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Abstract

Background: Eicosanoids are biologically active, oxygenated metabolites of three C20
polyunsaturated fatty acids. They act as signalling molecules within the autocrine or paracrine
system in both vertebrates and invertebrates mainly functioning as important mediators in
reproduction, the immune system and ion transport. The biosynthesis of eicosanoids has been
intensively studied in mammals and it is known that they are synthesised from the fatty acid,
arachidonic acid, through either the cyclooxygenase (COX) pathway; the lipoxygenase (LOX)
pathway; or the cytochrome P450 epoxygenase pathway. However, little is still known about the
synthesis and structure of the pathway in invertebrates.

Results: Here, we show transcriptomic evidence from Daphnia magna (Crustacea: Branchiopoda)
together with a bioinformatic analysis of the D. pulex genome providing insight on the role of
eicosanoids in these crustaceans as well as outlining a putative pathway of eicosanoid biosynthesis.
Daphnia appear only to have one copy of the gene encoding the key enzyme COX, and phylogenetic
analysis reveals that the predicted protein sequence of Daphnia COX clusters with other
invertebrates. There is no current evidence of an epoxygenase pathway in Daphnia; however, LOX
products are most certainly synthesised in daphnids.

Conclusion: We have outlined the structure of eicosanoid biosynthesis in Daphnia, a key genus in
freshwater ecosystems. Improved knowledge of the function and synthesis of eicosanoids in
Daphnia and other invertebrates could have important implications for several areas within ecology.
This provisional overview of daphnid eicosanoid biosynthesis provides a guide on where to focus
future research activities in this area.

Background and 20:5 n-3. They have an important role in the regula-
Eicosanoids are cell signalling molecules derived from  tion of essential functions such as reproduction and the
fatty acids acquired in the diet. Eicosanoid is a general = immune system. All mammalian eicosanoids derive from
term for all biologically active, oxygenated metabolites of =~ a common precursor, arachidonic acid (AA), which is con-
three C20 polyunsaturated fatty acids; 20:3 n-6, 20:4 n-6  verted into eicosanoids with different functions through
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either the cyclooxygenase (COX) pathway (prostanoids:
prostaglandins and thromboxane); the lipoxygenase
(LOX) pathway (leukotrienes and lipoxins); or the cyto-
chrome P450 epoxygenase pathway (epoxyeicosatrienoic
acids) [1] (Fig. 1).

http://www.frontiersinzoology.com/content/5/1/11

The COX enzyme exists in at least two isoforms in mam-
mals, COX-1 and COX-2, which are inhibited by conven-
tional non-steroidal anti-inflammatory drugs (NSAID)
such as ibuprofen and aspirin, but only one COX isoform
is generally present in invertebrates and lower vertebrates
[2]. Mammalian COX-1 catalyses the generation of pros-
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Overview of eicosanoid biosynthesis based on current knowledge from mammalian models. The three major pathways,
cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 epoxygenase, are shown displaying major metabolites.
Prostanoids cover prostaglandins (PG) and thromboxane (TX), while leukotrienes (LT) include LTs and lipoxins. PGD, and
PGE, may be transformed into PGJ, and PGA, through either non-enzymatic rearrangement or dehydration, respectively.
Abbreviations: EET, epoxyeicosatrienoic acids; HETE, hydroxyeicosatetraenoic acids; HPETE, hydroperoxyeicosatetraenoic

acids. Diagram modified from Stanley [1] and KEGG [41].
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taglandins (PG) involved in many basic physiological
functions such as regulation of blood pressure, gastric
mucosal protection, maintenance of homeostasis, and
reproductive and nervous system function; while PGs
metabolised by COX-2 are involved in inflammation,
ovulation and mitogenesis [3,4]. COX-1 is a constitutive
enzyme (i.e. it is constantly expressed) found in the cell
membranes of most mammalian tissues, while COX-2 is
an inducible enzyme, not found in all cell types, that is
located in nuclear membranes [1]. In the mammalian
LOX pathway AA is converted by different LOXs into
hydroperoxyeicosatetraenoic acids (HPETE) that may be
further metabolised into hydroxyeicosatetraenoic acids
(HETE) by glutathione peroxidase. Leukotrienes are syn-
thesised from 5-HPETE by 5-LOX, while 8-LOX, 12-LOX
and 15-LOX catalyse the production of different lipoxins
from 8-HPETE, 12-HPETE and 15-HPETE (Fig. 1).

