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Abstract

Background: An individual’s fitness in part depends on the characteristics of the mate so that sexually attractive
ornaments, as signals of quality, are used in mate choice. Often such ornaments develop already early in life and
thus are affected by nutritional conditions experienced then. Individuals thus should benefit by compensating as
soon as possible for poor initial development of ornaments, to be attractive already at sexual maturity. Here, we
tested whether early nutritional stress affects the cheek patch size of male Zebra finches (Taeniopygia guttata),
which are important in mate choice, and whether a small cheek patch size early on is compensated at sexual
maturation. Furthermore we tested whether exploration behaviour is affected by such a compensation, as shown
for other compensatory growth trajectories.

Results: Zebra finch males which were raised under poorer nutritional conditions initially expressed smaller cheek
patches at day 50 post-hatching but then compensated in cheek patch size already at 65 days, i.e. when becoming
sexually mature. Furthermore, compensatory growth in cheek patch during adolescence was negatively correlated
with activity and exploration behaviour, measured in a novel environment.

Conclusion: This compensation in cheek patch size benefits male attractiveness but also was related to less
exploration behaviour, an established proxy for avian personality traits. We discuss the possibility that
compensatory priorities exist so that not all deficits from a bad start are caught-up at the same time. Resource
allocation to compensate for poorly expressed traits is likely to have evolved to optimise traits by the time they are
most beneficial.

Introduction
An individual’s fitness is determined by its reproductive
success relative to that of other individuals [1]. Part of
this reproductive success will be determined by pheno-
typic characteristics such as those affecting survival and
mate choice [2,3]. Individuals vary strongly in the
expression of these traits due to genetic differences, dif-
ferences in current conditions and conditions experi-
enced during early development, such as the availability
and/or quality of available food [4]. Especially in fast

developing organisms, as for example in altricial song-
birds, early nutritional stress causes immediate and long
lasting effects on phenotypic development and fitness
[5,6]. Early nutritional conditions have striking effects
on biometry [7-9], longevity and reproductive success
[2,10] as well as learning performance [11,12]. Also the
development of personality as measured by exploration
as one of the key operational measures of personality is
affected by early dietary conditions [13-15] as well as
early social conditions [16]. Such differences in explora-
tion can have fitness relevant consequences in foraging
or survival as well as consequences for mate choice and
thus reproduction [17-19]. The early nutritional condi-
tions are likely to specifically affect the development of
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secondary sexual characters as these usually are costly to
produce. In species with female mate choice, females
usually attend to such male sexually selected ornaments
that reflect aspects of male quality [20]. Indeed, several
studies on songbirds have shown that the expression of
such sexual ornaments can be influenced by early nutri-
tional stress which can cause a reduction of song attrac-
tiveness [21-26] and lead to less attractive visual
ornamentation [27-29].
Yet, for some traits individuals might be able to com-

pensate later on in life, for instance when nutritional
conditions improve, and then benefit from such com-
pensation. Indeed, songbirds that have experienced early
developmental stress have been shown to compensate
later in life in some traits like body mass [30-32], but
not in others such as tarsus length[33]. Such compensa-
tions can carry costs and it may lead to trade-off deci-
sions affecting other traits[5]. Studies in zebra finches
(Taeniopygia guttata) have shown that compensation for
body mass leads to a reduced cognitive performance
[31], an elevated metabolic rate [30] and to an altered
exploration behaviour [32].
If individuals compensate later in life for an initially

poor expression of traits, they need to decide when to do
so. For some traits it may pay to compensate as early as
possible while for other traits compensation might better
be delayed. Because sexually selected signals have a
strong impact on finding a mate and thus fitness, selec-
tion indeed should favour individuals that can compen-
sate early for initially poor expression of these traits.
Birds are comparatively short lived and have limited
opportunities to reproduce, so that they are likely to ben-
efit by compensating first for deficits in the expression of
sexual ornaments, providing that costs of low expression
in other traits, such as reduced body mass, are low. Zebra
finches have been a key model in studies on the effects of
early developmental stress [34] as they mature relatively
fast, are subjected to high mortality due to predation [35]
and breed opportunistically [35,36]. Moreover, several
studies have shown that male song [22-24] and female
preference to male song [26] as well assexually selected
plumage ornaments [29] are affected by early nutritional
stress, but a study manipulating brood sizes did not find
any effect using subjective visual scoring of the cheek
patches [37]. In such a fast developing species with lim-
ited breeding opportunities, one would expect that selec-
tion will favour early mating and use of the first breeding
opportunities. Investing in ornaments as early as possible
then becomes important and males who prioritize com-
pensating in initially low expression of ornaments will
increase early attractiveness leading to a potentially
higher mating success[38].
To test if males indeed are affected by early develop-

