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Abstract

Background: Susceptibility to parasite infection affects fitness-related processes, such as mate choice and survival,
yet its genetic regulation remains poorly understood. Interleukin-4 (IL4) plays a central role in the humoral immune
defence against nematode parasite infections, inducing IgE switch and regulation of worm expulsion from the
intestines. The evolutionary and functional significance of single nucleotide polymorphisms (SNPs) in IL4-genes is
known, yet empirical information on the effect of IL4 SNPs on gastro-intestinal infections is lacking. Using samples
from a population of wild red-fronted lemurs (Eulemur fulvus rufus, Primates: Lemuridae), from western Madagascar,
we explored the association of IL4-gene promoter polymorphisms with nematode infections and investigated a
possible functional role of the IL4 polymorphism on male reproductive success.

Results: Using sequence analyses of lemur DNA we detected a new SNP in the IL4 gene promoter area. Carriers of
the genotype T/T showed higher nematode infection intensities than individuals of genotypes C/T and C/C.
Genetic population analyses using data from more than 10 years, suggested higher reproductive success of T/T
males than expected.

Conclusions: Our results suggest a regulatory effect of an IL4 gene promoter polymorphism on the intensity of
parasite infections in a natural population of red-fronted lemurs, with a seemingly disadvantageous genotype
represented in low frequencies. Long-term population analyses, however, point in the direction of a negative
frequency-dependent association, giving a fitness advantage to the rare genotype. Due to low frequencies of the
genotype in question conclusive evidence of a functional role of IL4 polymorphism cannot be drawn here; still, we
suggest the use of IL4 polymorphism as a new molecular tool for quick assessment of individual genetic
constitution with regard to nematode infection intensities, contributing to a better understanding of the actual
components of the immune response that mediate protection against gastro-intestinal parasites.

Background
Parasite infections impose high costs on both human
and animal populations, increasing morbidity and mor-
tality, particularly in hosts under ecological stress [1-3].
Understanding the genetic regulation of parasite resis-
tance in natural population is of major importance for
understanding host-parasite evolution and host sexual
selection processes. In the past, great effort has been
devoted to study major histocompatibility complex
(MHC) diversity and compatibility as a key element of

genetic regulation of parasite resistance and a potential
driving force in sexual selection processes, respectively
[4-12]: host genetic variation can be promoted by para-
sites through frequency-dependent selection on advanta-
geous resistance alleles [10,13], and individuals that are
heterozygous at the MHC are expected to have a selec-
tion advantage and to be better capable of combating a
variety of infectious agents than MHC homozygotes
[5,7,14]. Additionally, some studies report correlations
between parasite resistance and individual heterozygosity
that are explained by reduced fitness values of homozy-
gous individuals for traits that are controlled by direc-
tionally dominant loci [13,15,16]. Still, there is
accumulating evidence that individual heterozygosity
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often appears to be a weak predictor of parasite infec-
tion and the importance of specific alleles of candidate
genes in regulation of parasite infection has been sug-
gested [15,17]. In this respect, cytokine genes such as
interleukins are natural candidates due to their major
regulatory role in helminth parasite susceptibility [18],
and recently Fumagalli and colleagues [19] highlighted
their evolutionary significance as a target of balancing
selective processes.
Immunity to helminth parasite infections is mainly

mediated by CD4+ T-helper 2- (TH2) lymphocytes with
promotion of TH2 immune responses (humoral immune
responses) being dependent on the cytokine interleukin-
4 (IL-4) [18]. IL-4 not only induces and sustains TH2
responses and suppresses TH1 responses, but also initi-
ates immunoglobulin (Ig) isotype switching to IgE,
which plays an essential role in anti-parasite immunity
[20]. Evidence mainly from human diseases is accumu-
lating that single nucleotide polymorphisms (SNPs) in
the promoter region of the interleukin 4 gene (IL4)
affect its transcription, resulting in altered IL-4 protein
levels and, hence, in either higher or lower IgE titres
[21-24]. In this way, IL4 SNPs can effectively influence
the intensity of various infections [22,25-30], including
enteric pathogens [31-34]. Still, despite its key role in
the regulation of parasite infections and resulting evolu-
tionary significance of IL4 polymorphisms [19], empiri-
cal evidence of the importance of IL4 on the intensity of
parasite infections in natural population is lacking.
This study integrates field parasitology and population