Research on eicosanoids has mainly been mammalian-
driven and has lately been aimed at designing NSAIDs
that are COX-2 selective due to the potential negative side-
effects of COX-1 inhibition, which may affect the gas-
trointestinal tract, heart and kidneys [3]. Eicosanoids act
at both the extracellular and intracellular level by interact-
ing with distinct transmembrane G-protein coupled
receptors (extra- and intracellular) and nuclear peroxiso-
mal proliferator-activated receptors (PPAR) [5]. Activated
G-proteins may, depending on cell type, stimulate second
messengers such as cyclic adenosine monophosphate
(cAMP) and/or intracellular calcium release [5]. PPAR are
transcription factors which also have a role in ligand bind-
ing (eicosanoids), so directly influencing the expression
of target genes involved in e.g. controlling prenatal and
postnatal development [6]. These examples emphasise
the biological significance of eicosanoids.

Less is known about eicosanoids in non-mammalian spe-
cies; however, during the last three decades considerable
evidence has been gathered concerning their synthesis
and action. Eicosanoids have now been identified in
almost every major metazoan phyla including some
plants [1]. There is general consensus that eicosanoids act
as autocrine or paracrine signallers (also referred to as
local hormones) in both vertebrates and invertebrates,
where they mainly function as important mediators in
reproduction, the immune system and ion transport [1].
It is clear from a number of reports that eicosanoid gener-
ation is subject to inhibition by NSAIDs in a wide range of
invertebrates [1,2]. Moreover, a COX derived mechanism
similar to the mammalian biosynthesis of PGs has been
proposed in the coral Plexaura homomalla [7]. There is also
evidence of a LOX derived pathway being present in inver-
tebrates based on the work of Ragab and colleagues [8] on
the primitive wingless insect, the firebrat Thermobia domes-
tica; although little is known about the structure of the

http://www.frontiersinzoology.com/content/5/1/11

pathway. Overall, invertebrate eicosanoid biosynthesis
seems to have a simpler structure than its mammalian
counterpart, as seen with the COX pathway [7], but also
appears to be split into two instead of three pathways.
There is currently no proof of an epoxygenase pathway
being present in invertebrates [1].

There is little doubt that disruption of eicosanoid biosyn-
thesis may upset many important physiological functions
in both invertebrates and vertebrates, which can have seri-
ous consequences for both the individual and the popula-
tion. Current evidence suggests that the main mode of
action of the NSAID ibuprofen in D. magna relates to
interruption of eicosanoid biosynthesis which reduces
fecundity [9-12]. Eicosanoids may therefore play a pivotal
role in daphnid reproduction. A wealth of synthetic and
natural chemicals may affect invertebrate reproduction
through endocrine disruption with one of the best known
examples being imposex (masculinisation) of female
molluscs caused by exposure to tributyl tin (TBT) [13]. It
is therefore important to understand eicosanoid biosyn-
thesis in Daphnia, and invertebrates in general, to fully rec-
ognize the potential mode of action of endocrine
disrupters and how they may affect natural invertebrate
populations.

Recently, the genome of D. pulex was fully sequenced [14],
and action within the Daphnia Genomics Consortium has
already been taken to start sequencing the D. magna
genome [15,16]. In the meantime genes identified in D.
pulex serve as a model for understanding eicosanoid bio-
synthesis, control and disruption in Daphnia. Here we
present an overview of the putative eicosanoid biosynthe-
sis in Daphnia based on annotation of genes from the D.
pulex genome supported by recently published transcrip-
tomic data (real-time quantitative PCR) of ibuprofen-
stressed D. magna [12].

Methods

Putative genes related to eicosanoid biosynthesis were
identified on the D. pulex genome website [14] through
using several bioinformatic search tools such as GO (Gene
Ontology) [17], KEGG (Kyoto Encyclopedia of Genes and
Genomes) [18] and matches against InterPro protein
domains. Annotation of these genes were verified through
BLAST searches performed against Swissprot protein and
non-redundant protein sequence databases via the D.
pulex genome website [14].

