and/or the sternohyoideus muscles, we showed
that the A, bundle works during the closing phase in all
studied behaviors. Thus both systems (c-md ligament
and adductor mandibulae) are acting in synergy during
mouth closing. The c-md ligament confers speed advan-
tage since it allows jaw slam, which cannot be performed
with the adductor mandibulae alone. The adductor man-
dibulae cannot close the mouth so rapidly, but their ac-
tion could allow a more powerful bite, inducing louder
teeth collision or better algae seizure.

Functional complexity mitigates functional trade-offs

Functional trade-offs are thought to place strong
constraints on the evolution of organismal performance
[53-57]. A classic example is the trade-off between
maximization of force and velocity in mouth closing sys-
tems often reported in fishes [50,58-62]. Grazing in
damselfishes has to cope with two different mechanical
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demands: 1) the quick closing of the mouth on filament-
ous algae and 2) the development of enough force to ex-
tract the algae or to take undesirable objects out of the
territory. The adductor mandibulae muscles, which are
the main mechanism to close the mouth in teleosts [63],
have evolved different functions in response to varying
selection pressures. Manipulators that crush, scrape,
excavate or tear their food have a more powerful force-
generating capability of the adductor mandibulae. Con-
versely, the adductor mandibulae configuration of suction
feeders allows for a better speed transmission to catch elu-
sive prey [64,65]. More complex systems enable the miti-
gation of trade-offs [66]. For example, the force that a
suction-feeding fish exerts on its prey can be enhanced by
an expanded supraoccipital crest without a reduction in
gape size which would decrease the spatial reach of the
flow field [66]. The evolutionary bundle duplications of
muscle clearly provide opportunity for increases in func-
tional complexity [67]. In the majority of teleost fishes, the
adductor mandibulae are divided into four main divisions:
Ay, Ay, Az and A, [68]. In Labridae, the geometry of the
A3 muscles is better suited to fast closing, whereas the A,
is designed for more forceful closing [69]. In Pomacentri-
dae, in addition to these bundle duplications [46], the
c-md ligament adds a new way to close the mouth, in-
creasing even more the complexity of the system. Our
kinematic study reveals that the c-md ligament confers a
high-speed advantage in mouth closing. It could be ex-
pected that this releases some constraints on the adductor
mandibulae, which evolution is modeled by the trade-off
of speed-force transmission. Thus, an adductor mandibu-
lae better suited for force transmission does not impede
the ability of damselfish to close their mouth very quickly.

Ecological implications of the c-md ligament

Coral reefs harbor at least two ecological groups of fish
that rely on algae as a main food source. First, roving
grazers that feed in single or multi-species schools (pri-
marily Acanthuridae, Scaridae and Siganidae) and sec-
ond, grazers that are highly site-attached (primarily
Pomacentridae and Blennidae). Grazing damselfishes
defend small areas from conspecifics and all other
herbivores [70] and are often referred to as farmers
[22,26-29,45]. The farming of algal crops can be exten-
sive or intensive. The intensive farming includes select-
ive weeding of indigestible algae and prompt exclusion
of herbivores; the extensive farming includes less prompt
exclusion of herbivores and less weeding [29]. In both
cases, the productivity and biomass of the farm is higher
than that of the surrounding area [29].

We can also categorize herbivorous fishes according to
their mechanics of feeding. Fishes such as scarids, which
engulf large amounts of substrate per bite [17,71-74], or
some acanthurids, which practice a heavy grazing on a
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larger surface like a lawnmower ([28,73]; pers. obs.),
sometimes also ingest large amounts of sediment along
with the algal filaments [74,75]. On the other hand,
damselfishes are selective grazers, picking on small fila-
mentous algae sometimes only a few mm long [26,45].
Bites of damselfishes are like surgical strikes that enable
the fish to catch filamentous algae and prevent or de-
crease damage to the substratum supporting the crops.
Accurate bites should also be useful for weeding out the
undesirable algae without scraping the palatable fila-
mentous algae. The very low fecal ash contents in the
herbivorous damselfish species Stegastes dorsopunicans
and S. planifrons [76] and the low amounts of sediment
in the stomach contents of Pomacentrus wardi, Stegastes
fasciolatus, S. fuscus, S. variabilis and Dischistodus per-
spicillatus [77-80] suggest highly selective feeding bites.

Though we need to study other farming species to
confirm our results, we hypothesize that fast mouth
closure is required to perform these accurate strikes effi-
ciently. Indeed, the targeted filamentous algae are only a
few mm long and slow mouth-closing movement would
decrease success seizure because it would increase the
probability the algae gliding along the lips. The other
grazing species (e.g. blennids, acanthurids and scarids)
engulf/scrape a large part of the substrate to ingest food
of interest. This strategy is incompatible with farming
because it would inevitably increase damages to the sub-
strate supporting crops. This assumption is supported by
the destruction of the farm by other herbivorous species
once the resident pomacentrid is excluded [25,27]. The
very fast mouth closing mechanism of damselfish pos-
sibly enables them to be highly selective and to perform
accurate strikes on tiny filamentous algae, and probably
allowed the evolution of such farming behavior.

Conclusion

We can assert the c-md ligament corresponds to a mor-
phological novelty that obviously provides an innovation
in the feeding mechanism allowing the use of resources
in a different way. It allows accurate strikes on small fila-
mentous algae by a slam of the oral jaw. This motion
could be essential for the farming activity, an unusual
behavior in teleost but that is practiced by many graz-
ing damselfishes. Key innovations have been defined as
attributes of organisms that potentially allow the taxon
to occupy new niches and it seems that the c-md liga-
ment fulfills this criterion. Moreover, the c-md liga-
ment is also undeniably a key trait used for sound
communication, a way of communication that is par-
ticularly well developed in damselfish. This suggests
that the same character has been coopted for two dif-
ferent behaviors promoting the success of the family
over evolutionary time in two ways: facilitating feeding
and sound production.
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Additional files

Additional file 1: Sound production in the Cortez damselfish
Stegastes rectifraenum. The video shows a resident individual producing
an aggressive sound in front of its shelter.

Additional file 2: Grazing in the Cortez damselfish Stegastes
rectifraenum. The video shows the grazing activity of an individual on
filamentous algae affixed to a rock. Generally, sound of teeth collision can
be clearly heard during this behavior.

Additional file 3: High-speed videos of sound and biting events in
feeding behaviors in the Cortez damselfish Stegastes rectifraenum.
The movie 1 corresponds to aggressive sound production (SP), the movie
2 corresponds to biting filamentous algae (FA) and the movie 3
corresponds to biting fixed piece of food (FPF).

Additional file 4: High-speed videos of biting on fixed piece of
food with and without the cerato-mandibular ligaments in the
Cortez damselfish Stegastes rectifraenum. FPF correspond to a bite
with the cerato-mandibular ligaments intact and FPF* correspond to the
same situation but with the sectioned cerato-mandibular ligaments.

Additional file 5: Electromyographic pattern during grazing in the
Cortez damselfish Stegastes rectifraenum. The sound produced by
teeth collision and the activities of three muscles are indicated by
colored-oscillograms. The muscular activities are adjusted with the onset

of the sound (time of the bite).
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