genetics to investigate the functional significance of
polymorphisms in the IL4 gene on gastro-intestinal
infections in a wild non-human primate: the red-fronted
lemur (Eulemur fulvus rufus).
Red-fronted lemurs live in small multi-male, multi-

female groups of 5-12 individuals with an even or
slightly male-biased adult sex ratio [35,36]. Reproduction
is highly seasonal with only one mating period per year.
During this three-to four-week period, females are in
oestrus for approximately one day and mate promiscu-
ously with several males [37,38], resulting in a very low
male mating skew within a group [39]. In contrast,
reproductive skew is very high as male reproductive suc-
cess is positively correlated with male dominance rank
[40]. Variation in parasite infection of the red-fronted
lemur population on which this study is based on has
been investigated in detail and is known to differ signifi-
cantly among individuals but not between males of dif-
ferent rank [41].
The specific objectives of our study were: (1) to iden-

tify promoter SNPs in the IL4 gene of the red-fronted
lemur, (2) to associate both the respective IL4 SNP gen-
otypes and a measure of individual heterozygosity with
intensities of nematode infections, (3) to identify a

possible functional role of the IL4 alleles in selective
processes by exploring long-term fitness consequences
between males of different genotype constitutions. We
expected frequency-dependent selection to result in a
higher frequency of genotypes, which provide the best
resistance to parasites [10]. Further, if IL4 does obtain a
functional role in selective processes, we predicted a fit-
ness advantage of individuals with a beneficial IL4
genotype.

Results
IL4 promoter polymorphism in red-fronted lemurs
After sequencing a 528 bp fragment of the IL4 promoter
region of the red-fronted lemur, we identified a C/T
polymorphism at position -485 bp upstream of the tran-
scription start site (Figure 1). The -485 C/T was the
only SNP found within this part of the promoter
sequence. All possible genotypes (C/C, C/T, T/T) were
present in the total lemur population studied between
1996 and 2007 (N = 64 individuals) with the following
frequencies: C/C: 51.6% (n = 33 individuals), C/T: 37.5%
(n = 24), T/T: 10.9% (n = 7). In a subset of this dataset,
which was used for combined parasitological and genetic
analyses (see below; yr 2007, n = 24 individuals) fre-
quency distribution was C/C: 50.0% (n = 12 individuals),
C/T: 37.5% (n = 9), T/T: 12.5% (n = 3). Frequency dis-
tribution of genotypes did not deviate from a distribu-
tion expected under Hardy-Weinberg equilibrium
(Fisher’s exact test, p = 0.86, df = 2).

Parasite infection intensities and association with IL4
gene promoter polymorphism
During the study period in 2007, all lemurs of both
sexes (13 males, 11 females) were parasitized by at least
three helminth morpho-species [see Ref 42 for more
details] with most prominent infections with the nema-
tode species Lemuricola vauceli and Callistoura sp. Ani-
mals showed no signs of clinical significance during the
period of the study that could be linked to acute para-
site infections (intense behavioural observation were
conducted on the same animals for other purposes, see
Refs [41,42]). Intensities of individual nematode infec-
tions ranged from 0 to 3300 eggs per faecal sample with
median infection intensity of 100 eggs/g faeces.
The intensity of nematode infections differed signifi-

cantly between IL4 genotypes (Figure 2, Table 1): indivi-
duals of genotype T/T had higher parasite egg outputs
than individuals of the more frequent genotypes C/T
and C/C (t24,2 = 2.20, p CC-TT = 0.04, p CT-TT = 0.04).

