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Abstract

Background: The European grayling (Thymallus thymallus) is a salmonid fish native to Europe, with
a distribution ranging from England and France to the Ural Mountains of north-western Russia. The
majority of grayling populations inhabit freshwater rivers and lakes but some populations also
occupy brackish water in northern parts of the Baltic Sea. Previous population genetic studies have
demonstrated that grayling populations in Finland, Estonia and Russia belong to a single
mitochondrial lineage and exhibit high levels of differentiation even at a small geographic scale. As
a result, we predicted that grayling populations should not cluster regionally. Despite the extensive
amount of genetic research that has been carried out on grayling, comprehensive national-level
information on population structure of grayling in Northern Europe is still lacking. Yet this is the
level at which populations are currently managed.

Results: We found unanticipated population structure of grayling clustering into three groups
largely corresponding to the northern, Baltic and south-eastern geographic areas of Finland using
I3 microsatellite loci. We also found a high level of genetic differentiation among the groups and
moderate to high differentiation within the groups. This combined with low variability strongly
indicates that genetic drift and limited migration have a major impact on grayling population
structure. An allele size permutation test indicated that mutations at microsatellite loci have not
significantly contributed to genetic differentiation among the three Finnish groups. However, at the
European scale, mutations had significantly contributed to population differentiation.

Conclusion: This research provides novel genetic information on European grayling in its
northern distribution range and has clear implications for supporting country-scale conservation
efforts. Specifically, the strong between population divergence observed indicates that single
populations should generally be recognized as separate management units. We also introduced an
alternative prioritization strategy for population conservation based on the evaluation of the
relative roles of different evolutionary forces shaping the gene pools. We envision that the
proposed approach to categorize populations for conservation will be a useful tool for wildlife
researchers and conservationists working on a diverse range of organisms.

Page 1 of 12

(page number not for citation purposes)


http://www.frontiersinzoology.com/content/6/1/6
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19331654
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Frontiers in Zoology 2009, 6:6

Background

The European grayling, Thymallus thymallus, is a salmonid
fish highly appreciated by recreational anglers. It is native
to Europe with a distribution from England and France to
the Ural Mountains of north-western Russia. It can
inhabit stream, riverine or lacustrine habitats and show
large phenotypic differences in gill raker number, body
size, weight at first spawning and fecundity [1]. While
grayling occur mostly in freshwater habitats, some popu-
lations also occupy brackish water in the northern parts of
the Baltic Sea.

Population genetic structure of the European grayling has
been studied rather extensively across its natural distribu-
tion, but particularly in central Europe, using both mito-
chondrial sequences and microsatellite markers [2-7]. In
central and northern Europe, the population structure is
represented by four major lineages with (lineage) contact
zones in Germany [8] and northern Sweden and Finland
[9]- In northern Europe, two major lineages have been
described (3.1% and 1.1% divergences using mtDNA
PCR-RFLP and 529-bp of ND5 sequence, respectively;
[9]). One lineage that almost exclusively inhabits Sweden
and Norway most likely originated from a central Euro-
pean refugium while grayling in Finland, Estonia and
north-western Russia belong to a different mitochondrial
lineage originating most likely from an eastern European
refugium [9]. Northern European grayling have been stud-
ied also at a very small geographic scale [10]. In lake
Saimaa, Finland, Koskinen et al. [11] found evidence of
severely limited gene flow among populations separated
by just tens of kilometres.

Despite the quite extensive amount of genetic research
that has been carried out on grayling, detailed national-
level information of grayling population structure in
Northern Europe is lacking. Yet, this is the level at which
populations are currently managed. Based on the previous
work, we expect that grayling populations in Northern
Europe exhibit high genetic differentiation even at a small
geographic scale (prediction 1) and possibly show just a
relatively weak isolation-by-distance signal as genetic drift
should be the dominant evolutionary force compared to
migration. However, as Finnish grayling populations
belong to a single mitochondrial lineage on one hand and
show extremely low gene flow on the other, we do not
expect that grayling in Finland exhibit further genetic clus-
tering or grouping (prediction 2).

In this study, the major objective was to provide genetic
information from a geographically representative set of
populations to assist country-scale conservation of gray-
ling in Finland. We analyzed grayling sampled through-
out Finland in order to test the predictions based on the
knowledge from previous population genetic studies,
using a panel of 13 microsatellite markers. For compara-
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tive purposes, we analyzed grayling populations from
Russia, Sweden, Norway and Germany. We also catego-
rized and prioritized populations according to predomi-
nant evolutionary forces, providing useful information
for the development of a scientifically justified national-
scale conservation strategy of grayling in Finland.