Invertebrate and vertebrate COX protein sequences were
retrieved from GenBank [19] and Ensembl [20] for phyl-
ogenetic analysis. Since no arthropod COX protein
sequences were available that could aid the phylogeny
with respect to D. pulex, we searched the GenBank
Expressed Sequence Tag (EST) division (est_others) using
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the BLAST algorithm (tblastn) to obtain additional arthro-
pod COX sequences. Sequences that significantly resem-
bled the sea squirt Ciona intestinalis COX amino acid
sequence (E-value < 1e-20) were retrieved and included in
the dataset. Six ESTs were obtained, representing two
malacostracan species (Crustacea): Four ESTs were
derived from Homarus americanus (accession numbers
DV772953, DV774102, EH401871 and FD699680) and
two were derived from Petrolisthes cinctipes (accession
numbers FE773225, FE820815). After translating the
nucleotide sequences to putative amino acids, it appeared
that one H. americanus sequence (FD699680) did not
overlap with the other three sequences. The three remain-
ing sequences constituted two slightly deviating amino
acid sequences; DV774102 differed from EH401871 and
DV772953. The four H. americanus sequences were com-
bined to one sequence with variable and missing posi-
tions specified as 'unknown'. Furthermore, the inferred
amino acid sequences of the two P. cinctipes ESTs were
similar, and P. cinctipes was thus included once in the
dataset. Note that these additional crustacean entries were
EST derived, single pass sequenced, and therefore not
guaranteed to be free from sequencing errors.

The sequence COX dataset was aligned using Clustalw2
[21], manually edited after inspection and subsequently
analysed using the Gblocks web-server [22] to pinpoint
and remove unreliably aligned regions. This analysis
allowed for gaps in the final alignment. ModelGenerator
[23] was applied to obtain a model of sequence evolution

http://www.frontiersinzoology.com/content/5/1/11

(gamma distribution with four rate categories) using the
Akaike Information Criterion. The predicted model,
WAG+I+G, was specified in Phyml v2.4.4 [24] and a den-
drogram was constructed using Maximum Likelihood
(BIONJ [25] starting tree). Phylogenetic analysis used 100
bootstrap replicates. Finally, the obtained topology was
visualised using TreeView [26].

Results and Discussion

Table 1 shows the putative genes related to eicosanoid
biosynthesis that were identified through searching the D.
pulex genome using several different bioinformatic tools
(see Methods). Many of these genes had high similarity to
their counterparts in higher organisms (Table 1). The bio-
informatic evidence from D. pulex suggested that only the
cyclooxygenase (COX) and lipoxygenase (LOX) pathways
are present in Daphnia (Fig. 2) compared with the three
pathways known from mammalian systems, i.e. the COX,
LOX and epoxygenase pathways. This agrees with earlier
findings as no epoxygenase pathway has been identified
in invertebrates to date [1].

Both the COX and LOX pathways in Daphnia appeared to
have a simpler structure than their mammalian counter-
parts (for comparison, see Figs. 1 and 2). For instance,
there was no bioinformatic evidence of prostacyclin syn-
thase, which converts PGG, into PGI,, in the daphnid
COX pathway. The gene encoding this enzyme was like-
wise not identified in the genome of the urochordate C.
intestinalis [2]. Additionally, there was only bioinformatic

Table I: Putative Daphnia pulex genes associated with eicosanoid biosynthesis

Putative gene? Protein IDP Protein size Best match Accession Similarity E-value
(AA) (species)© number (%)
Phospholipase A2 DAPPUDRAFT_5959 129 Apis mellifera XP_62462 1 76 0.0
Cyclooxygenase DAPPUDRAFT_313427 689 Sus scrofa NP 999486 62 0.0
Prostaglandin D2 synthase A DAPPUDRAFT_307787 211 Tribolium castaneum XP_970647 49 2.5E-35
Prostaglandin D2 synthase B DAPPUDRAFT_316534 228 T. castaneum XP_967406 54 2.3E-32
Prostaglandin E2 synthase DAPPUDRAFT_56335 283 Aedes aegypti EAT39424 6l 0.0
Carbonyl reductase | (PG 9- DAPPUDRAFT_310758 257 Xenopus laevis Q6DJN9 76 0.0
ketoreductase)
Thromboxane A DAPPUDRAFT_96715 463 Homarus americanus AAC28351 49 0.0
Thromboxane B DAPPUDRAFT_328913 501 H. americanus AAC28351 59 0.0
Lipoxygenase | DAPPUDRAFT_311736 562 T. castaneum XP_969219 48 0.0
Lipoxygenase 2 DAPPUDRAFT_95367 433 Bos taurus XP_593842 33 2.1E-43
Glutathione peroxidase DAPPUDRAFT_337058 219 Ixodes scapularis AAY66814 67 0.0
Leukotriene A4 hydrolase DAPPUDRAFT_313156 619 X. tropicalis NP_001006898 67 0.0
Leukotriene B4 12- DAPPUDRAFT_311788 340 A. aegypti EAT35376 65 0.0
hydroxydehydrogenase
Prostanoid receptor EP4 isoform DAPPUDRAFT_58618 166 Danio rerio LOC560057 59 3.6E-38
A
Prostanoid receptor EP4 isoform DAPPUDRAFT_58558 121 Tetraodon nigroviridis CAF96390 60 4.2E-30
B

