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Abstract 

Background Rapid identification and classification of bats are critical for practical applications. However, spe-
cies identification of bats is a typically detrimental and time-consuming manual task that depends on taxonomists 
and well-trained experts. Deep Convolutional Neural Networks (DCNNs) provide a practical approach for the extrac-
tion of the visual features and classification of objects, with potential application for bat classification.

Results In this study, we investigated the capability of deep learning models to classify 7 horseshoe bat taxa (CHI-
ROPTERA: Rhinolophus) from Southern China. We constructed an image dataset of 879 front, oblique, and lateral 
targeted facial images of live individuals collected during surveys between 2012 and 2021. All images were taken 
using a standard photograph protocol and setting aimed at enhancing the effectiveness of the DCNNs classifica-
tion. The results demonstrated that our customized VGG16-CBAM model achieved up to 92.15% classification 
accuracy with better performance than other mainstream models. Furthermore, the Grad-CAM visualization reveals 
that the model pays more attention to the taxonomic key regions in the decision-making process, and these regions 
are often preferred by bat taxonomists for the classification of horseshoe bats, corroborating the validity of our 
methods.

Conclusion Our finding will inspire further research on image-based automatic classification of chiropteran species 
for early detection and potential application in taxonomy.
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Introduction
Horseshoe bats (CHIROPTERA: Rhinolophidae: Rhi-
nolophus), comprise over 100 extant insectivorous spe-
cies with large ears and delicate noseleaves distributed 
throughout the Old World [1]. They play an important 
role in ecological functioning, but their taxonomic identi-
fication can be challenging due to high inter-species simi-
larity and intra-species variations [1–3]. The unique and 
characteristic noseleaf structure on their muzzles, with 
delicate variations in shape and size, has long served as 
a key feature for taxonomic classification [1, 2]. Recently, 
horseshoe bats have been found to be natural reservoirs 
of coronaviruses that can cause highly contagious respir-
atory diseases in humans, including SARSr-CoV, MERSr-
CoV, and 2019-nCoV [4–7]. Horseshoe bats are ranked 
as one of the potential hosts for monitoring and control 
of epidemic diseases. However, a significant challenge is 
species identification for monitoring. Traditionally, chi-
ropteran taxonomists identify species by morphological 
characteristics, and molecular techniques are utilized to 
assist in the species identification of highly similar spe-
cies. The identification of chiropterans thus relies heavily 
on experts and involves laborious and time-consuming 
procedures. However, this process has become increas-
ingly challenging due to a shortage of taxonomists spe-
cializing in chiropteran classification [8–10].

In the era of big data, image recognition has drawn 
the attention of many biological disciplines, including 
species identification, individual recognition, ecological 
monitoring, and behavior classification [11–18]. This task 
can be difficult due to the complexities involved in locat-
ing, extracting, and distinguishing these features from 
an image, along with recognizing the unique and distin-
guishable characteristic features of an object. Fortunately, 
recent studies have yielded promising results that high-
light the potential applications. For example, Peng et al. 
[19] proposed an object-part attention model for weakly 
supervised fine-grained image classification (FGIC), 
which aims to address the challenge of identifying the 
relationship between positioning and identification. 
Recently, Li et  al. [20] improved the convergence speed 
and accuracy of the VGG network for vegetable recogni-
tion and classification by combining the output features 
of the first fully connected layers and adding batch nor-
malization (BN) layers. Guo et  al. [21] designed a tri-
attention network for detecting, identifying, and tracking 
individuals from videos or still frames of multiple species. 
This approach achieved an accuracy of 98.70% in facial 
recognition and 92.01% in individual identification. The 
challenge other than general image classification lies in 
localizing and representing the subtle visual differences 
within various sub-categories, which appear extensively 
in biological classification. Locating discriminative parts 

is a key to solving FGIC problems. Attention mechanism 
can boost the Convolutional Neural Networks’ (CNN) 
ability to map and recognize fine features of objects. The 
convolutional block attention module (CBAM) is light-
weight and flexible. It can be easily integrated into any 
CNN architecture and is a simple yet effective choice for 
improving model performance [22, 23]. However, there is 
a growing need to overcome the "black box" dilemma in 
machine learning, particularly in visualizing image infor-
mation and discriminating regions in the convolution 
layer of the algorithm. Park et al. [24] utilized the Deep 
Convolutional Neural Networks (DCNNs) for mosquito 
classification, achieving up to 97% accuracy. They fur-
ther enhanced the model’s interpretability by visualizing 
discriminative regions using Grad-CAM. This approach 
demonstrated similarity in leveraging morphological fea-
tures between deep learning models and human experts. 
These studies mentioned above demonstrate that image 
classification techniques have promising potential for 
application in horseshoe bat classification.

