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Abstract

Introduction: As an ecological adaptation venoms have evolved independently in several species of Metazoa. As
haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of
animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and
livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein
families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses.
Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that
counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the
venomous properties of tick saliva.

Results: Based on our extensive literature mining and in silico research, we demonstrate that ticks share several
similarities with other venomous taxa. Many tick salivary protein families and their previously described functions
are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a
structural and functional convergence between several molecular components in tick saliva and the venoms from
other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and
venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore,
by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with

that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we
introduce our considerations regarding the evolution of venoms in Arachnida.

Conclusions: Taking into account the composition of tick saliva, the venomous functions that ticks have while
interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary
proteins, we consider that ticks should be referred to as venomous ectoparasites.
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Introduction

As haematophagous (blood sucking) arthropods, ticks
are mainly considered as ectoparasites that use their sal-
ivary constituents to successfully obtain a blood meal by
targeting major physiological pathways involved in host
defense mechanisms [1]. Ticks constitute an important
pest affecting agricultural development, as well as do-
mestic animal and human health since they transmit a
variety of infectious agents. Tick saliva has been de-
scribed as a complex mixture of pharmacologically active
compounds with implications for pathogen transmission
[1]. From a functional and evolutionary point of view,
Fry and colleagues [2], considered the feeding secretions
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of some haematophagous invertebrates (such as ticks) as
a specialized subtype of venom. Certainly, Ixodida, that
includes hard and soft tick species, is proven to be a
venomous taxonomic Order in Chelicerata [3]. In fact,
the bite from a single tick can produce several types of
toxicoses [4]; paralysis being the most common and
recognized form of tick-induced toxicoses [3,5].

Tick paralysis is an ascending motor paralysis pro-
duced by an impairment of neurotransmission, possibly
due to the blockade of ion channels involved in the
depolarization of nervous tissue [6]. This form of poly-
neuropathy is mainly associated with the acquisition of a
blood meal by female ticks and will spread to the upper
limbs of the host, causing incoordination and, in some
cases, ending with respiratory failure and death [4].
Nevertheless, evident signs of toxicoses (e.g., paralysis)
are not a sine qua non effect from the tick bite as in the
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case of other venomous taxa, such as snakes, spiders,
scorpions or pseudoscorpions. This observational scar-
city is perhaps the reason ticks are not considered
venomous animals. Thus, tick saliva as venom has rarely
been mentioned in parasitological literature, with the
exception of a few examples (e.g., as in [7]).

Traditionally, venom was defined as a toxic fluid that
inflicts an abrupt death or paralysis in the host and/or
prey. This archaic concept, however, partially highlights
the deleterious effects of venom on the host/prey and
lacks ecological relevance. After investigating many ven-
omous animals, Fry and colleagues [2,8] extended this
limited definition of venom “as secretions produced in
specialized glands and delivered through a wound (re-
gardless of the wound size), that interferes with normal
physiological processes to facilitate feeding or defense by
the animal that produces the venom”. By interfering with
normal host physiological processes infers that all toxins
are venomous, but not all venomous proteins are toxic.
This new paradigm allows us to consider a wider spectrum
of envenomation produced by a myriad of macromolecules.
In our study we hypothesize that due to their salivary
composition ticks are venomous animals within the
phylum Chelicerata. We base our hypothesis on the fol-
lowing points: (i) the various toxic effects induced by ticks
(i) the convergent protein families present in spiders,
scorpions and ticks; (iii) the immunomodulatory proper-
ties found in ticks saliva is also found in other venomous
taxa (iv) the pattern of immune response against toxins by
the host/prey is similar in both ticks and other venomous
taxa; (v) the structural similarities in members of major
protein families between known venomous taxa and ticks;
(vi) the bimodal structural dichotomy between human
(non-venomous) and tick saliva; and, finally (vii), the phylo-
genetic position of parasitiformes (Ixodida, Holothyrida
and Mesostigmata) as a sister clade of pseudoscorpiones
based on [9].

Results and discussion

Toxicoses phenomena within ixodida

The Australian Ixodes holocyclus is perhaps the best
example of a tick that induces paralysis on livestock
[10], pet animals [11], and humans [12]. Tick-induced
paralysis, however, is not limited to this tick species but
has been reported for ~8% of all tick species from major
tick genera, except Carios and Aponomma [3] (69 out
of approximately 869 tick species; 55 hard tick species
and 14 soft tick species). Some of these paralyses indu-
cing tick species represented in Figure 1 are also en-
demic to and abundant in several geographic regions
[4]. Examples in the distribution of such ticks species
are the North American Ixodes scapularis, Dermacentor
variabilis and Amblyomma americanum [13,14], the South
American Amblyomma cajannense [15], the European
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Ixodes ricinus [16], and the globally distributed Rhipi-
cephalus sanguineus [17].

Additionally, several lethal and paralysis inducing toxins
have been identified in ticks. For example, the 15.4 kDa
acidic salivary toxin secreted by Ornithodoros savignyi is
highly abundant and its purified form kills a mouse within
90 minutes at a concentration of 400 pg/10 g of mouse
weight [20]. Another purified basic toxin from the same
tick species was shown to kill a 20 g mouse within 30 mi-
nutes after administration of 34 pg of the toxin [21]. Veri-
fied via Western blot, a 20 kDa trimeric neurotoxin was
identified in the salivary glands of Rhipicephalus evertsi
evertsi that paralyzed muscle contractions in an in vitro
assay [22,23]. Maritz and colleagues (2001) identified a
60 kDa toxin in Argas walkerae that reduces [3H]glycine
release from crude rat brain synaptosomes, indicating a
paralytic effect. Other toxins have also been identified in
tick egg extract from Amblyomma hebraeum, R. e. evertsi,
R. microplus, R. decoloratus and Hyalomma truncatum,
(revised in [4]). The presence of these toxins in tick eggs
may be related to the protection of the egg mass against
predation in natural environments — adding a new func-
tion for venoms in ticks, i.e., defense.