Materials and methods

Fish samples

Grayling were sampled from 15 locations within Finland,
between 1996 to 2001 (figure 1a). Fin clips were stored in
95% ethanol. DNA was extracted using a salt-based
method described by Aljanabi and Martinez [12]. Infor-
mation on population status, location and geographic
coordinates are given in table 1.

Microsatellite data

Initially, seventeen microsatellite markers employed by
Koskinen et al. [13] were re-screened using 16 individuals
representing a number of populations and two loci were
then excluded (BFRO9 and BFRO16) due to low levels of
polymorphism. Forward primers were labeled fluores-
cently with FAM for BFRO4, BFRO5, BFRO7, BFRO10
and BFRO13; VIC for BFRO15, BFRO17, BFRO18 and
0go2; NED for BFRO12, Cocl23 and Str85INRA; and PET
for BFRO11, ONE2, and Str73INRA. Primer concentra-
tions were optimized for co-amplification of 15 loci in a
single multiplex PCR and the amplicons were size-meas-
ured in a single capillary electrophoresis. The 6.25 pl
multiplex PCR reaction consisted of ca. 125 ng of tem-
plate DNA, 1x multiplex PCR master mix (Qiagen) and
0.015 to 1.915 uM of each primer. Exact concentrations
of primers are provided in the supplementary material
[see Additional file 1]. Amplifications were carried out in
a PTC100 thermal cycler (MJ Research) with an initial
heat-activation at 95°C for 15 minutes (min) followed by
37 cycles of denaturation at 94°C for 30 seconds (sec),
annealing at 55°C for 90 sec and extension at 72°C for
60 sec. The PCR was terminated after 30 min of final
extension at 60°C.

PCR products were diluted, denatured and then electro-
phoresed on an ABI Prism 3130xl genetic analyzer
(Applied Biosystems/Hitachi) along with GeneScan 600
LIZ size standard (Applied Biosystems). DNA fragments
were genotyped using GeneMapper 4.0 (Applied Biosys-
tems). All genotypes were manually inspected and exam-
ples of electropherograms are shown in the
supplementary material [see Additional file 2]. Besides the
15 newly genotyped Finnish populations, previously pub-
lished data [13] from seven populations within Finland
and six populations from Russia, Sweden, Norway and
Germany were included (table 1). Three of the previously
published Finnish populations (102 individuals in total)
were re-genotyped in this study to enable calibration of
allele sizes.
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Grayling sampling locations and analyses of population structure based on |13-microsatellite loci. Populations are
coded as in table I. a) A map indicating sampling locations. Three population groups are indicated with different color lines cor-
responding to the three clusters identified using PCA. Dot sizes are proportioned to allelic richness of each population. Black
and green dots stand for indigenous and supplementary stocked populations, respectively. b) Principal Component Analysis of
Finnish grayling populations based on microsatellite allele frequencies. c) Individual clustering as inferred by series of hierarchi-
cal partitioning using Structure. Each individual is represented by a thin horizontal line pooled into K-colored blocks indicating
individual's membership fractioned in K clusters. Black horizontal lines separate individuals from different sampling sites.
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Table I: Locations and status of grayling populations in the study.
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Location

Water system Code Region Co-ordinates Source status Sampling site
Tenojoki Ten Finland. N 69 54' 40.97"'N 27 02' 48.36"E indigenous river
Naitamojoki Naa Finland. N 69 42' 22.98"N 29 00' 05.76"E indigenous river
Kaitamo (Inari) Kai Finland. N 6847' 12.94'N 26 58' 39.83"E indigenous lake
Kisivarsi, Poroeno KasPor Finland. N 68 58' 46.33"N 22 04' 36.37"E indigenous river
Kisivarsi, Litiseno KasLat Finland. N 68 50' 00.00"N 22 11'52.34"E  indigenous river
Tornionjoki Tor Finland. N 66 30' 00.00"N 23 44' I5.16"E indigenous river
Juujarvi Juu Finland. N 66 22' 41.59"N 27 16' 50.43"E indigenous river
Kemijoki Kem Finland. N 66 06' 40.75"N 24 51' 58.33"E indigenous river
Kitkajarvi Kit Finland. N 66 10' 02.44"N 28 42' 32.28"E indigenous lake
Perameri Pera Finland. N 66 01' 35.99"N 24 00' 47.04"E  indigenous sea
Ulkokrunnit Kru Finland. Bothnian bay 65 12'23.62"N 24 35' 1431"E indigenous sea
Lieksanjoki Lie Finland. SE 63 18'43.44'N 30 02' 16.60"E indigenous river
Lieksanjoki LieMR Finland. SE 63 18'43.44"N 3002' 16.60"E indigenous river
Pielinen PieKR Finland. SE 63 12'45.27"N 29 46' 19.54"E indigenous lake
Rauanjoki Rau Finland. SE 63 07' 17.52"N 27 46' 44.04"E  hatchery river
Isojoki Iso Finland. SW 62 06' 36.58"N 21 57'21.28"E  mixed river
Puruvesi Pur Finland. SE 61 57'07.38"N 29 37' 19.22"E indigenous lake
Eteld-Saimaa Esa Finland. SE 61 19'32.54'N 28 23'22.52"E indigenous lake
Vuoksi river Vuo Finland. SE 61 10" 17.28'N 28 46' 44.43"E indigenous rivera
Juzija river Rusjus Russia. Kola peninsula 66 58' 13.80"N 36 20'48.86"E indigenous river
Vindelilven SweVin Sweden. E 64 11' 58.34"N 19 42' 07.67"E indigenous river
Holmén SweHol Sweden. Bothnian bay 63 47' 59.63"N 20 51'28.83"E indigenous sea
Vittern SweVat Sweden. S 58 17' 41.85"N 14 28' 39.98"E indigenous lake
Lesjaskogsvatn NorLes Norway. S 62 12' 02.67"N 825" I5.11"E introduced lake
Eger river GerEge Germany. Central 49 27' 11.74"'N 11 04'21.96"E indigenous river