mental stress in their expression of visual ornaments

but compensate for them when conditions improve, we
reared zebra finches under different nutritional condi-
tions and analysed the expression of plumage ornaments
at different stages during adolescence [32]. The subjects
analysed here have been shown already to compensate
in body mass at adulthood at the age of around 170
days [32]. This compensation in body mass was linked
to altered exploration behaviour at this age [32]. We
here thus examined whether prior to this body mass
compensation (i) early poorer nutritional conditions
have negative effects on the development of male cheek
patches, one of the sexual plumage ornaments, and
(ii) whether any initially lower expression in cheek patch
size is compensated already at sexual maturation at day
65 of life. At this time zebra finch males’ spermatogen-
esis starts [35,39] and at a similar time pair formation
begins, if a partner is available [35,40]. Furthermore, (iii)
we examined whether or not activity and exploration
behaviour is affected by early conditions [14-16] and
compensation in cheek patch size. We expected early
nutritional conditions to affect the growth of initial
cheek patches [29] but that these effects would be com-
pensated for at sexual maturation (day 65) [41].

Results

Cheek patches
Male cheek patches at day 35 started to be expressed in
only six (four HQ and two LQ) of the 60 males and
thus were not directly compared with respect to the
nutritional treatments. Male cheek patch size at day 50
was significantly affected by the early nutritional treat-
ment with HQ males having larger cheek patches than
LQ males (LME: nutritional treatment, F1,35=4.26,
p=0.046), whereas neither the fathers’ cheek patch size
(F1,25=0.12, p=0.73) nor the body mass at day 50
(F1,21=1.38, p=0.25) had a significant effect (Fig. 1a).
Cheek patch growth from day 35-50 tended to be
affected by early nutritional treatment, with HQ males
tending to have a higher cheek patch growth than LQ
males (LME: nutritional treatment F1,36=3.68, p=0.063).
However at the age of 65 days, this difference had disap-
peared and there was no significant difference in cheek
patch size between HQ and LQ males (LME: nutritional
treatment, F1,35=2.51, p=0.12; fathers’ cheek patch size,
F1,35=2.08, p=0.16; body mass at day 65, F1,21=0.53,
p=0.48; Fig. 1b). The cheek patch growth from day 50-
65 was affected mainly by the cheek patch size at day 50
rather than by the nutritional treatment itself (LME:
nutritional treatment, F1,36=1.40, p=0.24; cheek patch
size at day 50, F1,21=54.49, p<0.001); birds with larger
cheek patches at 50 days showed less further cheek
patch growth than males with smaller cheek patches at
that age.
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Cheek patches of adult males at day 280 were no
longer different in size from each other with respect to
early treatments (LME: nutritional treatment, F1,34=1.30,
p=0.26). However, they tended to be positively linked to
the paternal cheek patch size(F1,34=4.06, p=0.052), indi-
cating a potentially heritable component of cheek patch
size. Body mass at day 280 was again not affecting
check patch size (F1,21=1.45, p=0.24). At day 280 HQ
males had an average standardized cheek patch size of
15.30 ± 0.39 SE and LQ males of 15.97 ± 0.38 SE.

Activity and exploration behaviour of adolescent
males
The activity (number of place changes) in the test aviary
was positively related to the body mass at day 65, i.e.
heavier birds were more active. Cheek patch growth
from day 50-65 was negatively correlated with activity;
males having a higher cheek growth in that period were
less active. Nutritional treatment had no direct signifi-
cant effect on activity (LME: cheek patch growth, day
50-65, F1,20=5.22, p=0.033; body mass day 65, F1,20=7.00,
p=0.015; nutritional treatment, F1,36=0.05, p=0.83; Fig
2b, d). The exploration behaviour, measured as the
number of visited places, was correlated with activity
(N=60, rS=0.74, p<0.0001). Furthermore exploration
behaviour was negatively affected by cheek patch growth
day 50-65, but, like activity, not by the nutritional treat-
ment itself (GLMM: cheek patch growth, day 50-65, Z=-
2.025, p=0.043; nutritional treatment, Z=-1.298, p=0.19;
Fig. 2a,c).