In this study, we aimed to explore the effectiveness of 
the attention mechanism in the VGG16 model for bat 
species classification. Specifically, we were interested in 
exploring the ability of the CBAM module to classify 7 
common horseshoe bat taxa that exhibit a high degree 
of interspecific similarity and intraspecific variation. To 
minimize the computational resources required by the 
fully-connected layer of VGG16, we modified this layer 
and adopted global average pooling as the regularization 
means. This adjustment significantly reduced the num-
ber of parameters as well as the computational effort of 
our network model. In addition, we used the Grad-CAM 
methods to test whether the visual features captured by 
the attention mechanism matched the morphological 
keys used by human experts. Lastly, we compared our 
network model with other mainstream models for bat 
classification, analyzing their respective advantages and 
shortcomings. Our findings provide insights for improv-
ing the accuracy of species classification in horseshoe 
bats.

Materials and methods
Image acquisition and training data set processing
Given recent vast variations in the taxonomic system of 
Chinese bat, we adopt the taxonomic system of Wilson 
and Mittermeier [1] and Wei [25]. Our image data con-
sisted of photos of living specimens of 7 common Rhi-
nolophus bat taxa inhabiting South China. The images 
were collected between 2012 and 2021 during field sur-
veys and included the following species: Rhinolophus 
affinis, R. macrotis, R. nippon, R. pearsonii, R. pernigei, 
R. pusillus, and R. sinicus. Some easily identified species, 
such as R. pernigei, R. pearsonii and R. pusillus, these 
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specimens were identified by carefully observing their 
morphological characteristics, taking photos, and releas-
ing. For the remaining individuals, we first took photos 
and then released or kept a few specimens to obtain 
their CoI, Cytb, or D-loop genes by using molecular tech-
niques to identify them. Permissions for the field sur-
veys in these regions were granted by the related nature 
reserve administrations and/or the National Forestry and 
Grassland Administration of China. All samples were 
captured by following the laws and regulations of China 
for the implementation of the protection of terrestrial 
wild animals. Photographs of the specimens including 
front, oblique, and lateral views were taken using a Nikon 
D300s/D750/D810 camera with a Micro-Nikkor 105 mm 
f/2.8G lens under a black background and a built-in flash-
light to reduce the influence of environmental light. Each 
original image for each specimen, a totaling 879 photos, 
has a resolution of minimum 4288 × 2848 pixels with 
24-bit RGB channels.

In order to evaluate the model’s performance, approxi-
mately one-third of the dataset was randomly selected 
as the testing set, while the remaining images were used 
for the training set. To increase the size of the training 
set and prevent overfitting, we employed image augmen-
tation techniques by using GridMask [26] and Imgagu 
library including Lambda, GaussianNoise, WithChan-
nels, and GaussianBlur functions. The GridMask was 
used to augment image diversity by randomly deleting 
regions of the input images. We then applied the Lambda 
function to replace every fourth row of the images with 
black pixels, and the GaussianNoise function to intro-
duce Gaussian noise, adding complexity to the images. 
Additionally, the WithChannels function was used to 
rotate the red channel of the image by 45 degrees. Finally, 
the GaussianBlur function was employed to blur the 
images using the Gaussian kernel. All images were fur-
ther normalized to 224 × 224 pixels. These combined 
techniques were applied during training, which provided 
a more varied and challenging dataset for our machine-
learning model.

Construction of VGG16‑CBAM and Grad‑CAM
Our customized network model is illustrated in Fig.  1. 
We chose VGG16 [27] with BN [28] as our base model 
since it has a strong feature extraction capability and has 
been widely used in image classification tasks. BN was 
used in VGG16 because it could alleviate the problem of 
gradient disappearance, act as a regularizer, and speed up 
the training process of the network, and extraction capa-
bility and has been widely used in image classification 
tasks.