Besides tick paralysis, other types of toxicoses can be in-
duced by a particular tick species, including sand tampan
toxicoses by O. savignyi, sweating sickness, Mhlosinga,
Magudu, and necrotic stomatitis nephrosis syndrome by
H. truncatum, spring lamp paralysis in South Africa by R.
e. evertsi, and, finally, specific toxicoses induced by R.
microplus, D. marginatus, R. appendiculatus, I rekicorzevi
and O. gurneyi (revised in [3]). Toxicoses by R. microplus,
H. truncatum and R. appendiculatus induce an anorexi-
genic effect [3], as induced by the secreted toxin Bv8 from
the skin of the fire-bellied toad, Bombina variegata [24].
Symptoms of general toxicoses were also reported after
soft tick bites that include pain, blisters, local irritation,
oedema, fever, pruritus, inflammation and systemic distur-
bances [25]. Recently, human and canine toxicoses induced
by the argasid tick O. brasiliensis, known as “mouro” tick,
were reported and the most frequent symptoms of toxico-
ses induced by this tick species were local pruritus, slow
healing lesions, local edema and erythema, and local skin
rash [26]. Different types of immune reactions can also be
included in the general scope of tick toxicoses [3,27]. Im-
mediate and delayed skin hypersensitivity was reported in
cattle exposed to R. microplus and R. decoloratus antigens
[28,29], and in dogs exposed to A. cajennense antigens
[30].

There are important factors in considering the severity
of tick-induced toxicoses. (i) As stated by Paracelsus,
the dose makes the poison. For example, I rubicundus
induces Karoo paralysis in South African livestock only
when critical infestation densities are reached during re-
pletion [31]. (ii) The anatomical location where the tick
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Figure 1 Phylogenetic distribution of the major tick toxicoses-inducing genera. The phylogenetic tree was compiled from published
sources [18,19]. Data regarding tick toxicoses among Ixodida genera and presented tick species was collected from [3].
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saliva is inoculated also seems to play a role in the toxic
output. Although the tick species was not identified, a
case report described a 3 year-old Indian boy with an
acute onset of left-sided facial palsy secondary to tick in-
festation in the left ear [32]. Therefore, the proximity to
a nerve (in this case the facial nerve) was important for
the clinical toxic output (left-sided facial palsy). A simi-
lar case was also reported in a 3 year-old Turkish girl
[33]. (iii) The duration of tick feeding is also an import-
ant factor of induced toxicoses [4]. Venzal and col-
leagues [34] showed that, after 3 days, laboratory mice
infested with Ornithodoros aff. puertoricensis had initial
signs of hyperaemia, followed by respiratory symptoms
on day 4, and finally after 4 days the mice displayed ner-
vous incoordination. A final factor (iv) to consider is the
presence of common antigens between tick saliva and
hosts. Recent episodes of human anaphylaxis after aller-
gic sensitizations induced by bites of A. americanum
have been reported. Patients with a history of A. ameri-
canum bites produced increased levels of pro-allergenic
immunoglobulin E (IgE). The increased anti-tick IgE levels

in these patients were correlated to anaphylactic reactions
to one anti-cancer monoclonal antibody (Cetuximab) and
red meats [35]. Anaphylaxis induced by A. americanum is
provoked by the presence of specific IgE to the carbohy-
drate galactose-alpha-1,3-galactose (alpha-gal) that is also
present in Cetuximab and red meat [35]. Interestingly,
alpha-gal was recently found in the gut of L ricinus, a tick
that also induces anaphylaxis [36].

The unified view of venom immune modulation and anti-
venom immune responses

The haematotoxic and neurotoxic effects associated with
venom exposure are widely recognized (revised in [2]).
Nevertheless, all venomous animals are also constantly
challenged by the host/prey or predator immune re-
sponse. Studies have shown that the immune response
of laboratory animals successfully counteracted venom-
ous toxins [37,38]. In fact, natural resistance to snake
venom was reported in both prey [39,40] and predator
[41]. Thus, the immune system of the host/prey must
constitute an important target of venoms in order to be
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effective. In fact, manipulating host defense mechanisms
by venoms has been reported for some venomous ani-
mals like the parasitoid wasp, Nasonia vitripennis [42].
N. vitripennis, like ticks, are considered to be an ecto-
parasite since the Nasonia larvae feed on their hosts
(invertebrates) without entering the host body [42]. The
venom of N. vitripennis must suppress the immune re-
sponse of the hosts in such a way that the host “allows”
the parasitoid infection while simultaneously, the host
will be able to control infections by other microorganism
that otherwise would compete with the N. vitripennis
larvae development [43]. Two major host defense cas-
cades were suppressed by N. vitripennis venom: the phe-
noloxidase cascade and the coagulation cascade [43].
Several components of N. vitripennis venom have been
suggested to modulate the host immune system, e.g., serine
protease inhibitors, serine proteases, cystein-rich/Kunitz
venom proteins and cysteine-rich/trypsin inhibitor-like
venom proteins [43].

Manipulation of the host/prey immune system is not
restricted to venomous Hymenoptera, e.g., N. vitripennis;
for example, the haematophagous bat Desmodus rotundus,
a venomous animal based on its salivary composition and
feeding behavior [44], possesses two members of TNF-a-
stimulated gene 6 (TSG-6) family that are highly expressed
in its salivary glands. The TSG-6 family members have spe-
cific anti-inflammatory properties, such as the inhibition of
neutrophil migration to interact with macrophage CD44
and modulation of NF-«B signaling [45]. This suggests that
TSG-6 may play a feeding-facilitating role by suppressing
the immune system. One well-studied example is the im-
mune modulation induced by ticks in their hosts. The im-
mune system manipulation by ticks is a complex process
that has been recently revised [1].