Discussion
We here show that zebra finch males which were raised
under poorer nutritional conditions initially expressed
smaller cheek patches at day 50 post-hatching but then
compensated in cheek patch size already at 65 days,
when becoming sexually mature. We further show that
the compensatory growth in cheek patch during

adolescence was negatively correlated with activity and
exploration behaviour in a novel environment. These
results suggest that not all individual traits are compen-
sated with the same ontogenetic priority. The same
zebra finches had compensated for reduced body mass
much later, at adulthood at an age of around 170 days
[32]. Thus, males appear to have invested until sexual
maturation more resources in the growth of a sexually
selected ornament, i.e., the cheek patch rather than in
body mass. Such a strategy might well be adaptive as,
with sexual maturation, males would benefit in finding a
mate for reproduction as soon as possible. As zebra
finches life in an unpredictable breeding environment
and adjust breeding opportunistically to the weather
conditions [35], missing a breeding opportunity is likely
to have a negative impact on fitness. Therefore, males
should benefit from being mature as well as attractive at
the right time. Being late in cheek patch development
thus could lead to disadvantages in mate choice [29].
This finding that deficits in secondary sexual orna-

ments are compensated until sexual maturation are in
line with the predictions derived from a state-dependent
dynamic optimization model that aimed to explore how
resources during compensation were allocated to either
soma or sexually ornaments [41]. However, Lindström
et al.[41] also argued that a complete compensation in
expected fitness is not very likely, as compensation in
some traits will also have costs paid in another trait [e.g.
[5], [7], [30] - [32]]. Our findings that young males gave
priority to compensate in plumage attractiveness over
body mass at this developmental stage indeed suggests
that early compensation in one trait is paid by delayed
compensation in another trait. Furthermore, we
expected to find costs linked to the compensation in
cheek patch size. Thus, we specifically tested whether
activity (movements) as well as exploration behaviour
(diversity of places visited) in an unfamiliar environment
were linked to this compensation. Our finding that

Fig. 1 Mean male cheek patch size (±S.E.) of males reared in low quality (LQ; indicated by black bars; N=31) and high quality (HQ; indicated by
white bars; N=29) early nutritional conditions at the age of a) 50 days post hatching and b) 65 days post hatching. At day 50 males from both
treatments differed significantly in cheek patch size (LME day 50: factor nutritional treatment, p=0.046), whereas at day 65 this differences had
been compensated by the low quality males (LME day 65: factor nutritional treatment, p=0.12). See text for details.
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heavier birds who needed to compensate less for low
body mass were more active is in line with the underly-
ing expectation.
We found that the cheek patch growth in the time

from day 50-65, i.e., the period during which the initial
deficit in cheek patch size disappeared, was negatively
correlated with activity and exploration behaviour. This
reduced activity and exploration behaviour can have sev-
eral potential disadvantages. When dispersing from the
natal breeding site or colony [35,42], individuals are
faced with new environments, where lower exploration
behaviour can lead to more time in familiarization with
the environment and fewer social contacts that may
affect finding a suitable partner and time delays to
reproduce. Being less explorative might also be inter-
preted as a positive feature of these individuals, as they
might be exposed to less social competition, are possibly
more thorough and learn faster [43,44] and save energy.
However, once periods of starvation occur, a lower
exploration behaviour would reduce the probability to
find new food patches [14]. Lower foraging success dur-
ing feeding offspring then might again trigger early
nutritional stress in offspring, leading to non genetic
trans-generational effects [33,45]. Neither activity nor
exploration behaviour were directly affected by the early
nutritional treatments but were negatively correlated to