2The outlet of lake Saimaa.

Statistical analyses

Microsatellite diversity, Hardy-Weinberg and genotypic linkage
equilibrium

GenePop 3.4 [14] was initially employed to screen for
deviations from Hardy-Weinberg (H-W) equilibrium and
two loci (BFRO4 and ONE2) were excluded due to highly
significant heterozygote deficiency (P < 0.0001) in several
populations, likely indicating the presence of null alleles.
Thus, the final dataset comprised 13 loci. Because some of
the sampled populations can be affected by stocking with
individuals of non-native origin (table 1), Structure 2.2
[15] was used to identify individuals that represented gen-
otypes highly unlikely to be native to the sampled popu-
lation. In total, 15 individuals belonging to four
populations (1-6 individuals per population) were iden-
tified with highly unlikely genotypes compared to the rest
of the samples and these putatively non-natives were
excluded from further analysis. The final dataset consisted
of 936 individuals from 25 populations.

Allele number and allelic richness were estimated using
FSTAT 2.9.3.2 [16]. Observed and expected heterozygosity
were measured using Microsatellite Toolkit 3.1 [17]. Devi-
ations from Hardy-Weinberg equilibrium and genotypic
linkage equilibrium were calculated using Genepop 3.4.
For the combination of separate tests across loci (H-W

test) or locus pairs (linkage equilibrium test), Fisher's pro-
cedure was applied [18]. Throughout the study, sequential
Bonferroni corrections [19] were performed to correct for
multiple testing.

Genetic differentiation and relationships between populations
Inter-population genetic divergence was calculated using
the multilocus Fg estimator of Weir & Cockerham [20]
with FSTAT 2.9.3.2. Population differentiation was tested
as genic differentiation for all population pairs using
Genepop 3.4. The genetic relationship among popula-
tions was examined by Principal Component Analysis
(PCA), based on allele frequencies, using PCAGEN 1.2
[21]. Population clustering was performed with a hierar-
chical partitioning approach as previously employed by
Viha et al. [22], using Structure 2.2 based on the delta K
method [23] calculated from 20 replicates of In Pr(X|K)
under each K. Different run lengths were used (burn-in 20
000 to 80 000 iterations and, after that, data were col-
lected for 20 000 to 80 000 iterations) to achieve stable
results.

Analysis of molecular variance

To estimate the amount of molecular variation associated
with different sets of population groupings, hierarchical
analysis of molecular variance (AMOVA) was performed
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using Arlequin 3.1 [24]. By this analysis, genetic variation
residing within each alternative population clustering was
measured. Three alternative scenarios were tested based
on the PCA results: grouping 1 (three population groups
corresponding to northern, Baltic and south-eastern pop-
ulations), grouping 2 (northern vs Baltic and south-east-
ern groups combined) and grouping 3 (Pera and Kru were
re-located into the south-eastern group. Other popula-
tions were as in grouping 1).

