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Abstract 

Suckermouth armoured catfish (Loricariidae) are a highly speciose and diverse freshwater fish family, which bear 
upper and lower lips forming an oral disc. Its hierarchical organisation allows the attachment to various natural 
surfaces. The discs can possess papillae of different shapes, which are supplemented, in many taxa, by small horny 
projections, i.e. unculi. Although these attachment structures and their working mechanisms, which include adhe‑
sion and interlocking, are rather well investigated in some selected species, the loricariid oral disc is unfortunately 
understudied in the majority of species, especially with regard to comparative aspects of the diverse oral structures 
and their relationship to the ecology of different species. In the present paper, we investigated the papilla and unculi 
morphologies in 67 loricariid species, which inhabit different currents and substrates. We determined four papilla 
types and eight unculi types differing by forms and sizes. Ancestral state reconstructions strongly suggest convergent 
evolution of traits. There is no obvious correlation between habitat shifts and the evolution of specific character states. 
From handling the structures and from drying artefacts we could infer some information about their material proper‑
ties. This, together with their shape, enabled us to carefully propose hypotheses about mechanisms of interactions 
of oral disc structures with natural substrates typical for respective fish species.
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Background
The suckermouth armored catfishes (Loricariidae, Siluri-
formes, Teleostei) are among the most interesting animal 
groups, because this family is, with about 1000 species 
[1], highly specious as a result of an evolutionary radia-
tion, which included convergent evolution of traits [2, 3]. 
These neotropical freshwater fish are particularly diverse 
with regard to body colorations and shapes, reflecting 
their high degree of specialisation to different habitats 
and speciation.

Loricariidae are characterized by a depressed body 
shape covered by bony plates and the modification of 
the mouth to an oral sucker disc, which is used, besides 
for feeding, for the attachment to various substrates [2, 
4–7]. In specialized species, it also facilitates climbing 
[8]. This oral disc, which can only be found in three 
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more catfish families (Astroblepidae, some genera in 
Mochokidae and in Sisoridae), is an adaptation to fast 
flowing water bodies and is used to generate nega-
tive pressure to allow surface attachment [6]. In fish 
taxa, such as Balitoridae, Gobiesocidae, Cyclopteridae, 
Liparidae, Echeneidae, and Cyprinidae, attachment 
structures and attachment mechanisms have been pre-
viously investigated [9–23].

In general, attachment mechanisms are omnipresent 
in animals, including insects [24–32], molluscs [33, 34], 
reptiles [35, 36], amphibians [37, 38], mammals [39, 40] 
and, as mentioned above, fishes [17, 41, 42].

These mechanisms are diverse and can include 
interlocking structures, such as hooks, locks, clamps 
or spacers [26], wet and dry adhesion [43, 44], and/
or suction cups [15, 17]. Depending on the attach-
ment system, physical effects as friction, mechanical 
interlocking, muscular force, viscous forces, chemical 
bonding, capillary effects, van der Waals forces, and 
electrostatic forces are involved and can lead to perma-
nent, transitory and temporary attachment time to the 
substrate [26, 45, 46].

With regard to the aquatic environment, two main 
attachment strategies, bioadhesive secretion or suction 
attachment, seem to be present as adaptation to the 
specific physical conditions [see reviews 46, 47]. Glue-
like bioadhesive secretions include complex mixtures 
of proteins, lipids and sugars and can be found in ech-
nioderms, mussels, or barnacles. Suction attachment 
involves muscular contraction to generate pressure dif-
ferences and can be found in cephalopods, some insect 
taxa, and fish. In some species, both mechanisms can 
be found, as in lottiid limpets or fish. Depending on 
the taxa, attachment is achieved by multiple points of 
interaction, as in Echniodermata or Cephalopoda, or by 
one single attachment point, as in limpets or fish [see 
review 47].

In fish, the attachment structure, i.e., the suction disc, 
represents a chamber of subatmospheric pressure to cre-
ate adhesion by suction to various substrates [7, 9, 14, 16, 
17, 41, 42, 48, 49], which can even enable climbing verti-
cal surfaces outside the water column [8, 11, 50–52].

Performance of the fish sucker depends on many dif-
ferent factors of the attachment structure itself, such 
as muscle contraction, kinematics, material proper-
ties, size, and shape [9, 15, 16, 22, 42, 53–58]. Addi-
tionally, the fish attachment ability is affected by the 
intensity of the water stream [59, 60] and the substrate 
curvature and its surface properties [13, 16, 17, 22, 48, 
59, 61–66]. During attachment, the animals maintain 
their grip by friction with structures at micro- and 
nanoscale, i.e. papillae or microvilli [16, 19, 41, 42, 48, 

67–71, 20, 21, 23]. Additionally, the mucus between 
and on these structures provides strong contribution 
to the attachment strength [72].