aGene names displayed in italics are unlikely to be involved in daphnid eicosanoid biosynthesis (see Fig. 2 and text for further information); ®D. pulex
protein ID is linked to a GenBank [19] accession no.; Vertebrate species are signified by bold font, while invertebrate matches are denoted by

normal font.
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Putative eicosanoid biosynthesis pathway in Daphnia based on bioinformatic and transcriptomic evidence from D. pulex and D.
magna. All the putative genes (names in italics) have been identified through different gene models in the D. pulex genome and
are shown in black or grey font based on high (> 60%) or low (< 60%) similarity to proteins from other genomes (Table I).
Eicosanoids in grey font are less likely to be present in daphnids. Expression of ortholog genes in ibuprofen-stressed D. magna
(24 h exposure to 20-80 mg I!) was analysed using real-time quantitative PCR [12]. Fold change difference in gene expression
(mean £ SE) is shown relative to controls (grey values are only weakly significant). The enzyme LTB4DH (encoded by Ltb4dh),
that catabolises PGE,, PGF,, and LTB, to become inactive eicosanoids, is also known as |5-oxo-prostaglandin |3-reductase. All
the specified eicosanoids have been identified in other arthropod species [1,2], expect for the leukotrienes where only indirect
evidence exits [37]. Abbreviations: HETE, hydroxyeicosatetraenoic; HPETE, hydroperoxyeicosatetraenoic acid. See text for

further details.

evidence of one gene encoding COX in the D. pulex
genome. A phylogenetic comparison of the predicted D.
pulex COX with other protein sequences revealed that
daphnid COX clusters with the invertebrates being most
closely related to other crustaceans. The COX phylogeny
likewise showed that COX-1 and COX-2 comprise two
distinct clades amongst the vertebrates (Fig. 3). Generally,
it is understood that invertebrates and lower vertebrates
only have one non-specific type of COX [2], but recently
two COX isoforms have been identified in the corals Plex-
aura homomalla [7] and Gersemia fruticosa [27]. Rowley et
al. [2] suggest that the COX genes found in corals are an
early version that predates the (supposed) vertebrate
duplication into the typical constitutive COX-1 and
inducible COX-2 isozymes found in vertebrates. Only one
copy of the COX gene has been identified in the C. intesti-

nalis genome 2] which, as a member of the Phylum Chor-
data, shares a more recent common ancestor with the
vertebrates. This was supported by our phylogenetic anal-
ysis (Fig. 3) suggesting that a duplication of the COX gene
occurred in the Chordata. Rowley and colleagues further
speculate that the evolution of COX-1 and COX-2 proba-
bly predates the emergence of bony fish some 350 million
years ago [2]. This is supported by the fact that only one
constitutively expressed COX isoform has been identified
in the shark Squalus acanthias (Spiny dogfish) [2]. In our
phylogenetic analysis S. acanthias COX clustered with the
vertebrate COX-1 clade.