Ticks are unique among hematophagous arthropods
since they attach to host skin and feed for several days,
while other blood-feeding arthropods (e.g. Triatomes or
mosquitoes) feed little and often. Therefore, ticks need to
counteract both the immediate innate immunity and the
slower-developing adaptive immune responses in their ver-
tebrate hosts. One first line of defense will be to counteract
pain and itching responses of the host by targeting, for
example, histamine, an immune-related mediator of pain
and itch (revised in [1]). A few histamine-binding lipoca-
lins was reported in the hard tick, R. appendiculatus [46].
In this regard, tick venom differs from canonical venoms
since most venomous animals (e.g., wasps, bees, snakes,
scorpions, spiders and jellyfish) will induce pain or an itch
response. These venomous animals use their venom sys-
tems as a defensive or predatory function [47] with the de-
sired effects of pain or itch to produce a deterrent effect.
In contrast, similar to ticks, venomous haematophagous
animals, like D. rotundus or triatomes bugs, should coun-
teract prey/host awareness in order to feed until repletion.
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After the skin is injured by a tick bite, the inflammatory
response of the host will be activated. Ticks require a mo-
lecular arsenal to suppress both the cellular and molecular
components of the host defenses. Tick salivary extract
have been shown to reduce endothelial cell expression of
the adhesion molecules ICAM-1 and VCAM-I (Dermacentor
andersoni) and P-selectin (I scapularis). Reduction in adhe-
sion molecules will reduce the extravasation of leukocytes
at the site of tick attachment. The alternative pathway of
complement activation is also one of the targets of the
immunomodulation induced by tick saliva and thus com-
plement inhibition activity has been reported in saliva of
D. andersoni, I scapularis, I ricinus, I. hexagonus, I. uriae
and O. moubata (revised in [1]). In addition, as a general
trend, the saliva from haematophagous arthropods, in-
cluding ticks, inhibit the proliferation of naive T cell and
the production of Thl citokines [48]. One interesting ex-
ample of modulating the adaptative immune response by
hard ticks is Japanin. Japanin is a lipocalin that specifically
reprograms human dendritic cells by hijacking the normal
maturation process, even in the presence of “danger” sig-
nals like bacterial lipopolysaccharide [49]. Interestingly,
Japanin promotes secretion of the anti-inflammatory cyto-
kine IL-10 and increases expression of programmed death-
ligand 1 (PD-L1), and both are involved in suppressing T
cell immunity and induction of tolerogenic responses [49].
Such degree of molecular specialization has neither been
described in other haematophagous arthropods nor in
other venomous taxa. However, despite the immune sup-
pression induced by tick saliva, some tick-host interac-
tions result in immune-mediated acquired resistance to
ticks after subsequent tick challenge.

Given the dynamics between induction of immune
suppression by venoms and host/prey resistance devel-
opment, an arms race between the host immune system
and venomous components has been proposed [40]. The
balance of this arms race will result in a susceptible or
resistant host, prey or predators. In our revision of the
topic, we found a convergence in the type of immune
response that mammals display against both venom and
tick saliva. Type 2 immune responses are mediated by
lymphocytes T helper type 2 (Th2), IgE and IgG1 anti-
bodies, but also by eosinophils, mast cells, basophils
and, alternatively, by activated macrophages. This Th2
immune response encompasses a wider concept, namely
allergies [50]. In mammals, venoms can induce allergic
sensitization and development of specific IgE [37,38,51];
tick feeding also induces a Th2 polarization [1], specific
IgE [52,53], and causes allergic sensitization [35]. The
complex association between allergen IgE recognition
with histamine secretion by mast cells and basophils that
subsequently provoke uncomfortable reactions in ani-
mals has been highlighted [50]. This association goes be-
yond a specific neutralizing IgE antibodies response to a



Cabezas-Cruz and Valdés Frontiers in Zoology 2014, 11:47
http://www.frontiersinzoology.com/content/11/1/47

more complex detection of sensory stimuli by the olfac-
tory, gustatory and visual systems that, surprisingly, may
eventually result in developing aversive behaviors to
specific locations or foods [50]. This suggests that the
evolution of a differentiated pattern of immunity against
venoms, including tick saliva, may have yet unexplored
ecological implications. Another example of immune
response convergence against venoms is that mast cells
can be activated by the venom of scorpions without the
concomitant presence of specific IgE [54], suggesting
that the protective activities of mast cells is independent
to the high affinity binding of IgE to the IgE receptor
(FceRI) present on mast cells. Wada and colleagues [55]
recently showed that the protective role of mast cells in
resistant mice to the tick Haemaphysalis longicornis was
also independent of FceRI. The above referenced studies
show that (i) immune modulation may be a major func-
tion of venoms and (ii) the type of immune response
elicited against the venom of ticks and other venomous
taxa undergo similar immune pathways, thus tick saliva
may possess venom-like molecules.

Tick saliva; or, the structural convergence of venomous
proteins with venomous functions

The types of toxicoses induced by tick bites (ranging
from lethal paralysis to local hypersensitivity) is not lim-
ited to the presence of lethal toxins but also to the pres-
ence of specific tick salivary protein families common
among other venomous taxa. Recent advances in se-
quencing technologies have revealed an amazing body of
information from the salivary glands of both hard and
soft ticks [56-64]. From these high-throughput investiga-
tions, several protein families have been identified that
are involved in tick-host interactions. Such protein fam-
ilies are found in the venoms of several other Metazoan
species [2]. Examples of such venomous protein families
found in tick saliva are defensins [65], lectins [66], cysta-
tins [67], lipocalins [21,68-71], hyaluronidase [72],
phospholipase A2 [73], Kunitz-like peptides [56,74,75],
metalloproteases [76], AVIT [77], CAP proteins (Cysteine-
Rich Secretion Proteins, Antigen 5, and Pathogenesis-Related)
[2] and sphingomyelinase D [2].

Not only are these protein families present in tick saliva,
but they also possess major functions described in
conventional venomous systems. These functions include
inhibition of thrombin, fXa, fVII/tissue factor system,
platelet aggregation (i.e., collagen-induced, ADP-induced),
act as a GPIIb/IIla receptor antagonist, or affect fibrino
(geno)lytic activity (revised in [2]). At the molecular level,
venomous agents display common characteristics, despite
their numerous biochemical activities and sequence
variability, such as (i) possessing a signal peptide, (ii)
displaying functional versatility within a protein family,
(iii) targeting short-term physiological processes and,
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(iv) stabilizing their tertiary structures via disulfide bonds.
Finally, after being recruited as a functionally stable ven-
omous agent, (v) duplication events occur to reinforce its
adaptation (for a thorough description of said characteris-
tics see [2]). An exception to this last property (gene du-
plication) is seen in platypus venom [78]. In the following
sections we show the structural convergence between tick
Kunitz peptides, cystatins, defensins, lipocalins, lectins
and phospholipase A, and their conventional venomous
counterparts.