Individual heterozygosity
Mean individual heterozygosity was 0.79 (± 0.17) and
did not correlate with individual nematode infection
intensities (r = 0.05, p = 0.8, n = 24, Figure 3).
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Figure 1 Eulemur fulvus rufus IL4 promoter sequence. Alignment of Eulemur fulvus rufus IL4 promoter sequence (GenBank accession
GQ221019) with published sequences of human [Hs, 70], Macaca mulatta [Mm, 71] and Cercocebus atys [Ca, 71]. Highlighted are the lemur
-485C/T SNP, the human -589C/T SNP, and the TATA box. Gaps introduced to maximise similarity are marked by “+”. Nucleotides identical to the
lemur sequence (Efr_1_CC) are shown by dashes. Nucleotide numbering is based on the human sequence.
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Fitness consequences of different IL4 genotypes
Observed reproductive success (ORS) of males of differ-
ent genotypes ranged from 0 to 100% and differed sig-
nificantly from expected values (Expected reproductive
success ERS). Individuals with the genotype T/T sired
significantly more offspring than expected (ORSTT =
13%; ERSTT = 7%; c² = 4.47, p < 0.05, df = 1; n T/T = 9;
Figure 4), whereas observed paternity success in indivi-
duals of genotype C/C (n C/C = 33) and C/T (n C/T =
17) did not deviate from expectations (Figure 4).

Discussion
In this study, we combined information on individual
parasite infection intensities, immune-genetic constitu-
tion, and long-term parentage patterns to investigate a
potential regulatory and functional role of IL4 SNPs on
enteric parasite infections in a wild primate population.
We detected a polymorphic site at the IL4 gene promo-
ter region at position -485 bp that was not identical to
known and functionally relevant IL4 promoter poly-
morphisms in humans or other non-human primates

[29,43-45]. We investigated individual parasite infection
intensities with regard to different IL4 genotypes and
found evidence for differential association of the three
groups of genotypes with nematode infection intensities:
animals carrying the rare genotype (T/T) had higher
nematode egg outputs than carriers of the genotype C/C
and C/T. However, contrary to our expectations, long-
term population analyses indicated a disproportionately
higher reproductive success of genotype T/T individuals.

IL4 promoter polymorphisms and parasite infections
In general, promoter SNP-modulated gene transcription
can lead to differential activity of a gene and is fre-
quently based upon altered transcription factor binding
properties at the site of the mutation [46]. Studies in

Figure 3 Parasite infection intensity and individual
heterozygosity. Nematode infection intensities are not associated
with individual heterozygosity (r = 0.05, p = 0.8, n = 24). Genotypes
are displayed in different shades.

Figure 4 Distribution of paternity share between different IL4
genotypes. Observed frequencies of paternities differed significantly
from expected patterns in animals of genotype T/T (n = 59).

Figure 2 Parasite infection intensity and IL4 genotype. Box plots
of nematode infection intensities between individuals of different
genotypes (n = 24). Response variables are depicted as sqrt-
transformed data. * denotes significance at p < 0.05

Table 1 General linear mixed effect model of nematode
infection intensity

Term df c²-value P-value Effect direction

IL4 2 14.14 < 0.001 T/T > C/C, C/T

sex 1 0.0091 0.924 No effect

season 2 < 0.001 0.99 No effect

Significant terms are highlighted in bold. P-values were estimated by
comparison with reduced models not containing the term in question
(likelihood-ratio test), n = 24.
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vivo and in vitro on a well-known human C/T poly-
morphism (-589CT) showed that individual genotypes
bearing the binding site of transcription factor nuclear
factor of activated T-cells (NFAT) [47]) had altered
transcription rates of IL4 mRNA resulting in differential
IL-4 production [23,24,27,46,48]. Experimental evidence
for altered transcription rates cannot be provided here.
Yet, we suggest that the -485C/T SNP detected in red-
fronted lemurs affects IL4 gene transcription in a similar
way: decreased IL4 mRNA and thus decreased IL-4 pro-
tein levels in T/T individuals could thus contribute to
higher nematode infection intensities as IL-4 is known
to play an important role in enteropathic expulsion of
nematode worms and increases mucosal permeability
after infections [31-34]. Alternatively, the observed asso-
ciation of IL4 polymorphism and infection intensities
could be due to linkage disequilibrium of IL4 with other
genes such as IL13 and IL5, which in humans are
located just 12.5 kb and 132 kb upstream of IL4 and are
also key TH2 cytokines [31].