To improve the representation power of VGG16 and 
the accuracy of our Rhinolophus classification task, we 

added the lightweight attention mechanism CBAM to the 
VGG16 model. The challenge of increasing the number of 
layers in deep neural network models, such as VGG16, is 
the potential emergence of the “vanishing gradient” prob-
lem. This issue occurs when the gradients become too 
small during backpropagation and fail to effectively prop-
agate through the shallow layers, resulting in poor train-
ing of those layers. To address this, we incorporated two 
residual blocks containing CBAM into VGG16 instead of 
directly attaching CBAM, which enabled a direct path for 
the backpropagation of the gradient. The residual blocks 
were inserted after the third and fourth max-pooling 
layers, and they consisted of convolutional layers and 
CBAM, which utilized a 7 × 7 convolutional kernel, with 
256 and 512 convolutional kernels in the first and second 
residual blocks, respectively. Furthermore, the convolu-
tional layer before the CBAM could benefit the attention 
module by aggregating deeper layer information.

Additionally, the fully connected layer of the VGG16 
model had many parameters, which consumed signifi-
cant memory and computational resources. Moreover, an 
effective method to prevent the gradient from disappear-
ing is lacking [29]. To address these issues, we replaced 
the fully connected layer with a convolutional layer con-
taining 1024 1 × 1 convolutional kernels, followed by 
a global average pooling (GAP) [30] operation on the 
resulting feature map. The output was performed after 
the fully connected layer consisting of 7 neurons and 
SoftMax function in turn. By using global average pool-
ing instead of a fully connected layer, we mitigated the 
risk of overfitting and improved the network’s ability to 
generalize to new data.

The CBAM sequentially adopts a channel attention 
module (CAM) and a spatial attention module (SAM), 
which emphasizes the meaningful information along the 
channel and spatial axes (Fig. 2). The CAM squeezes the 
spatial dimension to aggregate information by max-pool-
ing and average-pooling. Then, it utilizes the results with 
a shared MLP to produce the channel attention map. 

Fig. 1 Architecture of the VGG16-CBAM developed for identifying 
and classifying 7 common Rhinolophus species from southern China
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Different from CAM, SAM squeezes the channel dimen-
sion by two pooling operations and sends the concatenate 
results to the convolutional layer for a spatial attention 
map. We further visualized the features of our model that 
were concentrated via the Grad-CAM [31], allowing us 
to determine which image regions were important in the 
classification decision.

Training model
Model training is a technique for finding the optimal 
parameters of a machine learning model, such as a neural 
network. The goal of model training is to minimize the 
error between the model’s predictions and the true labels 
of the data, also known as the loss function. The loss 
function quantifies how well the model fits the data and 
guides the model update process. In this process, we 
chose Cross-Entropy as the loss function, which is widely 
used for classification tasks. Equation (1) shows the for-
mula for the Cross-Entropy loss function.

where K  is the number of classes, fk(x) is the probability 
that the model assigns to the k-th class, and yk is either 0 
or 1 indicating whether the k-th class is the correct one.

The optimizer is the algorithm that updates the model’s 
parameters based on the loss function and the gradients. In 
training process, we chose the Stochastic Gradient Descent 
(SGD) algorithm as the optimizer, which is fast and easy to 
implement and the most widely used optimizer. It updates 
the model’s parameters by subtracting the learning rate 

(1)LCE f (x), y =

K

k=1

−yk · logfk(x)

times the gradient, and Eq. (2) shows the formula for SGD. 
The learning rate was set to 0.01 at the beginning of train-
ing, and every 20 epochs the learning rate was updated to 
the original 0.75.

where θt is the model’s parameter at step t, α is the learn-
ing rate, L is the loss function, xt and yt are the input and 
output of a randomly selected training example, and ∇θ is 
the gradient operator to θ.

Evaluation model
Once the model was trained, we validated the model by 
feeding the test set into the model for prediction and then 
calculating the accuracy of the model. Considering the 
number of images is too small to accurately validate the 
model using a hold-out approach, we have implemented a 
K-Fold cross-validation strategy to compare model perfor-
mance more accurately. K-Fold Cross-validation involves 
partitioning the dataset into multiple subsets, training the 
model on different combinations of these subsets, and then 
averaging these results. This approach allows for a more 
robust assessment, particularly when dealing with a smaller 
number of images.