Kunitz peptides

Kunitz peptides were named after Moses Kunitz who
first discovered it in 1936 from bovine pancreas [79].
Since then, expression of the Kunitz protein family has
been found in basically all kingdoms of life. Recent
reports show that Kunitz peptides have undergone a
massive gene expansion by gene duplication in the saliv-
ary glands of both L scapularis [56] and L ricinus [80],
possibly due to specific selective pressures during the
evolution of the tick-host interaction [81]. The Kunitz
structure has been described with diverse functions in
several venomous animals, including spiders and scor-
pions. Some Kunitz peptides from venomous animals
possess dual activities by inhibiting both proteases and
ion channels; examples of such toxins are LmKKT-1a
from the scorpion Lychas mucronatus [82] and Huwentoxin-
XTI (HWTX-XI) from the spider Ornithoctonus huwena
[83]. These venomous toxins have diversified their amino
acid sequence causing a positive net charge on the all-
atom Kunitz landscape (see Figure 2A). Reports have
shown that toxins possessing a positive surface are most
likely to target ion channels [84].

To date, only a few salivary secreted tick Kunitz peptides
have been structurally resolved; however, these few reports
reveal the venomous nature of these salivary peptides
compared with other Kunitz structures from venomous
animals. Figure 2A shows that the archetypal Kunitz fold
is highly conserved for these tick salivary peptides and that
they are structurally similar to HWTX-XI and LmKKT-1a.
These structurally resolved tick salivary peptides show a
structural conservation in their disulfide bridges (indicated
by roman numerals), B-hairpin and the C-terminus a-
helix. The only deviant from the archetypical Kunitz ter-
tiary structure is Ra-KLD, since it is missing the second (II)
disulfide bridge and possess a modified apex due to two
atypical disulfide bridges (1 and 2; Figure 2A). Figure 2A
also shows that the electrostatic potential of HWTX-XI
and LmKKT-1a is strikingly similar to both TdPI and Ra-
KLP, both from the salivary glands of R. appendiculatus.
Ra-KLP has been reported as an ion channel modulator
[85] like LmKKT-1a and HWTX-XI with no protease ac-
tivity. It remains to be tested, however, if and how TdPI
affects ion channels. Figure 2B shows a Ca backbone
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ornithodorin and boophilin since these possess two Kunitz-domains).

Figure 2 Tertiary structures of tick salivary Kunitz peptides. Panel A displays tertiary structure of toxins from spider (HWTX-XI; PDB: 2JOT) and
scorpion (LmKKT-1a; PDB: 2 MOT1), and five tick salivary Kunitz-like peptides (PDBs: TAP-1DO0D; ornithodorin-1TOC; boophilin-20DY; TdPI-2UUX;
Ra-KLP-2W8X). The tertiary structures depict the conserved disulfide bridges (indicated by roman numerals), loops, -sheets that forms the
B-hairpin, and a-helices. All structures are colored from the N-terminus (blue) to the C-terminus (red). Below each tertiary structure is the
respective electrostatic potential in 180° turns (blue = positive; red = negative; white = neutral). A tertiary structural alignment in Panel B depicts
the Ca protein backbone (color codes for each structure is presented on the right). (Note: For Panel A we used the C-terminus domain for both

u HWTX-XI
o LmKKT-1a

protein structural alignment of the represented Kunitz
peptides. The root mean square deviation compared with
HWTX-XI does not exceed 3 A (TAP = 3 A; ornithodorin =
2.4 A; boophilin = 1.7 A; TdPI=2.8 A; Ra-KLP =2.8 A);
the structural difference with LmKKT-1a slightly varies
from these deviations, but does not exceed 3.3 A. Regard-
less of the conservative nature in the Kunitz fold, these
tick salivary peptides display functional versatility and
target different short-term physiological processes [85-89].
Therefore, as one of the most abundant tick salivary pro-
tein families [80], we consider Kunitz peptides as a typical
example of a venomous agent that fit all five properties
(i-v) referred above and described by Fry and col-
leagues [2].

Cystatins

Although cystatins have been identified from the venom-
ous glands of spiders [90], snakes [91] and caterpillars
[92], the venomous function of these cystatins remain
elusive. Protease inhibition is the most common activity
reported for these cystatins, as in one of the earliest
studied cystatins isolated from the venom glands of the
African puff adder (Bitis arietans) that inhibits papain,
cathepsin B and dipeptidyl peptidase I [93]. The inhibitory
sites of cystatins that bind during protein-protein interac-
tions are the N-terminal loop and the two [B-hairpin loop
regions (indicated in Figure 3A as 1-3). A total of 95

cystine knot toxins have been identified in the venom
glands of the tarantula Chilobrachys jingzhao and several
of these toxins were reported to inhibit ion channels [90].
Two disulfide bonds form cystine knot toxins with their
backbone connected by a third disulfide bond and the
overall structure is invariably stabilized by -sheets. Exam-
ples of these cystine knot toxins are Kunitz and defensin
peptides. Although its toxic effects remain elusive, the
cystatin JZTX-75 was among the 95 cystine knot toxins
identified in the venom glands of the tarantula C. jingzhao
[90]. The predicted tertiary structure of JZTX-75 (shown
in Figure 3A) possesses a slightly positive electrostatic
potential.

Over 80 cystatins have been reported in the salivary
glands of hard and soft tick species [57,61,63,64,77,94].
For a full description on the physiological role of tick
cystatins refer to [67]. In general, tick cystatins are po-
tent inhibitors of papain-like cysteine proteases and play
important roles during tick feeding. Tick salivary cysta-
tins have been shown to serve as host immune modula-
tors but their basic functions in tick saliva are unknown.
A secreted cystatin has also been identified in the tick
gut of H. longicornis that increases in expression during
feeding on its host (Hlcyst-2; Figure 3A) [95]. Three
crystal structures of cystatins secreted by tick salivary
glands of I scapularis (sialostatinl. and sialostatinL.2)
and O. moubata (OmC2) have been resolved. Although
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we used the C-terminus domain for sialostatinL).