Individual heterozygosity and parasite infections
Mean individual heterozygosity in the study population
was 0.79, which suggests that the population was not
subject to inbreeding. In line with results from other
studies [15,49] and our expectations, the present find-
ings did not confirm a relationship between individual
heterozygosity and parasite infection intensity, suggest-
ing that enteric parasite infection in lemurs is associated
with one specific genotype of a candidate-gene rather
than with heterozygosity per se. The power of this result
is certainly constrained by the ability to estimate overall
heterozygosity by use of a limited number of microsatel-
lite markers [50,51]. However, the usage of 11 microsa-
tellite markers is comparable to most previous studies in
vertebrates [13,15,49,52].

Functional significance of the IL4 polymorphism
Significant parasite resistance is generally thought to be
beneficial in terms of individual fitness [10,53]. We
expected individuals with the more common genotypes
(C/C and C/T), characterized by low parasite infection
levels, to be superior to T/T individuals, which had
highest infection levels. However, long-term paternity
analyses indicated a disproportionally higher reproduc-
tive success of these T/T males, although the genotype
was only found in 11% individuals of the total study
population. This indication of a negative frequency-
dependent association (low frequency - high reproduc-
tive success) is contradictory to other studies conducted
on birds [54,55] and fish [56].
A potential explanation may be found in the counter-

balancing function of IL-4. A regulatory polymorphism
in the IL4 promoter can influence the activity of the

cytokine and thus the balance of the TH1/TH2 ratio.
Such a balancing function results either in an increased
TH1 response (low IL-4 level), potentially advantageous
when individuals are confronted with intracellular
pathogens such as viruses or phagocytised bacteria, or
an intensified TH2 response (high IL-4 level), required
when individuals are affected by extra-cellular parasites
such as nematode worms [48]. This suggests that the
IL4 promoter polymorphism may be subject to balan-
cing selection. Imbalanced TH1/TH2 ratios are known to
be responsible for the lepromatous form of leprosy and
influence susceptibility to allergy in “parasite-free”
industrialized areas in human [57,58]. With regard to
our study population, it is likely that an IL4-regulated
and intensified TH1 response targeting microparasites
(not measured in this study) could provide an explana-
tion for the disproportionately higher reproductive suc-
cess of these animals. Yet, although this scenario is a
plausible explanation for the significantly higher long-
term reproductive success of T/T individuals, the IL4
gene is certainly only one of many factors affecting var-
iance in male reproductive success in a wild lemur
population [40]. Additionally, increased levels of nema-
tode infection might not be a crucial aspect in selection
processes of this particular population. Analyses on
determinants of parasite infection in red-fronted lemurs
published elsewhere [41] show, for example, that the
intensity and species richness of nematode infections
has no effect on social rank or mating success. In addi-
tion, most prominent nematode species found in
this study are not considered as highly pathogenic [42]
when compared to tissue migrating nematodes that may
also contribute to anaemia and secondary bacterial dis-
ease [59].

Limitations of the study
This is the first study exploring the significance of IL4
polymorphisms simultaneously in several groups of a
wild primate species, which involves an unusually large
logistic effort. There are two major caveats in this study,
which ask for a cautious interpretation of our results.
First, studying natural populations of primates is often
associated with the drawback of working with small
sample sizes - in particular when compared to labora-
tory-based studies with murine models - and in our
study, the number of individuals per individual geno-
type, in particular for the most interesting genotype, was
very low (year 2007: nT/T = 3). To minimise bias, we
used conservative statistical methods that accounted for
non-independent data and unbalanced designs. Second,
this is a genetic association study and lacks in-vitro and
in-vivo evidence of TH1/ TH2-driven responses influ-
enced by promoter polymorphisms. In particular, this
leads to a speculation that the T/T genotype has
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diminished expression of a TH2 immune response, con-
tributing to the higher nematode egg excretion levels
observed. Recent functional studies (particularly in
mice) have established the link between TH2 levels and
parasite infection intensities in detail [18,20].
These two caveats hamper firm conclusions for the

time being. While our results suggest interesting pat-
terning of an IL4 polymorphism and its effect on intest-
inal parasite infection in wild primates that can be
explained biologically, these caveats will need to be
addressed in future studies to improve the data basis
and our mechanistic understanding of the observed
pattern.