Mantel test
An association between the geographic distance and
genetic divergence matrices was examined using the Man-
tel test implemented in the GenAlEx 6.1 package [25] sup-
ported by multiple regression and a correlation extension
procedure [26]. The statistical significance of the parame-
ter estimates was obtained via 9 999 permutations. Inter-
population geographic distances were directly calculated
from latitude and longitude data using the great circle dis-
tance method [27]. Fg;/(1-Fgp) was used as a measurement
of genetic divergence in the Mantel test while the geo-
graphic distance matrix was used as In transformed as well
as raw distance [28]. For detecting IBD within the three
population groups with higher statistical power, a so-
called "pooled within-stratum" approach was applied to
the Mantel test as suggested by Smouse, PE (personal
communication). Briefly, matrices from each of three
population groups were permuted using GenAlex 6.1 to
generate 999 values of the sum of permuted XY (spXY).
The spXY from each population group were resampled
using PopTool 2.7 [29] to yield 1 000 random combina-
tions of "pooled" spXY [sum(XY) = sumA(XY) + sumB(XY)
+sumC(XY); A, B and C stand for each population group].
Later, "pooled" sum(X2?) and sum(Y2?) were calculated
accordingly. One-thousand pooled Ry, were subsequently
spXY
Jisum(x2)][sum(y )]

obtained as Ryy = . The pooled Ryy

were ranked and the corresponding P-value was calcu-
lated.

Allele size permutation test

To test whether stepwise-like mutations have significantly
contributed to genetic differentiation between popula-
tions, the allele size randomization test [30] was
employed using SPAGeDi 1.2 [31]. Theoretically, Rg; is
analogous to Fgp, where Rqpis a stepwise mutation based
measurement of genetic differentiation taking into
account the variance of microsatellite allele size [32].
When the contribution of mutations to genetic differenti-
ation is not significant as compared with genetic drift and
migration Fgrand Rgy are expected to have similar values.
If stepwise-like mutations have significantly contributed
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to the differentiation Rg; is expected to be larger than Fy.
In the allele size permutation test, the distribution of Rq;
values from 10 000 permutations (pRg;) was compared to
observed Rgr. The test of allele size permutation was per-
formed at three different hierarchical levels; among popu-
lation groups within Finland as identified by PCA and
Structure analyses, among countries and among 25 gray-
ling populations.

Population prioritization for conservation

In order to rank populations in terms of their conserva-
tion priority, Contrib 1.20 [33,34] was used to calculate
both the diversity (allelic richness) and the differentiation
(related to Nei's D¢rand Gg) components of each popu-
lation. These parameters are relative measurements and
are evaluated as the contribution of each population to
total allelic richness (contribution to total allelic richness;
CTR) pooled from all populations. Thus, negative values
indicate that the diversity or the differentiation of a popu-
lation is lower than the mean of the whole dataset. For pri-
oritizing grayling populations within Finland, foreign
populations were excluded from the analysis in order to
avoid the underestimation of the differentiation compo-
nent within Finnish populations. Two Finnish popula-
tions (Iso and Rau) were also excluded because of their
mixed origin, from hatchery stocking of non-native fish
[35], which would artificially increase their diversity com-
ponent compared to indigenous gene pools.

Results

Microsatellite diversity, Hardy-Weinberg and genotypic
linkage equilibrium

The average number of alleles per locus varied from 1.6 (Kai)
to 5.4 (Tor) while the average allelic richness ranged from 1.6
(Kai) to 4.6 (SweHol; table 2). Observed and expected heter-
ozygosity were lowest in Kai (H,=0.21; H, = 0.20) and high-
est in SweHol (H, = 0.60; H, = 0.63). No deviation from
Hardy-Weinberg equilibrium was observed for any locus
after the sequential Bonferroni correction (k = 13). Geno-
typic linkage equilibrium tests suggested linkage disequilib-
rium (P < 0.0001) between five population-locus pairs:
BFRO7-BFRO13 in Esa; BFRO11-BFRO13 and BFRO13-
BFRO18 in Kit; BFRO12-Cocl3 and BFRO15-Cocl23 in Juu.
However, as each of these five linkage disequilibrium
occurred only in a single population and none involved the
same two loci, these loci are likely not in physical linkage.
Beside these five locus pairs, no deviation from genotypic
linkage equilibrium was observed after the sequential Bon-
ferroni correction (k= 78; P = 0.0015-0.9999). Therefore, for
subsequent analyses, all loci were assumed to have inde-
pendent segregation of alleles.

Level of differentiation and genetic relationships between
populations

When all 25 populations were included in the PCA, three
populations (GerEge, Norles and SweVat) were very dis-
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Table 2: Locations, sample sizes, microsatellite diversity estimates and Hardy-Weinberg (H-W) equilibrium test for the grayling.