SialostainL2

Figure 3 Tertiary structures of tick salivary cystatins. Panel A displays predicted tertiary structure of a cystatin from spider venom (JZTX75;
GenBank: ABY71743) and, from tick salivary glands, we present three predicted cystatin structures (GenBank: ACX53922, JAA72252 and Hlcyst2-ABV71390)
and three crystal structures (PDBs: OmC2-3LOR; sialostatinL-3LI7; sialostatinL2-3LH4). The tertiary structures depict the conserved disulfide
bridges (indicated by roman numerals), 3-sheets, the a-helix, and the inhibitory loop regions (1-3). All structures are colored from the N-terminus (blue)
to the C-terminus (red). Below each tertiary structure is the respective electrostatic potential in 180° tumns (blue = positive; red = negative; white = neutral).
A tertiary structural alignment in Panel B depicts the Ca protein backbone (color codes for each structure is presented on the right). (Note: For Panel A

JAAT2252

u JZTX-TS
ACX53922
Hicyst-2

¥ JAAT2252

® Omc2

™ Sialostatinl.

® Sialostatinl2

the binding of these tick cystatins remain elusive, an in
silico study showed that these inhibitory loop regions for
sialostatinL.2 are conserved (Figure 3) [67]. A recent
study showed that several tick cystatins were constantly
expressed during a 5-day feeding period; among these
was the cystatin ACX53922 [96]. Compared with the
other five cystatins in Figure 3A, ACX53922 displays a
more positive electrostatic potential throughout its all-
atom landscape while still maintaining the archetypal
tertiary backbone structure (Figure 3B; all structures
have <3.0 A root mean square deviation compared with
JZTX-75).

Defensins

As in the Kunitz family, defensin peptides are widely
distributed among the kingdoms of life as they are found
in plants [97], jellyfish, sponges, nematodes, crustaceans,
arachnids, insects, bivalves, snails, sea urchins, birds [98]
and mammals [99], including humans [100]. The two
structural classes of defensins are, (i) those exclusive to
vertebrate known as a- - and 6-defensins [101] and (ii),
the most extended, possessing a simple structural motif
known as the cysteine-stabilized «-helix and [-sheet

(CSap) [102] as those depicted in Figure 4A. Defensins
have a wide range of biological functions, varying from
sweet-tasting proteins to antimicrobial peptides (AMP)
[102]. Recruitment of defensins has been reported in
scorpion [103,104], snake [105], lizard [106], platypus
[107] and spider [108] venom glands. The main function
of defensins as animal toxins is to target ion channels
[102]. Defensin molecules can also possess multiple bio-
logical functions that include ion channel modulation,
antimicrobial and antifungal activity, such as crotamine,
the B-defensin myotoxin from the rattlesnake Crotalus
durissus terrificus [109]. In contrast, although isolated
from the spider venom of Ornithoctonus hainana, the
Oh-defensin was shown so far to only possess antimicro-
bial activity [108].

A single experimentally induced genetic deletion or
mutation transforms a non-toxic defensin into a neuro-
toxin [99], thus, reinforcing the concept that toxic mole-
cules are recruited from ancestral proteins possessing a
non-toxic physiological function [2]. This also suggests
the evolutionary steps necessary for recruiting defensins
in the venom of venomous animals [99]. In agreement
with the functional diversity of defensins, it is evident,
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A Crotamine

Chlorotoxin

28 bd

Figure 4 Tertiary structures of tick salivary defensin peptides. Panel A displays the crystal structure of toxins from rattlesnake (crotamine;
PDB: 1299), scorpion (chlorotoxin; PDB: 1CHL) and platypus (DLP-2; PDB: 1D6B), and two predicted tertiary structures from tick salivary glands
(GenBank: scapularisin-AAV74387 and amercin-ABI74752). The tertiary structures depict the conserved disulfide bridges (indicated by roman
numerals), loops, B-sheets that forms the -hairpin, and the a-helix. All structures are colored from the N-terminus (blue) to the C-terminus
(red). Below each tertiary structure is the respective electrostatic potential in 180° turns (blue = positive; red = negative; white = neutral). A tertiary structural
alignment in Panel B depicts the Ca protein backbone (color codes for each structure is presented on the right).

W Crotamine
¥ Chlorotoxin
u DLP-2
Scapularisin
u Amercin

from reported crystal structures, that the tertiary struc-
ture is highly divergent (Figure 4B; all have ~3.5 A root
mean square deviation compared with crotamine).
Defensins in ticks show a diverse expression pattern,
thus they have been isolated from tick haemocytes, gut,
intestine, ovaries, malpighian tubules and fat body
[110,111]. Nevertheless, some of these defensins are
exclusively expressed in tick salivary glands [112]. The
most widely reported defensin structure in both hard
and soft tick species is the CSafy [113]. The only func-
tion assigned to the majority of characterized tick defen-
sins, thus far, is AMP [65,110-112]; however, haemolytic
activity was also recently reported for I ricinus and H.
longicornis defensins [111,114]. This obviously does not
exclude the possibility that tick defensins may have other
toxic functions in the vertebrate host. Other types of
cysteine-rich AMPs from ticks were found to inhibit
serine proteases [115], specifically chymotrypsin and
elastase [116]. Furthermore, some tick defensins have
secondary and tertiary structures similar to membrane
potential modulators, such as scorpion neurotoxins,
snake safaratoxins and plant y-thionins [117] suggesting
a toxic role for these tick defensins. Another example of

evolutionary convergence between ticks defensins and
toxic defensins are the recently discovered multigenic
defensin-like peptides, scasin and scapularisin, from the
toxicoses-inducing tick I scapularis (scapularisin is
shown in Figure 4A) [65]. Of these functionally unchar-
acterized novel defensin-like peptides, scasins show a
strong positive selection acting on the whole molecule
[65], an evolutionary pattern observed before in cono-
toxins from the molluscs of the genera Conus [118]
that act as ion channel modulators [119]. Nevertheless,
further studies should clarify whether scapularisin and
scasins are ion channel effectors, or not. As Figure 4A
shows, however, tick defensins have similar electrostatic
potentials as those found in snake and scorpion venom.