Conclusions
We detected a novel C/T polymorphism at position
-485 bp in the promoter region of the IL4 gene in a
wild primate population. The association of this poly-
morphism and inter-individual variability in nematode
infection encountered in this lemur population indicated
that carriers of a rare genotype had higher nematode
infection intensities than carriers of the more common
genotypes. However, against our expectations, long-term
paternity analyses indicated above-average reproductive
success of the former.
Due to low frequencies of the particular IL4 genotype

in our study population final conclusions on the func-
tional role of IL4 polymorphism cannot be drawn yet.
Still, the methodological approach used in this study
may contribute to a better understanding of the actual
components of the immune response that mediate pro-
tection against helminth parasites and is recommended
for further studies. If similar patterns are found in other
natural study systems, the analyses of IL4 promoter
SNPs could provide an efficient scoring system for sus-
ceptibility to helminth infections.

Methods
Study site and sample collection
Data were collected at the study site of the German Pri-
mate Center (DPZ) in Kirindy Forest, western Madagas-
car. Detailed description of the study site can be found
in Sorg et al [60]. Between 1996 and 2007, adult red-
fronted lemurs of the study population belonging to
four social groups (groups A, B, F, J) living within a 60
ha study area have been regularly captured and marked
individually with unique nylon or radio collars (in total:
48 males, 16 females). From these animals, small tissue
samples were routinely taken and stored in 70-90%
ethanol for DNA extraction [40]. During a 3-month
study period between April and July 2007, a total of 299
faecal samples were collected weekly from each indivi-
dual of the current population (13 males, 11 females)
for parasitological analyses. Individually assigned

samples were taken immediately after defecation, stored
in labelled vials containing 10% buffered formalin. All
samples were transported to DPZ laboratories, Germany,
for analyses. Ethical approval for this study was not
necessary because our research was not experimental.
Study animals were not subjected to experimental
manipulations to obtain any of the data presented in
this paper. All field work was carried out following the
guidelines of the American Society of Mammalogists.
The capture of study animals, which was used to obtain
tissue samples, was authorized by the Malagasy Minis-
tère de l’Environnement et des Eaux et Forêts.

Genetic analyses
IL4 promoter sequencing
DNA was isolated from tissue samples of all 64 indivi-
duals using QIAamp® tissue kits (Qiagen). A fragment
of the IL4 gene promoter region was amplified using
primers: forward 5’-CATACGAACCTGCTGGGAC-3’
and reverse 5’-CAATCAGCACGTCTCTTCCA-3’. Hot
start PCR was carried out in a total volume of 30 μl
with 10 pmol of each primer, 166 μM dNTPs, and 2U
Taq DNA polymerase. Amplification was performed
according to the following protocol: 5 min at 92°C, 45
cycles of 92°C for 1 min, 58°C for 1 min and 1 min at
72°C, and final elongation for 5 min at 72°C. PCR pro-
ducts were purified with the Millipore DNA purification
kit (Millipore, Schwalbach, Germany) and sequencing
was performed in both directions with a BigDye termi-
nator sequencing kit (Applied Biosystems, Darmstadt,
Germany) in an ABI 3130 × l automated capillary
sequencer (Applied Biosystems) with same primers as
mentioned above. Individual IL4 sequences were aligned
and examined for occurrence of SNPs using the biologi-
cal sequence alignment editor BioEdit 7.0.9 [61]. The
newly discovered SNP at position -485 bp upstream the
transcription start has been submitted for publication in
dbSSNP data base [ss142460308]. The IL4 promoter
sequence is stored in the DDBJ/EMBL/Genbank data-
base, accession number GQ221019.
Individual heterozygosity
Controlling for a potential heterozygosity effect, we ana-
lysed the effect of multi-locus marker heterozygosity
(MLH) on parasite infection [52,62]. Animals from the
2007 population (n = 24, see above) were typed at ele-
ven highly variable microsatellite markers [see [40,63]]
and MLH was determined as the proportion of typed
loci for which an individual was heterozygous [64].
Allele frequency analyses conducted in CERVUS 2.0
confirmed that none of the markers deviated signifi-
cantly from Hardy-Weinberg-equilibrium.
Reproductive success
Exploring a functional role of different IL4 genotypes on
male reproductive success, long-term reproductive
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success of all males abundant in all four social groups of
the study population from 1996 to 2007 (n = 48) was
assessed via parentage analyses. During this time period,
59 offspring of which fathers could be identified geneti-
cally were born in the study population. Detailed meth-
ods on microsatellite-based paternity analyses as well as
paternities are published elsewhere [40]. As both domi-
nant and subordinate males mate multiply with females
and there is only very little mating skew within a social
group [39], we predicted expected male reproductive
success (ERS) based on the distribution of males with
respective genotypes (C/C, C/T, T/T) per social group,
year, and the number of offspring born to the group in
the respective year. Based on the result of paternity ana-
lyses, we then calculated observed male reproductive
success (ORS) per genotype and year.