To further evaluate the performance of our proposed 
model, it was compared against five mainstream convo-
lutional neural networks, including AlexNet [32], Mobile-
NetV2 [33], ResNet50 [34], ViT-B/16 [35]. All models 
mentioned above used an open-source machine learning 
framework PyTorch. All were carried out with Python run-
ning on an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz 
and NVIDIA Corporation GV100 [TITAN V] GPU.

Except for Params, Floating Point Operations (FLOPs) 
and accuracy, we also used F1 score to evaluate these six 
models. Accuracy is the most intuitive indicator of a mod-
el’s classification performance and is defined as the ratio 
of the number of samples correctly predicted to the total 
number of samples predicted. Precision is defined as the 
ratio of true positive samples to the number of all samples 
that were predicted to be positive. Recall is defined as the 
ratio of the number of true positive samples to the number 
of samples actually labeled as positive. F1 score is mainly 
used to measure both precision and recall, which is defined 
as the ratio of the product of twice the precision and recall 
to the sum of precision and recall. Equations  (3, 4, 5 and 
6) show the formulas for accuracy, precision, recall, and F1 
score respectively.

(2)θt+1 = θt − α · ∇θL
(

θt , xt , yt
)

(3)Accuracy = TP+TN
TP+FP+TN+FN

(4)Precision =
TP

TP+FP

Fig. 2 Architecture of the residual block and CBAM developed 
for identifying and classifying 7 common Rhinolophus species 
from southern China. The residual block consists of a convolutional 
layer and CBAM. CBAM has two sequential submodules: a channel 
attention module and a spatial attention module
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where TP indicates the number of samples predicted to 
be true positive, FP indicates the number of samples pre-
dicted to be false positive, TN indicates the number of 
samples predicted to be true negative, FN indicates the 
number of samples predicted to be false negative.

The receiver operating characteristic (ROC) curve, train-
ing and validation loss and accuracy curves are other com-
monly used methods to evaluate the performance of the 
classification model. The ROC curve plots the true positive 
rate (TPR) against the false positive rate (FPR) for differ-
ent classification thresholds. A good classifier has a curve 
that closely follows the top-left corner of the plot, indicat-
ing high TPR and low FPR. The area under the curve (AUC) 
is a scalar metric that summarizes the overall performance 
of the ROC curve. A larger area under the ROC curve rep-
resents a better classification effect; thus, a larger value of 
AUC correlates to a better quality of the model. In addition, 
the training and validation loss and accuracy curves for dif-
ferent CNN models were used to assess their performance 
during the training process. During model training, we used 
the cross-entropy loss function, a classical loss function in 
multi-classification tasks. The loss function estimates the 
degree of inconsistency between the predicted and true val-
ues of the model, and a lower value indicates that the model 
is learning better. For all models, we plotted these ROC 
curve, loss function and accuracy by using Matplotlib.

Results
The image data set
For 7 Rhinolophus species, we collected a total of 879 
images (Table  1), with an average of 125 images per 
species. More than half of the species have at least 100 
images, ranging from 56 to 190. For these images, two-
thirds of the data set (586 images) was randomly selected 

(5)Recall = TP
TP+FN

(6)F1 score = 2 ∗ Precision ∗ Recall
Precision+Recall

as the original testing data, while the remaining images 
were used for test data. After using image augmenta-
tion techniques, the total training data increases fivefold, 
with an average of approximately 182 images per species. 
Therefore, our study included a total of 1573 images, with 
1280 images used for training models and 293 images 
used for testing models (Table 1).

VGG16‑CBAM model performance in 7 Rhinolophus species
It can be seen that VGG16-CBAM achieved a prediction 
accuracy of more than 90% for most Rhinolophus species, 
and achieved a promising prediction accuracy of 92.15% 
from the confusion matrix (Fig. 3). The accuracy of Rhi-
nolophus pernigei is 100%, which is highest than other 
Rhinolophus species. However, there were some misiden-
tifications for samples from most species. Samples from 
R. pusillus were the most difficult to classify, with only 
84% accuracy. Of those misclassified, 6% were identified 
as R. macrotis, and 5% were identified as R. sinicus.