Location Microsatellite diversity?
Water system Code Sample size A H, H. H-wb
Tenojoki Ten¢ 42 2.68 (1-5) 0.27 0.31 0.1941
Naatamojoki Naa 35 2.79 (1-7) 0.33 0.36 0.2232
Kaitamo (Inarijoki) Kai 34 1.56 (1-3) 0.21 0.20 0.9783
Kasivarsi, Poroeno KasPor 20 3.10 (1-7) 0.31 0.33 0.0436
Kdsivarsi, Latdseno KasLatc 29 3.22 (1-6) 0.36 0.35 0.9356
Tornionjoki Tore 63 3.64 (1-7) 0.36 0.37 0.2143
Juujarvi Juu 35 2.47 (1-5) 0.29 0.27 0.6661
Kemijoki Kem 35 3.63 (2-6) 0.47 0.47 0.5617
Kitkajarvi Kit 67 3.20 (1-6) 0.46 0.49 0.0597
Perameri Pera 17 3.44 (1-6) 0.47 0.47 0.9974
Ulkokrunnit Krue 40 3.55 (1-6) 0.48 0.48 0.1999
Lieksanjoki Lie 36 2.44 (1-5) 0.39 0.36 0.7229
Lieksanjoki LieMRe 48 2.58 (14) 0.35 0.33 0.9241
Pielinen PieKRe 42 3.02 (1-5) 0.47 0.47 0.0615
Rauanjoki Rau 35 343 (1-6) 0.52 0.52 0.0039
Isojoki Iso 36 261 (1-5) 0.41 0.44 0.1002
Puruvesi Pur 36 3.55 (2-5) 0.52 0.53 0.0056
Eteld-Saimaa Esac 48 2.98 (1-5) 0.49 0.47 0.1214
Vuoksi river Vuo 22 2.51 (1-4) 0.36 0.34 0.6244
Juzija river Rusjus¢ 32 3.12 (1-6) 041 0.42 0.8362
Vindelilven SweVinc 38 3.37 (1-6) 0.46 0.47 0.4106
Holmén SweHolc 34 4.55 (2-7) 0.60 0.63 0.3041
Vittern SweVat© 45 3.32(1-8) 0.43 0.45 0.0170
Lesjaskogsvatn NorlLesc 30 1.81 (1-4) 0.22 0.24 0.4477
Eger river GerEgec 37 3.23 (1-6) 0.41 0.41 0.0353

2allelic richness (based on 16 individual re-samplings; A,), observed heterozygosity (H,) and expected heterozygosity (H,) within a population
across the |3 microsatellite loci. Numbers within parentheses indicate range for A,. b P-value for H-W equilibrium test across 13 loci, no
populations remained significant following the sequential Bonferroni correction. < Data taken from Koskinen et al. [13].

tinct compared to the rest along the first principal compo-
nent axis (data not shown). This deep divergence
corresponds to two mtDNA lineages described by Kosk-
inen et al. [9]. When only 19 Finnish populations were
included in the analyses, populations clustered into three
separate groups: 'morthern', 'Baltic' and 'south-eastern’
(figure 1b). The 'northern' group was the most homoge-
neous and distinct from the latter two groups. The 'north-
ern' group included eight populations, three of them
(Ten, Naa and Kai) inhabiting rivers flowing north to the
Barents Sea basin, four of them (KasLat, KasPor, Tor and
Kem) to the Baltic Sea basin and Juu to the White Sea
basin. In the 'south-eastern' group, both populations from
Lieksanjoki (Lie and LieMR) were clustered closely to each
other but showed some distance from the remaining
south-eastern members. The third, 'Baltic’, group was sep-
arated from the two other population groups along the
second PCA axis and consisted of four populations,
including Kit that is close to Iso. This was surprising, as Kit
is currently 174 km from the Baltic Sea and 556 km from
Iso. Additionally, the two Swedish populations (SweHol
and SweVin) from the Baltic coastline initially clustered
with the 'Baltic' group and the Russian population from

the Kola Peninsula (RusJus) clustered with the 'northern'
group (data not shown).

Similar to the PCA results, population clustering analysis
using the program Structure without prior information
about population of origin of individuals initially distin-
guished three main groups of Finnish grayling corre-
sponding to 'northern’, 'Baltic' and 'south-eastern' groups
(figure 1c). After the second round of partitioning, six sep-
arate clusters were identified. The third partitioning
revealed eleven clusters. Kai, Tor, Kem, Kit and Iso were
separated from the remaining samples, while the pairs of
Pera-Kru and Lie-LieMR exhibited no further separation.
After the fourth and fifth partitioning, the northern and
south-eastern groups were divided into seven and six clus-
ters, respectively. In total, the hierarchical partitioning
series produced sixteen separate clusters corresponding
very well to the number of geographic sampling sites
(eighteen Finnish sampling sites in total).

The global Fgracross all 25 populations was 0.342 indicat-
ing a very high level of differentiation among individual
grayling populations. Within Finland, the global Fg was
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0.294 and the F¢pwithin the three population clusters was
0.145, 0.146 and 0.256 for the northern, Baltic and south-
eastern group, respectively. Pairwise Fg, among popula-
tions is detailed in the supplementary material [see Addi-
tional file 3]. The test of genic differentiation indicated
that all pairs of populations were significantly different to
each other (P < 0.001), except for KasPor-KasLat and Pera-
Kru (P = 0.259 and 0.427, respectively).