the compensatory cheek patch growth [46]. This is in
line with other studies that reported effects on compen-
satory growth in the absence of direct effects of the
nutritional treatments [31,32]. As suggested earlier [32],
this underlines the importance to consider the effects of
early nutritional conditions and subsequent compensa-
tory growth separately, as both effects appear in differ-
ent developmental phases and thus may require and
trigger different mechanisms.
The idea that trade-offs in resource allocation are

most likely leading to constraints in growing the cheek
patch or body massis supported by various studies on
moult [27,47]. It would also be interesting to measure
the underlying physiological costs of cheek patch growth
in future studies. Moreover, zebra finches reared initially
on an intermediate diet but received high or low quality
nutritional conditions during adolescence, from day
35-65 showed no differences in any biometric trait, but
significant effects of nutrition during adolescence on
cheek patch size [29]. Males with smaller cheek patches
then were also less attractive in a mate choice test [29].
That study, together with the present results, suggests
that for the development of an attractive cheek patch,
the time after the independence is most important [35].
During this time early deficits can be compensated but
when males experience poor conditions in this period

Fig. 2 Males performance after day 65 in an exploration task. Males of early low quality (LQ; indicated by black bars; N=31) and early high
quality (HQ; indicated by white bars; N=29) treatment did neither differ in a) the number of visited places nor b) in their activity in the test
(panels a) and b) indicate the median, quartiles and outliers, i.e., data points that lie outside the 10th and 90th percentiles). However,
compensatory cheek patch growth (from day 50-65) was negatively linked with the c) number of visited places and the d) total activity in the
exploration test. See text for details.
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compensation is delayed. Other important sexually
selected male traits, in contrast, such as the song which is
learnt early in life, are less flexible and remain a signal of
nutritional stress experienced in early life [22,25,26,47].
Another interesting aspect we found post-hoc, is that

the father’s cheek patch size was not related to their
sons’ cheeks during the early measurements (day
35,50,65). However, at adulthood (day 280) there was a
tendency that fathers and sons cheek patch sizes were
positively linked. This might indicate a potentially heri-
table component of cheek patch sizes and that environ-
mental factors are more affecting the cheek patch
growth than genetic factors.
Taken together, we show that males raised under early

poor nutritional conditions compensated in cheek patch
size already until sexual maturation for a bad start in
life. This compensation in cheek patch size is likely to
benefit male attractiveness but this compensation was
related to lower exploration behaviour which may have
fitness consequences as well [48]. These findings provide
supporting evidence that compensatory priorities seem
to exist and that not all deficits from a bad start are
caught-up at once. Resource allocation in compensatory
growth patterns should always maximise potential fit-
ness at the current developmental stage.

Methods
Subjects were 60 male zebra finches of wild Australian ori-
gin, which were about the F9 generation in the Bielefeld
stock. In a breeding experiment, pairs of unrelated zebra
finches were allowed to raise offspring under either high
or low quality nutritional treatment conditions, and birds
were followed over their development for growth and
behavioural pattern [11,32,49]. All pairs received high
quality food (see below) until the start of the nutritional
treatments. Nutritional treatments started at day three
post hatching of the oldest chick in a nest and ended at
day 35, when chicks reached nutritional independence
[35]. Thereafter all subjects received a diet of intermediate
quality [49]. In the low quality (LQ) nutritional treatment
subjects received standard seed food (a mixture of yellow
millet, red millet, canary seed, and yellow panicum) ad
libitum and only once a week additional egg food (egg
food tropical finches, CéDé, Evergern, Belgium). In the
high quality (HQ) nutritional treatment subjects received
standard seed food ad libitum and daily protein rich egg
food and germinated seeds (i.e. germinated seed food), as
well as three times a week greens (chickweed, Stellaria
media). Subjects from both treatments received daily fresh
water which was twice a week supplemented with addi-
tional vitamins. After day 35 all subjects were housed until
day 65 in song tutor groups (cage size 81 x 48 x 61 cm)
with six to eight other juveniles of both sexes and an unre-
lated adult zebra finch pair and received a diet of

intermediate quality. This diet consisted of ad libitum
standard seed food, daily germinated seeds and three
times a week egg. From day 65 on subjects were housed in
mixed-sexed groups of three to four individuals in cages
(83 × 30 × 39 cm). The breeding experiment and the con-
sequences of early nutritional treatment on growth, beha-
viour and compensation in body mass of these birds have
been described elsewhere [32,33,49].