Lipocalins

Lipocalins are multifunctional proteins with a p-barrel
structure that share three conserved domains in their
primary structure, namely, motifs 1-3. Lipocalins have
been implicated in development, regeneration, and
pathological processes, but their specific roles are not
known [120]. In reptiles and other venomous taxa,
venom systems are enriched through gene duplication
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[2,121], thereby increasing its functional divergence to
develop a new function or neofunctionalization [47].
Neofunctionalization in tick lipocalins is a good example
of functional diversification found in the venom of several
venomous taxa [2].

Lipocalin-scaffolds have frequently been recruited as
tick salivary components. Examples of toxin recruitment
in tick salivary glands are the sand tampan toxins
(TSGP) from O. savignyi, an abundant protein group
that form a phylogenetic cluster with members of the
tick lipocalin protein family, suggesting that they origi-
nated via gene duplication [21,69-71]. Three TSGPs were
isolated from salivary gland extract in the tampan O.
savignyi: the toxins TSGP2 that produces ventricular
tachycardia, TSGP4 that produces Mobitz-type ventricu-
lar block, and the non-toxic TSGP3 that inhibits platelet
aggregation [21,69,71]. Two other lipocalins closely re-
lated to TSGP2/TSGP3 are moubatin (platelet aggrega-
tion inhibitor; [122]) and OmCI from the soft tick O.
moubata (complement inhibitor of C5 activation) [123].
It is worth mentioning that OmCI [124], TSGP2 and
moubatin have dual action and triple action was re-
ported for TSGP3 [71]. These tick salivary lipocalins are
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depicted in Figure 5. Multifunctionalization is a com-
mon trait found in the toxins of Lonomia obliqua [125]
and, as previously mentioned, for defensin peptides
found in some venomous systems.

Due to a recent European upsurge of allergic reactions
caused by the pigeon tick A. reflexus (e.g. [126]) a major
allergen was identified (Arg rl) that is homologous to
toxic lipocalins from O. savignyi [127,128]. Histamine-
binding proteins were also described as lipocalins from
the tick saliva of R appendiculatus [46] and recently, a
novel group of lipocalins was reported from metastriate
tick saliva possessing a modulatory activity on dendritic
cells [49]. Another lipocalin was isolated from A. mono-
lakensis (AM-33) that binds to cysteinyl leokotrienes
with high affinity, avoiding endothelial permeability and
formation of edema, thus ensuring the tick to replete an
erythrocyte-rich meal [129].

Phospholipase A2

The phospholipase A, (PLA,) superfamily are ubiqui-
tously found throughout the animal kingdom to catalyze
the hydrolysis of ester bonds in a variety of different
phospholipids producing lysophospholipids and free

<2.2 A root mean square deviation compared with OmCl.

Figure 5 Tertiary structures of tick salivary lipocalins. Panel A displays the crystal structure of the tick lipocalin OmCl from O. moubata

(; PDB: 3ZUQ) and four predicted tertiary structures from the tick toxins, namely TSGP2, TSGP3, TSGP4 from O. savignyi and moubatin, also from O.
moubata (respective UniProt: Q8I19U1, Q8I9U0, Q8I9T9 and Q04669). The tertiary structures depict the conserved disulfide bridges (indicated by
roman numerals), loops, B-sheets that forms the (3-hairpin, and the a-helix. All structures are colored from the N-terminus (blue) to the C-terminus
(red). Below each tertiary structure is the respective electrostatic potential in 180° turns (blue = positive; red = negative; white = neutral). A tertiary
structural alignment in Panel B depicts the Ca protein backbone (color codes for each structure is presented on the right). All structures have
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fatty acids that play important physiological roles [130].
The PLA, superfamily includes five distinct enzyme
types that are composed of 15 groups with many sub-
groups depending if they are secreted, cytosolic, calcium-
independent or based on their specific target [131]. The
PLA, superfamily has also been recruited via convergent
evolution into the toxic arsenal of cephalopods, cnidar-
ians, insects and arachnids [2]. In the venom of reptiles,
PLA, appears as an antiplatelet aggregation factor [132], a
myotoxin and a neurotoxin [133].

As previously stated, tick toxicoses is related to feeding
and feeding cycle. Tick salivary gland PLA, activity was
found to be higher in engorged A. americanum com-
pared with unfed ticks and this increase was correlated
with salivary gland secretion [134]. Although the func-
tion remains unknown, the PLA, activity found in the
saliva of A. americanum was suggested to play an im-
portant role during prolonged tick feeding (10-14 days
for A. americanum) [73]. The salivary PLA, from A.
americanum is alkaline (pH: 9.5), as previously reported
for PLA, from bee and snake venom [73], and does not
contribute to the anticoagulant activities found in the
saliva of A. americanum [135], but possess hemolytic
activity [73]. The PLA, from both tick [136] and rattle-
snake [137] possess antibacterial activities, suggesting a
functional confluence between these two venomous spe-
cies. Nevertheless, the PLA, from A. americanum was
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not inhibited by aristolochic acid [73] as previously
reported for the PLA, from the venomous snake, Vipera
ammodytes meridionalis [138]. Sousa and colleagues
[139] demonstrated the complexity of the toxic effects
induced by venomous molecules since the PLA,-melitin
complex in Apis mellifera venom acted as a vasocon-
strictor on rat aorta; however, no effect was evidenced
for the PLA, and melitin fractions individually. New
methods for testing the molecular functions of tick mol-
ecules may contribute to unravel the intricate putative
toxic effects of tick salivary PLA,. For example, a new
method for dsRNA delivery was reported using I scapu-
laris eggs and nymphs, incorporating electroporation
instead of microinjection. One of the genes that were
successfully silenced was a putative PLA, from I scapu-
laris [58]. We compared this putative PLA, from L scapu-
laris (GenBank: EW812932), and a few other putative
PLA, from ticks that induce toxicoses (most are depicted
in Figure 1) with the crystal structure of the PLA; present
in A. mellifera venom (PDB: 1POC; Figure 6A) and a pre-
dicted model from the scorpion toxin, imperatoxin-I that
targets the sarcoplasmic reticulum calcium-release chan-
nel of skeletal and cardiac muscles [140]. Although these
tick PLA, have <1.8 A root mean square deviation com-
pared with A. mellifera (Figure 6B), they have lost the
disulfide bridge IV that is present in A. mellifera PLA,
(Figure 6A). A recent study reports that, due evolutive