Like the putative Daphnia COX pathway, the structure of
the daphnid LOX pathway also appeared to be more sim-
ple than its mammalian counterpart, which confirms pre-
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Figure 3

Phylogenetic tree of cyclooxygenase (COX) based on protein sequences from a diverse range of organisms constructed using
Maximum Likelihood. All bootstrap values above 80 have been removed. Scale: 0.1 substitutions per site. Sequences can be
retrieved from GenBank [19] or Ensembl [20], while the Daphnia pulex COX was derived from a predicted protein sequence
based on the best gene model available on the D. pulex genome portal [14]. Note that some sequences are based on EST infor-
mation (see Methods). Abbreviations (accession no. in brackets with COXI shown first when there are two no.): CANIS, Canis
familiaris (NP_001003023; NP_001003354); CHICK, Gallus gallus (P27607); CIOIN, Ciona intestinalis (ENSCINT00000012734);
CIOSA, C. savignyi (ENSCSAVT00000000782); DANRE, Danio rerio (Q8JH44; Q6P4V3); DPULX, Daphnia pulex
(NCBI_GNO_0900053); FUNHE, Fundulus heteroclitus (Q6QNF2); GEFRU, Gersemia fruticosa (Q9GPF4; Q6S375); HOMA,
Homarus americanus (EST: DV772953, DV774102, EH401871 and FD699680); HUMAN, Homo sapiens (P23219; P35354);
MOUSE, Mus musculus (Q543T1; Q05769); ONCMY, Oncorhynchus mykiss (Q9DEQO; Q9W715); PANTR, Pan troglodytes
(ENSPTRT00000042391; ENSPTRT00000003246); PETRO, Petrolisthes cinctipes (EST: FE773225, FE820815); PLEHO, Plexaura
homomalla (Q96218; Q51X63); RABIT, Oryctolagus cuniculus (O97554; O02768); RAT, Rattus norvegicus (Q63921; Q63124);
SALFO, Salvelinus fontinalis (Q9PTN3; Q9PW89); SHEEP, Ovis aries (P05979; P79208); SQUAC, Squalus acanthias (Q8UVQ3);
XENLA, Xenopus laevis (AOA9J3); XENTR, X. tropicalis (ENSXETT00000035660; Q501R2).
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vious findings [1]. There was gene sequence evidence that
indicated the presence of three leukotrienes (LT) in Daph-
nia: LTA,, LTB, and 12-oxo LTB, (Table 1). This is, how-
ever, doubtful since no LTs, nor the precursor 5-HPETE,
have been identified in invertebrates and lower verte-
brates to date [28]. It is possible that the putative LTA,
hydrolase (LTA4H), which is a bi-functional enzyme in
mammals, having both LTA, hydrolase and aminopepti-
dase activity, only has aminopeptidase activity in daph-
nids as has been reported in Caenorhabditis elegans [29].
However, recent evidence shows that bi-functionality of
LTA4H is only six point mutations away in yeast com-
pared to the mammalian enzyme [30]. There is reason to
believe that daphnid LTA4H may be bi-functional, and
thus able to convert LTA, into LTB,; a hypothesis that we
will test in future experiments. Furthermore, transcrip-
tomic evidence from D. magna shows that the expression
of leukotriene B4  12-hydroxydehydrogenase (Ltb4dh)
increases with increasing concentration of the eicosanoid-
inhibiting drug ibuprofen [11]. This does not prove that
LTs are present in daphnids, but yet again we cannot rule
out the possibility. The enzyme (LTB4DH) encoded by
Ltb4dh is also bi-functional in mammals regulating
eicosanoids by rapidly degrading different E and F series
PGs and LTB, [31] (see below). The former function of
LTB4DH (PG catabolism) appears to be the most likely in
daphnids until solid proof exits about the presence of LTs

(Fig. 2).

The presence of lipoxins is, however, more likely, and bio-
informatic information from D. pulex suggests that at least
two LOX enzymes are present (Table 1). LOX enzymes
have been found in all organisms studied, from bacteria to
man. The two putative D. pulex LOXs are both composed
by two domains; an N-terminal lipase domain belonging
to the InterPro protein family 734 (IPR0O00734) and a C-
terminal LOX LH2 domain (IPR001024). This resembles
mammalian LOX enzymes that are also comprised of two
domains; a regulatory N-terminal domain that is similar
to mammalian lipases and a catalytic LOX domain (C-ter-
minal) [32]. LOX LH2 is the only LOX related domain
that has been identified in the D. pulex genome. Other
known LOX domains include e.g. mammalian LOX
(IPR001885) and LOX, C-terminal (IPR013819). There
are 13 D. pulex gene models that contain the LOX LH2
domain [14], but only two genes contain both an N-ter-
minal domain similar to mammalian lipases
(IPR0O00724) and a C-terminal LOX domain (Table 1).
Further investigations are needed to specify what type of
LOX enzyme these two Daphnia sequences represent prior
to analysing their phylogenetic relationship. However, it
is likely that they could be 8-LOX and 12-LOX, which syn-
thesise different lipoxins from 8-HPETE and 12-HPETE, as
these LOXs have been identified in a range of invertebrate
species [8,33,34].