The hierarchical analysis of molecular variance revealed
that the proportion of total genetic variance due to differ-
ences between groups was highest for grouping 1 (Fp =
0.191). The two alternative hierarchical groupings
explained smaller proportions of variation (Fo = 0.183
and 0.160 for grouping 2 and 3, respectively).

Mantel test
A significant isolation-by-distance (IBD) signal was observed

12 ° °
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Figure 2

Mantel test indicating the observed isolation-by-dis-
tance signal driven by among-group comparisons,
but not within-group. Trend line is for all comparisons.
Solid and open dots are for the among- and within-group
comparisons, respectively.

when all Finnish populations were included in the analysis
(Rgy = 0.558; P < 0.001; figure 2). However, non-significant
IBD patterns were observed within each of the three Finnish
groups (Ryy = -0.008, 0.233 and 0.314; all associated P >
0.05; within northern, Baltic and south-eastern groups,
respectively). In addition, pooled within-group comparisons
did not result in significant IBD signal (Ryy = -0.153, P >
0.05). The Mantel test using In distance provided the same
conclusion as employing the raw geographic distance.

Allele size permutation test

The allele size permutation test indicated that mutations
at microsatellite loci did not significantly contribute to
genetic differentiation among the three Finnish groups
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compared to genetic drift and migration. At the European
scale, the permutation test indicated that mutations had
significantly contributed to population differentiation
(global multilocus Fgr and Rgr among 25 populations =
0.342 and 0.476, respectively; P < 0.001). In the among
five countries comparison, the observed multilocus Rg;
also fell well above the upper limit of the 95% confidence
interval (CI) of the null distribution of pRg; (global mul-
tilocus Fgr and Ry among five countries = 0.230 and
0.492, respectively; P < 0.001, figure 3). Pairwise compar-
isons further indicated that Rg; > pRgr when comparing
Finland with Norway or Germany. The permutation test
suggested that Rq was still significantly larger than pRg;
when comparing Finland with Russia but the 95% CI of
PR¢rwere not very different from the observed Rg; (global
multilocus Fgrand Rgp= 0.129 and 0.186, respectively; P =
0.044). However, R was not significantly larger than
PRgr when comparing Finland with Sweden (global mul-
tilocus Fgpand Rgp = 0.124 and 0.062, respectively; P =
0.883). When the SweHol sample from the Baltic sea was
excluded from the analyses because it essentially belongs
to the same Baltic group as Kru, Pera, Kit and Iso Rg; was
still very similar to pRg; indicating the predominant role
of genetic drift and migration over mutation when com-
paring Finnish and Swedish populations.

Population prioritization and categorization for
conservation

By plotting diversity and differentiation components cal-
culated using the Contrib program, the following catego-
ries of populations were identified: 1) high diversity-
high differentiation group, 2) high diversity-low differ-
entiation group; 3) low diversity-high differentiation
group and 4) low diversity-low differentiation group
(figure 4a). Arguably, these categories largely reflect the
relative roles of genetic drift and gene flow affecting the
grayling populations and therefore can be useful for
developing genetically justified conservation strategies
for populations. The first category (high diversity-high
differentiation group) contains seven populations that
have high levels of diversity and exhibit differentiation
higher than average. The second category (high diversity-
low differentiation group) contains three populations
that have a higher amount of diversity than average
while the level of differentiation is rather low compared
to the other populations. The third category (low diver-
sity-high differentiation group) contains five popula-
tions that exhibit a lower amount of diversity than
average and at the same time shows an increased differ-
entiation component. The fourth category (low diver-
sity-low differentiation group) contains two populations
that exhibit somewhat lower genetic diversity as well as
reduced differentiation compared to the average. For
comparative purpose, the Contrib results are presented
in a more traditional way by combining the diversity and
differentiation components (figure 4b).
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Discussion

Unanticipated population structuring

In accordance with other population genetic studies in
European grayling [3,8,11,13,36,37] we found a generally
high level of differentiation between the majority of pop-
ulations. However, in contrast to our expectations and
previous studies using microsatellites and mitochondrial
DNA, we identified unanticipated signals of regional clus-
tering of grayling populations in Finland. Such grouping
was evident using both PCA and individual multi-locus
genotype based analysis and further supported by analysis
of molecular variance (AMOVA). The three population
groups identified roughly correspond to separate geo-
graphic areas: the northern, Baltic and south-eastern
regions. Nevertheless, all these three identified groups
belong to a single European grayling mitochondrial line-
age [9] and thus could be considered as one evolutionarily
significant unit based on criteria sensu Moritz [38]. One of
the reasons why the previous studies [9,13] of grayling in
Finland did not detect such clustering is probably due to
the low number of populations analyzed from the region.
We observed high genetic differentiation between three
population groups and moderate to high differentiation
within the northern, Baltic and south-eastern groups. Sig-
nificant IBD signal was identified when all Finnish popu-