A 1POC

Imperatoxin-l

Figure 6 Tertiary structures of tick salivary PLA,. Panel A displays the crystal structure of the PLA, from bee venom of A. mellifera (PDB:
1POC) and four predicted tertiary structures, three tick PLA, (respective UniProt: B2D2A9, Q09JM7 and the translated sequences GenBank:
EW812932) and the scorpion toxin, imperatoxin-l (UniProt: P59888). The tertiary structures depict the conserved disulfide bridges (indicated by
roman numerals), loops, and the a-helix. All structures are colored from the N-terminus (blue) to the C-terminus (red). Below each tertiary
structure is the respective electrostatic potential in 180° turns (blue = positive; red = negative; white = neutral). A tertiary structural alignment in
Panel B depicts the Ca protein backbone (color codes for each structure is presented on the right).
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pressures caused during the arms race with the host(s),
ticks express non-canonical variants of highly conserved
protein families and these variants possess an altered di-
sulfide bridge pattern that provide functional flexibility —
e.g., Kunitz protein family from I ricinus [80].

Lectins

Lectins can be defined as a wide variety of carbohydrate-
binding proteins and glycoproteins from viruses, bac-
teria, fungi, protista, plants, and animals [141]. Lectins
found in snake venom mainly affect blood coagulation
pathways [142] and can also act as anti-angiogenic com-
pounds [143]. In caterpillars, lectins are known to func-
tion as anticoagulants as in the Lonomia venom [92],
but may also possess a myotoxic effect as in stonefish
venom [144]. To date, tick lectin research has mainly
focused on its roles in tick innate immunity (for revision
see [145,146]). Earlier studies, however, showed that R.
microplus saliva possesses lectin activity and induces im-
munosuppression in mice [147]. Additionally, Rego and
colleagues [66,148] reported four tick lectins, two from
O. moubata (Dorin M and OMFREP) and two from 1L
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ricinus (Ixoderin A and Ixoderin B). Based on phylogen-
etic analysis and expression pattern, a putative role in
tick innate immunity was assigned to Ixoderin A and
OMEREP. The role of Ixoderin B still remains unknown
since it was exclusively expressed in the salivary glands
and presented sequence divergence compared with Ixo-
derin A and OMEFREP. Figure 7A depicts these tick
lectins compared with ryncolinl from the venom of the
dog-faced water snake, Cerberus rynchops (all structures
have <1.8 A root mean square deviation; Figure 7B),
which was suggested to induce platelet aggregation
and/or initiate complement activation [149]. We note
that IxoderinB also (as in Kunitz and PLA,) does not
possess the archetypal disulfide bridge pattern (II;
Figure 7A). In addition to its sequence divergence to
Ixoderin A and OMFREP, the missing disulfide bridge
of IxoderinB may cause a more flexible fold thus
diversifying its target(s).

A comparison of salivary proteins from humans and ticks
In order to compare the saliva of ticks to the saliva of a
non-venomous animal we established a comparison

Ryncolin1

for each structure is presented on the right).

Figure 7 Tertiary structures of tick salivary lectins. Panel A displays five predicted tertiary structures ryncolin1 from snake venom (UniProt:
D8VNS?) and four tick lectins, IxoderinA, IxoderinB, DorinM, OMFREP (respective UniProt: IBLAP5, Q5IUW6, Q7YXMO and Q8MUC2). The tertiary
structures depict the conserved disulfide bridges (indicated by roman numerals), loops, 3-sheets that forms the B-hairpin, and the a-helix. All
structures are colored from the N-terminus (blue) to the C-terminus (red). Below each tertiary structure is the respective electrostatic potential in
180° turns (blue = positive; red = negative; white = neutral). A tertiary structural alignment in Panel B depicts the Ca protein backbone (color codes

® Ryncolin1
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between human and tick salivary systems. Recent prote-
omic studies have identified a total of 2698 proteins in
human saliva (revised in [150]). The major protein com-
ponents of human saliva are amylase, carbonic anhy-
drase, mucins, cystatins, proline-rich proteins, histatins,
statherins and antibodies (revised in [150]), but it also
contains defensins, lactoperoxidases, lysozymes and lac-
toferrins [151]. The complexity of the saliva from non-
venomous animals (e.g., humans) is akin to that of ticks,
but there are major differences in the molecular func-
tions, the structure and the electrostatic potential of
common salivary protein families. The two salivary sys-
tems present similar components such as lysozymes,
cystatins, lipocalins, defensins and PLA2s. There are
also differences, for example, human saliva possesses
histatins and statherins, but these proteins have not
been found in tick saliva. Despite that human salivary
glands and the Kunitz protein family have been scientif-
ically investigated for some time, the authors are un-
aware of any reports indicating the presence of Kunitz
peptides (i.e., the archetypal 60 aa long peptide) in
human saliva. The main reports for human Kunitz (also
found in saliva) are of domains from larger proteins,
e.g., immunoglobulins. Additionally, although the lectin
intelectin-1 (UniProt: QQWWAUO) has been found in hu-
man saliva, its specific tertiary structure may drastically
differ from those currently reported since a PSI-BLAST
against the PDB was unable to retrieve a homologous
structure and thus we were unable to model this human
salivary lectin. In addition, human saliva does not present
any allergen-like molecules; as are found in tick saliva.
These differences are not surprising if we consider the dif-
ferent alimentary regimes these two species have and the
molecular functions these two salivary systems need to
perform. The phylogenetic distance between human
and ticks maybe the most rational explanation for such
differences. The salivary composition of the venomous
mammal D. rotundus, however, is similar to ticks. D.
rotundus salivary glands possess both Kunitz proteins
and allergen-like molecules, while also possessing
humans salivary components, like statherins and lyso-
zymes [44]. As discussed above, this suggests that ven-
omous animals recruit in their salivary glands a special
set of proteins with specific venomous functions.