Cheek patch size
On days 35, 50 and 65 during maturation and at day
280at adulthood and after compensatory growth on
body mass (see [32]) we took digital portrait photo-
graphs [29] from both sides of the males’ head using a
Canon Power Shot S5IS digital camera. Photographs
were taken from a standardized distance of 50 cm. From
the digital photographs we calculated the male’s standar-
dized cheek patch sizes as the mean of the cheek size of
the left and the right side. Standardized cheek patch size
was calculated as the number of pixel of the cheek area
divided by the number of pixels of the eye area on the
pictures (modified after [50]; following [29]). Digital pic-
tures were analysed with Adobe Photoshop 7.0. Each
cheek patch area and eye area were measured three
times and the average was used for further analysis. The
repeated measures on the same patch correlated highly
significantly with each other (all rP>0.974, p<0.00001).
We calculated cheek patch size growth rates as daily

gain of standardized size (score/days) for the period
after the nutritional treatments day 35-50 and for the
compensatory period day 50-65. All fathers had also
been photographed and their pictures analysed directly
prior breeding started. Fathers had an average age of
787 days ± 387 days (S.D.).

Test for exploration behaviour
Males were tested for their spontaneous exploration
behaviour once in a novel environment after reaching
day 65. At testing, subjects had on average an age of
84.9 days (± 17.1 SD). Subjects were, without prior
food deprivation, transferred from their home cages to
the unfamiliar experimental room and were tested
there individually, without any visual or acoustical con-
tact to conspecifics. Experiments were started from a
start-box (20 x 20 x 20 cm) where subjects were
allowed to calm down 5 min before testing. The novel
environment was an arena (2.75 x 1.85 x 1.85m) exhi-
biting ten different locations to perch. During the tests
no food was provided at any location in the arena. The
start box was opened using a string from outside the
experimental room, where the observer was behind an
one-way window. After subjects had left the start box
(average start-box time 177s ± 133 SD) and entered
the arena, subject’s exploration behaviour (perch
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changes) was measured for 10 min. We recorded (i) the
number of visited places, i.e. how many different
perching facilities in the novel environment were vis-
ited by an individual and (ii) the activity, i.e. the num-
ber of place changes in the novel environment.

Biometry
Biometric measures were taken at different ages and
have been reported elsewhere [32,33,49]. To summarize
them briefly, body weight at hatching (day 0) was not
different between the birds of the prospective nutritional
treatments [49]. Nutritional treatment affected body
mass, tarsus length and growth, i.e.,birds raised under
LQ conditions were significant lighter during and at the
end of the nutritional treatments at day 35 [49]. How-
ever, these effects on body mass lasted until the birds
reached adulthood and were compensated by the age of
about 170 days [32] and then remained not different
during later life [32]. Tarsus length remained affected
lifelong from early treatments [33].

Statistical analysis
The measures were analysed in linear mixed effect models
(LME) for the different ages. Cheek patch sizes were ana-
lysed using LMEs with nutritional treatment, body mass at
the respective age, fathers’ cheek patch size and their two-
way interactions as factors, and natal cage as random fac-
tor in the initial models. For the models analysing cheek
patch size the factors fathers’ cheek patch size as well as
body mass at the respective age remained in the final
model to control for their effects on cheek size. The two
cheek patch size growth rates were analysed using LMEs
with nutritional treatment, cheek patch size at the begin-
ning of the respective period, and fathers’ cheek patch size
considered as factors and natal cage as a random factor.
Activity and number of visited places in the exploration

test were analysed in mixed models (LME / GLMM with
Poisson distribution) with nutritional treatment, body
mass at day 65, cheek patch size growth day 35-50, cheek
patch size growth day 50-65, exact age at testing with all
two-way interactions as factors and natal cage as random
factor. Residuals were tested for normal distribution
using the Lilliefors Kolmogorov-Smirnov test. Some
parameters were once or 2nd log (x+1) transformed to
reach this criterion [51]. Non significant terms were step
wise excluded in a backward selection from the initial
model to reach the final, most parsimonious model.
Nutritional treatment remained in the final models to
control for the effects. Analyses were conducted using
R 2.9.0, using the packages nlme and lme4 and SPSS 19.
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