Comparison of models
The evaluation values of our proposed VGG16-CBAM 
model and other CNNs on prediction indicated that our 
proposed model achieved better performance in our Rhi-
nolophus classification task (Table  2). The F1 score of 
the VGG16-CBAM was 93.09%, the highest among all 
tested models. Compared with the VGG16 model, our 
proposed model VGG16-CBAM model achieved a 1.02% 
improvement in accuracy, while significantly reduc-
ing the number of parameters and the computational 
effort. It maintained only 22.7% of the original number 
of parameters and 66.0% of the original FLOPs. VGG16-
CBAM for each species also had a more than 86% F1 
score in the classification (Table  3). Moreover, we split 
the data into five different test sets as non-repetitively 
as possible, and tested each data set separately, aver-
aging the results obtained was 93.52%, and the devia-
tion between the results obtained for each test set and 
the average value did not exceed ± 0.69% (Fig.  4). By 

Table 1 The number of training sets and test sets

Number of original 
images

Number of original  
training sets

Number of images in final 
training sets

Number of 
images in test 
sets

Rhinolophus affinis 89 59 145 30

R. macrotis 176 117 315 59

R. nippon 91 61 141 30

R. pearsonii 127 85 186 42

R. pernigei 56 36 143 20

R. pusillus 190 128 183 62

R. sinicus 150 100 167 50

Total 879 586 1280 293
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incorporating cross-validation, we further accurately val-
idate our model.

Among the ROC curves and calculated the AUC val-
ues of six different CNN models, VGG16 and VGG16-
CBAM had better performance, with VGG16-CBAM 
achieving an AUC of 0.984 and VGG16 achieving an 
AUC of 0.981 (Fig. 5). These results further demonstrated 
the good performance of our proposed model for Rhi-
nolophus classification. The VGG16-CBAM model had 
the lowest training loss and highest validation accuracy 
compared to the other models (Fig.  6). This suggested 
that the VGG16-CBAM model had the best ability to fit 
the training data and generalize to new data. Further-
more, the proximity of the training and validation curves 
of the VGG16-CBAM model suggested that the model 
did not overfit the training data. Overall, the training and 
validation curves provided additional evidence that the 
VGG16-CBAM model outperformed the other models in 
terms of both training and validation metrics (Fig. 6).

Visualization of discriminative regions
The Grad-CAM visualization method is a valuable tool 
to analyze the performance of different network archi-
tectures. It uses gradients to produce a localization map 
highlighting the important regions in the image, which 
enables the determination of the features used by the 
network for recognition and classification. Our VGG16-
CBAM model could locate and identify the discrimina-
tive objects and parts of bats, including ear and noseleaf 
structures, which could contribute to its superior classi-
fication accuracy (Fig. 7 and Table 4). The P values of all 
models in different species are more than 0.9, except for 
AlexNet (P = 0.47) and MobileNetV2 (P = 0.63) models in 
R. pusillus and ViT-B/16 (P = 0.53) in R. nippon (Fig. 7).

We observe that unlike traditional CNNs, which con-
centrate on patches of feature regions, ViT-B/16 with 
transformer architecture emphasizes more dispersed 
feature regions. Meanwhile the higher error rates of 
AlexNet (17.74%) and ViT-B/16 (16.72%), in both cases 
focus on the background area and ignore the features of 
the bats themselves (Fig.  7). For the better performing 
models, the region of interest was mainly on the face of 
the bat, but we note that the regions of interest of these 
models cross but are not identical, for example, on the R. 
nippon image, the region of interest of MobileNetV2 con-
tains the ear and the face, VGG16 focuses on the face and 
some body parts, while VGG16-CBAM mainly focuses 
on the noseleaf and face (Fig. 7). Meanwhile, we note that 
VGG16 clearly shows that the model mainly focuses on 
the noseleaf and mouth, but also focuses more on the ear 
when judging the image shown in R. pernigei. In addi-
tion, MobileNetV2 focuses on a larger feature area (more 
features of interest), while VGG16-CBAM and VGG16 

Fig. 3 Confusion matrix of the VGG16-CBAM. The horizontal axis 
is the predicted label, and the vertical axis is the true label

Table 2 Comparison of different networks on 7 Rhinolophus 
species classifications. Params denote the number of parameters 
of the model; FLOPs is understood as the amount of computation 
and can be used to measure the complexity of the model, and 
the unit of throughput is images. F1 score is the ratio of the 
product of twice the precision and recall to the sum of precision 
and recall