0.9
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lations were analyzed together while no significant
relationship between genetic and geographic distances
was found among populations within the three groups
and pooled within-group comparisons. Thus, the overall
IBD signal most likely derives from the structuring of
Finnish populations into three groups rather than from
concurrent gene flow between neighboring populations,
even though the power to detect significant IBD signal was
lower for within group comparisons. This is in accordance
with other studies in European grayling demonstrating
that inter-population dispersal is extremely limited even
among neighboring populations [11,39,40].

Rather surprisingly, several different types of analyses
strongly indicated that the Kitkajarvi population (Kit)
groups together with the Baltic populations even though
this population inhabits an inland lake that is relatively
distant from the Baltic Sea (174 km) and, moreover, cur-
rently flows into the White Sea basin. However, it is
known that Kitkajarvi (lake Kitka) had postglacially bifur-
cated outflow; the eastward channel drained into the Bal-
tic sea via the system of Livojarvi (lake Livo) until around
8 400 years ago, and the westward channel flowed into
the White Sea via Kitkajoki (river Kitka) as it still does
[41]. The postglacial colonization of grayling into north-
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Figure 4

Diversity and differentiation components of 17 Finnish grayling populations. a) A 2D graph representing four differ-
ent conservation categories of populations. Category | stands for high diversity-high differentiation, category 2 for high diver-
sity-low differentiation, category 3 for low diversity-high differentiation and category 4 for low diversity-low differentiation. b)
A bar graph indicating the categories and population prioritization (more important at left). Populations are colored differently
according to the PCA and are coded as in table |.
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ern Europe has been estimated to have begun ca. 10 500
- 13 000 years ago [9] and thus we can hypothesize that
the present Kitkajarvi grayling population was established
through the historical waterway from the Baltic Sea more
than 8 400 years ago. An alternative explanation is that
there has been stocking activities of Baltic graying into
Kitkajarvi, although there is no documented evidence sup-
porting this scenario.

Genetic diversity

Among salmonid fishes, European grayling is one of the least
genetically variable species, exhibiting low diversity even
across highly variable markers such as microsatellites. In
Atlantic salmon (Salmo salar), brown trout (Salmo trutta),
whitefish (Coregonus hoyi) and rainbow trout (Oncorhynchus
mykiss), the mean expected heterozygosity measured at mic-
rosatellite loci commonly varies from 0.63 to 0.76 (e.g. [42-
45]) while the mean expected heterozygosity in this study
was as low as 0.41 and ranged from 0.20 to 0.63. Hence,
either the effective population size, level of migration or mic-
rosatellite mutation rate in European grayling is smaller than
in other salmonid populations. When looking at specific
populations, NorLes from Norway had extremely low allelic
richness (A, = 1.81) and low heterozygosity (H, = 0.24),
which is in accordance with the demographic history of the
population as it is known that NorLes was most likely estab-
lished by a small number of individuals in 1880 [10]. How-
ever, we found that the natural population (Kai) in Inarijoki
flowing to lake Inari showed even lower levels of diversity (A,
=1.56, H,= 0.20). As most of the study populations are from
the area that was completely covered by an ice sheet during
the last glacial period, it is possible that the low variability of
grayling in northern Europe reflects postglacial colonization
and subsequent founder effects [46,47]. However, the south-
ernmost population from central Germany included in our
study showed relatively low levels of variability (A, =3.23, H,
= 0.41) and other studies concentrating on the southern dis-
tribution range of European grayling have shown low diver-
sity levels [2,7,8,37,48]. This strongly indicates that genetic
drift and limited migration have a strong impact on diversity
and population structure of grayling. However, as there is no
estimator of the microsatellite mutation rate available for
grayling one cannot exclude the possibility that the mutation
rate in European grayling is lower than in other salmonid
fishes, although it seems unlikely.

The role of mutations contributing to population
differentiation

Despite the clear separation of the three population
groups in Finland there was no evidence that mutations
have significantly contributed to the genetic differentia-
tion among these groups. Thus, even though we observed
relatively high differentiation between the three popula-
tion groups, the allele permutation test indicated that pat-
terns of differentiation are mostly driven by genetic drift
and low migration rather than accumulation of new

http://www.frontiersinzoology.com/content/6/1/6

mutations. However, the allele size permutation test
strongly suggested that mutations significantly contrib-
uted to population differentiation on a broader geo-
graphic scale.