For the protein families we report here, the available
tertiary structures for humans (and those we were able
to model) are cystatins, defensins, lipocalins and PLA2
(Figure 8). There seems to be a bimodal diversity among
these salivary protein families. Figure 8 shows that cysta-
tins and lipocalins are structurally conserved, however,
the electrostatic potential differs considerably — as dra-
matically displayed in OmCI. The opposite is seen for
defensins and PLA2s — similar electrostatic potential
surface with dissimilar tertiary structures. This bimodal
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diversity is also evidenced within these protein families
from venomous organisms compared to their human
counterparts. The defensin crotamine, for instance (Figure 4),
is structurally similar to human (-defensinl (Figure 8),
but their electrostatic potential and landscape differs (cro-
tamine being more basic). It is worth mentioning that the
tick salivary proteins depicted in Figure 8 are from some
of the toxicoses-inducing ticks represented in Figure 1.

Considerations on the most recent common ancestor of
Parasitiformes and Pseudoscorpiones
Given the evidence provided in the previous sections, we
find it necessary to reconsider ticks as venomous ecto-
parasites due its salivary properties and its evolutionary
implications. Arthropods represent a major component
of the biodiversity of life on Earth and venom systems,
as an evolutionary adaptation, appear many times in
Arthropoda (e.g., spiders, scorpions, wasp, bees and
flies). With a few exceptions in Hexapoda (i.e., bees and
some wasps), the main function of venomous molecular
systems amongst Arthropods is to assist in predation
[47]. Ticks are haematophagous Arachnids and, based
on morphological characteristics, it has been argued that
Holothyrida is the sister taxa of Ixodida [18]. This evolu-
tionary relationship with Holotryrida, free-living mites
that mainly feed on the body fluids of dead arthropods
[152], has lead to inferences regarding the feeding habits
of the most recent common ancestor (MRCA) of ticks,
which has been described as a saprophytic organism
[153] or a scavenger in which haematophagy evolved
subsequently [81]. Entomophagy was another type of
predatory behavior proposed for the MRCA of ticks and
the cannibalism observed in some soft tick species was
an argument in favor of this hypothesis [81].
Haematophagy has evolved several times from preda-
tion in Insecta; for example, triatomine and cimicid bugs
evolved from predatory heteropterans and Symphoro-
myia (and other hemathophagous flies) evolved from
predatory ones [154]. The characteristics of the MRCA
of ticks are paramount in understanding the evolution of
tick salivary constituents. Recently, by using maximum
likelihood, Bayesian and parsimony analyses of over 41
kilobases of DNA sequence from 62 single-copy nuclear
protein-coding genes, Regier and colleagues [9] pre-
sented a strong, revised and actualized phylogeny of
Arthropoda. In these phylogenetic analyses, Parasitiformes
(Acari) appears as a sister group of Pseudoscorpions
(Figure 9A). The phylogenetic position of Pseudoscorpions
in Chelicerata has caused large debate in recent years. By
using 2907 amino acids from 13 different proteins, an-
other series of phylogenetic analyses by Ovchinnikov and
Masta [155] also showed that Pseudoscorpions, although
not a sister group, are closely related to Parasitiformes.
From both studies [9,155], we could certainly infer that
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Cystatins

backbone (color codes for each structure is presented on the right).

Figure 8 Human and tick salivary proteins. The panel shows tick salivary proteins described in the previous figures compared with the crystal
structures of human cystainD (PDB: 1ROA), 3-defensin1 (PDB: 11JU), and lipocalin2 (PDB: 3BX8). The human salivary PLA2, GroupV (PLA2V; GenBank:
AAH36792) was modeled. The tertiary structures depict the conserved disulfide bridges (indicated by roman numerals), loops, B-sheets that forms
the B-hairpin, and the a-helices. All structures are colored from the N-terminus (blue) to the C-terminus (red). Below each tertiary structure is the
respective electrostatic potential in 180° turns (blue = positive; red = negative; white = neutral) and tertiary structural alignment of the Ca protein

Pseudoscorpions and ticks share a recent common
ancestor.

Pseudoscorpions are venomous members of Chelicer-
ata [156] that, together with spiders and scorpions [2],
constitute well-known examples of venomous animals
amongst Chelicerata. Our working hypothesis is that the
MRCA of ticks was a venomous predator of smaller
preys that later evolved to feed on larger vertebrates. In
agreement with this, the feeding plasticity (as a capacity
of feeding on several hosts) of the tick ancestor was

recently suggested [157]. The convergence of several
protein families between tick saliva and the venom of
spiders and scorpions is shown in Figure 9A. This sug-
gests a common origin in the venom systems of these
three taxa (pseudoscorpions were not included in the
comparison due to a lack of information regarding the
venom composition of this species). Additionally, ticks
are questing animals that will move actively in order to
find their hosts [158-160]. Questing behavior constitute
an important trait of tick ecology [158]. The evolution of
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Haller's organ

questing behavior is closely related to the evolution of
sensory organs like the Haller’s organ [161]. We found
striking similarities in the questing behavior and position
of sensory organs of ticks compared to the hunting be-
havior and position of sensory organs [162] of venomous
spiders (Figure 9B).

Conclusion

The literature has split the saliva of haematophagous ani-
mals into those who consider the saliva as venomous and
those that consider it as a special kind of saliva or a com-
plex cocktail of bioactive components. Just last year (2013)
the Journal of Proteomics published two investigations on

the salivary gland components of the haematophagous bat
Desmodus rotundus, where one refers to it as venomous
[44] and the other simply as salivary components [45]. In
tick research, the literature predominantly considers tick
saliva as a complex cocktail of bioactive components and
the toxicoses induced by ticks are mainly discussed in the
context of paralysis. These claims narrow the ecological
implications of the venomous relationship between ticks
and their hosts. To classify ticks as mere ectoparasites is
limited and underestimates the venomous structure of
multigenic protein families in tick saliva. Therefore, we
propose to consider ticks as venomous ectoparasites based
on the intrinsic properties of tick saliva.
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Methods

Tertiary protein modeling, structural alignment and
electrostatic potential

Predicted tertiary models were generated using the Phyre2
server [163]. All predicted models were then refined via
minimization and hydrogen-bond network was optimized
by means of side chain sampling using the Schrodinger’s
Maestro Protein Preparation Wizard [164]. The structural
deviations (root mean square deviation) were calculated
using the protein structural alignment tool, from the
Maestro software. Electrostatic potentials were calcu-
lated using the Poisson-Boltzmann equation also imple-
mented in the Maestro software.
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