Params FLOPs Accuracy F1 Score

AlexNet 61.10 M 715.54 M 82.26% 82.54%

ViT-B/16 86.56M 17.56G 83.28% 83.82%

ResNet50 25.56 M 4.12G 89.08% 89.52%

MobileNetV2 3.50 M 320.24 M 90.78% 90.92%

VGG16 138.37 M 31.01G 91.13% 91.17%

VGG16‑CBAM 31.35 M 20.47G 92.15% 93.09%

Table 3 Precision, recall and F1 score of the VGG16-CBAM 
model for each species. The F1 score here refers to the macro 
F1 score, which is calculated for each category first and then 
averaged

Species Precision Recall F1 score

Rhinolophus affinis 90.00% 90.00% 90.00%

R. macrotis 93.44% 96.61% 95.00%

R. nippon 100% 93.33% 96.55%

R. pearsonii 93.02% 95.24% 94.12%

R. pernigei 100% 100% 100%

R. pusillus 89.66% 83.87% 86.67%

R. sinicus 86.72% 92.00% 89.32%
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focus on more concentrated areas compared to the for-
mer (Fig. 7).

Discussion
DCNNs are becoming increasingly important across 
various scientific disciplines including mammalogy, 
such as taxonomic identification [36, 37], individual 
recognition [16, 38, 39], and monitoring [40]. While 
VGG16 is a classical CNN that uses a smaller convolu-
tion kernel to increase the network depth and obtain a 
larger field of vision [41–44], its overwhelmingly large 
number of parameters requires significant memory and 

computational resources (Table 2). We also observed a 
slow convergence of the loss function and a tendency 
toward overfitting during training (Fig. 6). After intro-
ducing CBAM and modifying the fully connected layer 
of VGG16 by adding a convolutional layer and global 
average pooling to reduce the number of parameters 
and improve regularization, VGG16-CBAM achieved 
the highest classification accuracy of 92.15%, out-
performing other popular models such as VGG16, 
AlexNet, MobileNetV2, and ResNet50 (Fig.  5 and 
Table  2). In our model, R. pernigei can achieve 100% 
accuracy, suggesting that this species is easy to identify, 
and distinct from other 6 species. Considering taxo-
nomic identification, this species, owing to its superior 
body size, is undoubtedly the most distinguishable 
among the seven Rhinolophus species, attributable to 
its highly specialized noseleaf lobes and comparatively 
larger ear (Table  4 and Fig.  8) [1]. But, our confusion 
matrix of VGG16-CBAM indicated misclassification 
within cases in some species, e.g., R. affinis (10%), R. 
pusillus (16%), and R. pearsonii (5%). Our model con-
fused R. affinis with R. sinicus and R. pusillus due to the 
procession of the broad horseshoe with well-defined 
emargination and lost details caused by the resolution 
reduction protocol. Notably, these misclassified species 
could also be distinguished by their external measure-
ments such as the length of the forearm or length of the 
ear (Table  4 and Fig.  8). We believe the utilization of 
various data and evidence (e.g., morphological meas-
urements, good-quality images covering potential key 
regions, echolocation signals, etc.) could improve the 
accuracy of species recognition.

Fig. 4 K-Fold cross-validation. The horizontal axis is five different test set splits, and the vertical axis is the accuracy

Fig. 5 Receiver operating characteristic (ROC) curve and area 
under the curve (AUC) values of different CNNs. The horizontal axis 
is the false positive rate and the vertical axis is the true positive



Page 8 of 13Cao et al. Frontiers in Zoology           (2024) 21:10 

The training data are the foundation of the deep learn-
ing task in species recognition [32]. A larger training 
data set can provide a more comprehensive representa-
tion of the species, including various characteristics, 
environments, and lighting conditions, which substan-
tially enhance the model’s ability to learn and prevent the 
model from overfitting [45]. Therefore, the emphasis on 
training dataset size is not only a matter of quantity but 
also a strategic approach to improve model generaliza-
tion and reliability. In our study, we also recognized the 
importance of dataset size in training. The 879 images of 
7 Rhinolophus bat species, as listed in Tables 1 and 4, rep-
resent one of the largest known image datasets thus far 
for fine-grained classification of bats. However, it remains 
insufficient for the demands of CNNs. To counterbalance 
this limitation, we strategically employed a range of data 
augmentation techniques, such as grid-like masking over 
images, random noise and blurring, rotation images, and 
color transformation [26, 46]. After enriching our train-
ing dataset to add 694 images, all models performed with 
high accuracy from 82.26% to 92.15%, suggesting that the 
integration of these methods to enrich the training data-
set could improve the model’s accuracy and generaliza-
tion ability. Our study also highlights the importance of 
employing various methods to process images during 
model training, providing a range of possibilities to train 
the best model [47–52].