Parasitological analyses
Faecal parasites samples were processed using a modi-
fied form of the formalin-ethyl-acetate sedimentation
technique as described by Ash and Orihel [65], and
detailed methods can be found elsewhere [42]. Wet
mounts were prepared using 20 mg faecal sediment,
analyzing individual samples for intestinal helminth
parasites (nematodes, cestodes, trematodes). Larvae and
adult stages found in faecal samples were used for iden-
tification of morpho-species. In cases were adult worms
were available determination to species level was possi-
ble. Due to very low numbers of trematode and cestode
parasitic stages (see Ref. [42] for details), we focussed
our analyses of helminth parasites on nematodes.
Results on nematode egg morpho-types were extrapo-
lated to 1 g faecal sediment (x50). We used parasite
infection intensity (number of eggs) as a measure of
parasite infection levels. Due to parasite-specific varia-
tion in egg shedding, there has been some discussion
about the reasonable use of faecal egg counts as a mea-
sure of infection intensity [66,67]. We accounted for
natural occurring variation in parasitic excretions by
using monthly medians of faecal egg/cyst counts per
individual and pooling the data for all nematode infec-
tions to generate the response variables for statistical
analyses.

Statistical analyses
We used monthly means of faecal egg counts per indivi-
dual as a measure for natural occurring variations in
parasitic excretions [66,67]. We modelled differences
between individuals of different genotypes using a linear
mixed model approach (lmer in R [68]). As both response
variables showed high degrees of overdispersion (see Ref.
[41] for details), which could not be improved by apply-
ing a GLMM (link = log) with quasi-error structure as
advised for use of parasitological data [69], we used

square-root transformed data on individual means
(GLMM, link = identity). After transformation distribu-
tions of response variables were no longer different from
the normal distribution. Homogeneity of variances was
checked using residual plots. Residuals of all models were
constant and normally distributed as checked by Q-Q
plots. Non-independence of repeated measurements per
individual as well as potential group-specific variation (e.
g. due to behavioural differences or habitat use)was
accounted for by incorporating individual nested in
group (four levels: social group A, B, F, J) [69]. As we
know from earlier analyses (published elsewhere, see Ref
[41]) that season and sex can have a significant effect on
the intensity of parasite infection, we included both fac-
tors as fixed effect covariates in the model. Full model
structure was: Response = nematode infection intensity;
Fixed effect factor = genotype; Fixed effects covariate =
sex, season (pre-, mating, post-season as defined in Ref.
[41]); Random effects = individual, group. Model simplifi-
cation was conducted by step-wise removal of non-signif-
icant parameters. Nested models with different fixed
effects were compared using likelihood-ratio tests with
ML estimation [70], which was also used to confirm lack
of contribution of eliminated variables. P-values for
mixed models were estimated using Markov Chain
Monte Carlo (MCMC) simulations [71].
Relationships of individual heterozygosity (MLH) and

nematode infection intensities (log-transformed) were
assessed using Spearman rank correlation analyses.
Observed and expected frequencies of paternities per
offspring per male were compared between genotypes
with c² test statistics. All statistical analyses were per-
formed with software R (Version 2.8.1 [72]) and the sig-
nificance level was set at 0.05.
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