http://www.frontiersinzoology.com/content/5/1/11

Two enzymes, 15-hydroxyprostaglandin dehydrogenase
(PGDH) and LTB4DH are known to irreversibly inactivate
bioactive eicosanoids in mammals. Both enzymes are key
in regulating the hormonal-like action of eicosanoids by
rapidly degrading PGE,, PGF,,, and LTB,, as overproduc-
tion of these potent mediators may have serious physio-
logical effects such as initiating inflammation [31]. It
appeared that LTB4DH fulfils this regulatory function sin-
gle-handedly in daphnids, as there was no indication of
PGDH being present (Table 1, Fig. 2).

The bioinformatic and transcriptomic evidence from D.
pulex and D. magna (Fig. 2) suggests that PGs (e.g. PGH,,
PGE, and PGF,,), lipoxins and possibly LTs could be
present in daphnids. Low similarity of TXA, synthase and
PGD, synthase to ortholog proteins from other genomes
(Fig. 2) render the presence of PGD, and TXA, to be less
certain in daphnids, although this could merely be due to
daphnids having more divergent versions of these pro-
teins. Nevertheless, it seems most likely that daphnids do
not produce TXA, since the gene encoding TXA, synthase
has not been identified in the genome of C. intestinalis [2].
The LOX encoding genes identified in D. pulex were also
slightly doubtful due to the same reasons, but it would be
more probable that these enzymes are present in Daphnia
as both 8-LOX and 12-LOX derived lipoxins are common
in invertebrates [8,33,34]. PGA, may also be present in
daphnids as it is non-enzymatically rearranged from PGE,
and has been detected in several arthropods [1]; but until
verified by mass spectrometry or the like it remains spec-
ulative what eicosanoids are present in Daphnia. Moreo-
ver, the annotation of genes from the daphnid eicosanoid
biosynthesis (and other daphnid genes for that matter)
should improve as more invertebrate genomes become
sequenced and annotated.

The possible roles of eicosanoids in daphnids have
already been suggested from several invertebrate studies,
including D. magna [12], where both prostanoids and
lipoxygenase products appear to be important agents in
oogenesis (especially vitellogenesis) and embryogenesis
[35-38]. For instance, PGE, is known to initiate egg-laying
behaviour in several insect species (e.g. orthopterans),
where it seems to regulate muscle contractions in the ovar-
ian musculature [39]. Furthermore, many of the above-
mentioned eicosanoids have likewise been identified as
important mediators in arthropod immune systems (both
COX and LOX products) [40] and ion transport physiol-
ogy (mainly PGE, and PGF,,) [1]. Until more integrated
phenotypic and genomic evidence exists it is difficult to
infer an exact role for eicosanoids in daphnids, as they
may be involved in several processes and act in different
tissues. Nevertheless, it is almost certain that eicosanoids
play vital roles in the functioning of processes key to
daphnid reproduction and survival [9,10,12]. Finally, bio-
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informatic evidence from the D. pulex genome also
revealed that two prostanoid G-protein coupled receptors
may be present, thus further supporting the evidence that
eicosanoids are bioactive agents in daphnids (Table 1).

Conclusion

Eicosanoids are key molecules, involved in the function of
fundamentally important biological systems. A better
understanding of their biochemistry and genetic control
in invertebrates will help to improve our understanding of
their significance in these organisms. Here we have out-
lined a putative structure of eicosanoid biosynthesis in
Daphnia, a key macroinvertebrate in freshwater ecosys-
tems. It would seem, from transcriptomic and phenotypic
evidence, that eicosanoids play a pivotal role in daphnid
reproduction [12]; but their importance in other physio-
logical functions such as the immune system remains to
be investigated. Improved knowledge of the function and
synthesis of eicosanoids in Daphnia and other inverte-
brates could have very important implications for several
areas within ecology including ecological risk assessment.
This provisional overview of daphnid eicosanoid biosyn-
thesis provides a guide on where to focus future research
activities in this area.
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