One method to comprehend what is being learned by 
the DCNNs is to visualize the feature heat maps [53, 54]. 
Grad-CAM visualization could provide insights into the 
model’s decision-making process and highlight the areas 
of an image that are most influential in determining the 
predicted class [55]. The high SoftMax score was poten-
tially achieved because we have fewer categories and our 
background was relatively homogeneous, which had less 

influence on the network classification. The success of 
this recognition and classification task relied on learn-
ing the correct features with discriminative power, and 
our model achieved this. Nevertheless, the Grad-CAM 
method is not without its constraints. It adeptly dis-
cerns superior from inferior models, yet struggles to the 
proficient models. Despite these limitations, it is irrefu-
table that in certain cases, the model’s visualization has 
sparked innovative ideas for novel classification meth-
odologies. This result indicates that the application of 
DCNNs could facilitate new avenues for the development 
and optimization of future classification systems. Mean-
while, it was observed that that DCNN models appeared 
to capture specific individual traits, such as fur color, the 
characteristics, and relative sizes of horseshoe, nose, and 
ear. These features are less employed in classification of 
horseshoe bat (Figs.  6 and 8, Table  4). The distinctions 
observed in these assessed characteristics could stem 
from variations between two-dimensional images and 
actual three-dimensional specimens. Additionally, these 
discrepancies may not necessarily indicate genuine dif-
ferences between species, but rather differences within 
the sampled populations. These are worthy of our in-
depth study in both data sets and models.

Finally, we proposed that image recognition in deep 
learning is a promising yet rapidly evolving research field 
with varying effectiveness and performance across differ-
ent models and architectures [56]. To achieve accurate 
taxonomic classification using image recognition algo-
rithms, machine learning experts and taxonomists need 
to cooperate intimately and explore the compatible mod-
els tailored to their specific circumstances [24]. Another 
concern regarding simple application scenarios involves 
creating a lightweight, efficient, and portable app or 
software [57]. In the era of artificial intelligence and big 

Fig. 6 The loss function (A) and test accuracy (B) for six models
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data, taxonomists need to embrace this state-to-art tech-
nology to facilitate species discrimination and optimize 
taxonomic settings such as comparing focusing regions 
by human and model analyses. Groups without distinct 
interspecific variations (e.g., rodents, shrews, and bats) 
may be challenging for the model. Subsequently, incor-
porations of taxonomic systems/keys and optimization of 
the data sources, types, and architectures of models are 

proposed. This includes building a standardized photog-
raphy protocol, emphasizing concerning areas, minimiz-
ing background influence, or even incorporating sources 
covering more taxonomical signals (e.g., skulls, teeth, pel-
age or other external features). The development of spe-
cies identification models capable of integrating multiple 
data types such as metric data, morphological descrip-
tions, images, and sounds are recommended.

Fig. 7 Grad-CAM visualization results. The ground-truth label is shown on the top of each input image, and P denotes the Softmax score of each 
network for the ground-truth class. Note that VGG16-CBAM model locate and identify the discriminative objects and parts of bats, including ear 
and noseleaf structures. P values of all models in different species are more than 0.9, except for some species in AlexNet, MobileNetV2 and ViT-B/16
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Conclusions
In this study, we demonstrated the effectiveness of deep 
convolutional neural networks for classifying 7 horseshoe 
bat taxa with high inter-species similarity and intra-spe-
cies variations from South China. Based on 879 images 
collected from 9  years of field surveys, our model of 
VGG16-CBAM has the highest accuracy (92.15%) com-
pared with AlexNet, MobileNetV2, ResNet50, ViT-B/16, 
and VGG16. We also analyzed how deep learning mod-
els achieved this high classification accuracy by local-
izing hot discriminative regions. Our results indicated 
that deep learning models learned similar discriminators 
from the noseleaf and ear of horseshoe bats, which are 
commonly used by human experts. In the epoch of arti-
ficial intelligence, we hope our findings will inspire fur-
ther research on image-based automatic classification of 
species and potentially provide substantial advantages 
in addressing the crux within biology—identification of 
taxon—through the application of innovative methodolo-
gies and data.
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