Population conservation categorization based on the role
of different evolutionary forces

The "central dogma of conservation genetics" is that genetic
variability is beneficial and therefore it is often assumed that
increasing genetic variability enhances population survival
[49]. Another important aspect of prioritizing populations
for conservation is their genetic uniqueness measured at the
molecular genetic or phenotypic level (e.g. evolutionary dis-
tinctiveness [50]). Hence for population conservation, it is
relevant to evaluate both of these parameters but considera-
ble controversy exists about the relative weights of diversity
and uniqueness components (e.g [51]). Based on the strong
clustering of Finnish populations, it is recommendable that
national conservation efforts include populations from all
three genetically distinct groups. In this study, we used an
alternative approach that is still based on examining popula-
tions according to diversity and differentiation but instead of
simply summing the diversity and uniqueness components
based on rather subjective weighting, populations were cate-
gorized based on the predominant evolutionary forces acting
on them. As a result, this approach is expected to be more
objective compared to ranking solely on the summation of
diversity and differentiation components based on arbitrary
weights without losing crucial information about the relative
roles of underlying evolutionary forces. For example, when
simply combining diversity and differentiation components
sensu Petit et al. [33], it is possible to get similar prioritization
ranks for two populations with markedly different demo-
graphic histories - a population with low diversity-high dif-
ferentiation can have a similar priority rank as another
population with high diversity-low differentiation. It is clear
that the first population could be severely affected by e.g.
inbreeding depression while the second population might
contain high genetic variability necessary for population sur-
vival and long-term evolution.

When examining diversity and differentiation components
in grayling populations, we identified four categories where
the relative importance of different evolutionary forces
(namely drift and migration) varies. These categories are
high diversity-high differentiation (category 1), high diver-
sity-low differentiation (category 2), low diversity-high dif-
ferentiation (category 3) and low diversity-low
differentiation (category 4). From the conservation perspec-
tive, the populations falling into the high diversity-high dif-
ferentiation category (e.g. Kit, Kem and Pur; from the Baltic,
northern and south-eastern groups, respectively) may be less
affected by genetic drift and migration as they represent large
isolated populations. This high diversity-high differentiation
category has the highest likelihood of containing unique
genetic material. Notably, all three Baltic members fall into
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this category and given that grayling populations in the Baltic
Sea are likely adapted to the brackish environment, they are
hence highly relevant for conservation [52]. Populations that
belong to the high diversity-low differentiation category
(Tor, KasLat and KasPor) represent relatively large popula-
tions where the effect of drift is small, while migration may
have some effect on the gene pool. We propose that popula-
tions in these two categories represent the top priority for
conservation. Populations that belong to the low diversity-
high differentiation category (e.g. Vuo, Lie and Kai) may rep-
resent small populations strongly affected by genetic drift.
From a conservation genetic perspective, these populations
have a lower probability of being able to evolve and survive
in the future. Importantly, this does not necessarily mean
that these populations cannot adapt to local conditions. For
example, it has been shown that even in small grayling pop-
ulations natural selection can have a predominant role over
random genetic drift in affecting the fitness of phenotypic
traits [10]. Populations that belong to the low diversity-low
differentiation category (Ten and Juu) might be classified as
a low conservation priority, as low differentiation reflects
their lack of 'uniqueness' compared to other populations
and low variability can additionally hinder adaptation in the
future. However, it is also important to emphasize that these
two populations have both the diversity and differentiation
components quite close to the average across all popula-
tions. Taken together, the high levels of genetic differentia-
tion observed among grayling populations here, as well as in
other studies [3,4,8,11,37] clearly suggests that generally sin-
gle populations should be the principal unit for conservation
and management and thus population intermixing should
be avoided. We also recommend using the proposed catego-
rization strategy, taking into account the relative role of dif-
ferent evolutionary forces, as a basis for the conservation of
grayling in Finland as well as of other species.

Conclusion

This research provides genetic information on European
grayling in its northern distribution range in order to
assist country-scale conservation. We found unanticipated
population structure of grayling, clustering into three
groups largely corresponding to the northern, Baltic and
south-eastern geographic areas of Finland and we recom-
mend that these three groups should be used as the start-
ing point for developing a national grayling conservation
strategy. However, as the observed clusters extend beyond
the borders of Finland, international co-operation for
broader scale conservation management is warranted. We
also found high levels of genetic differentiation among
the groups and moderate to high differentiation within
the groups. Such strong divergence indicates that single
grayling populations should generally be recognized as
separate management units. We also developed an alter-
native prioritization strategy in the conservation perspec-
tive by categorizing populations based on the evaluation
of the relative role of various evolutionary forces affecting

http://www.frontiersinzoology.com/content/6/1/6

the indigenous gene pool. We envision that the proposed
population categorization approach could be useful for a
diverse range of organisms.
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