The whole body of the fish can be modified as ven-
tral sucker (Balitoridae, Gastromyzontidae), or the fins 
have convergently evolved to attachment structures 
(Oxudercidae, Gobiesocidae, Cyclopteridae, Liparidae, 
Echeneidae, Cyprinidae) [9–19, 66]. In Gyrinocheili-
dae, some Gobiesocidae, and suckermouth catfishes of 
Africa (Mochokidae) and South America (Loricariidae, 
Astroblepidae), the mouth structures are transformed 
to an oral sucker, allowing animals to adhere to surfaces 
while simultaneously foraging and performing respira-
tion [6, 7, 11, 15, 48, 61, 73–75]. This specialized suck-
ermouth is similar to attachment structures of other 
fish, highly textured with papillae bearing small kerati-
nized outgrowths of single epithelia cells, i.e., unculi 
[67–69, 74, 76–79].

The papillae are probably used for foraging and 
increasing the attachment capability by friction to rein-
force the seal of the disc [48, 73, 74, 76, 80]. The unculi 
can be found on top of the papillae, which are highly 
diverse in morphology among fish [67]. In Loricarii-
dae, they are potentially involved in feeding [73, 76], 
but probably increase the friction during attachment as 
well [6, 48, 67–69, 74, 81].

In general, attachment structures in fish have 
received attention in the last decades, which even ena-
bled the development of adhesive materials or gripping 
and adhesive devices [42, 56, 58, 65, 72, 82–87, 20–23, 
88].

However, in contrast to remoras, gobies, hillstream 
loaches, darters, or clingfish, which were experimen-
tally studied with regard to attachment performance 
and mechanisms [9, 16, 17, 41, 42, 49, 60, 63–66, 70, 
89], to date only a few experiments [48, 59] addresses 
the real attachment performance of the loricariid suck-
ermouth fish.

Besides of the above-mentioned references, little is 
known about the structures of the suckermouth and 
oral papillae, even though they are highly diverse [2, 
3, 7, 67, 90]. We here study the morphology of papil-
lae and unculi of 67 species and undescribed taxa from 
all kinds of habitats to pave the way for more research 
addressing the diversity of oral discs. According to their 
shape, the structures were sorted to different catego-
ries. Although, comparative studies on the attachment 
performance of these fish taxa are lacking, we here pre-
sent hypotheses on the interaction between mouth and 
substrate based on the diverse literature on attachment 
structures on different animal taxa.
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Results
Morphology of papillae
On the lower lips (Fig.  1A–D), we could differentiate 
four papilla types (Fig. 1E–H):

1. Flat papillae

This papilla is broad with a flattened tip (Fig. 1E). Each 
papilla measures between 100–200 μm in diameter and 

Fig. 1 A–D Suckermouths of selected taxa. A Ancistrus sp. L464. B Baryancistrus xanthellus. C Panaque nigrolineatus. D Chaetostoma formosae. The 
highlighted region was documented by SEM to study the papillae and unculi. E–H Types of papillae. E Flat type, Pseudohemiodon almendarizi. 
F Short type, Ancistrus sp. L464. G Medium type, Acanthicus adonis. H Long type, Hypancistrus sp. L333. The sizes of the insets relate the sizes 
of the papillae to another. Scale bars: A 6 mm; B 6.5 mm; C 10.5 mm; D 9 mm; E, F 100 µm; G, H 250 µm
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has a height of approximately 50 μm. Up to 20 papil-
lae are found on each studied area, depending on the 
size of the lip. When this papilla type is manipulated, 
the bases seem relatively flexible and the tip rather 
stiff. This pattern is detected in Ancistrus ranunculus, 
Pseudacanthicus pitanga, Crossoloricaria cephalaspis, 
Loricaria luciae, Loricaria simillima, Pseudohemio-
don almendarizi (Fig. 1E), Pterosturisoma microps, and 
Spatuloricaria puganensis.

2. Short papillae

Papillae are rather roundish in profile (Fig.  1F). They 
are of 100–200 μm diameter and 70–100 μm in height. 
When the papillae are manipulated, the tip seems 
rather flexible whereas the base seems rather stiff. This 
kind is determined for Hypoptopoma inexspectatum, 
Ancistrus sp. L464 (Fig.  1F), Chaetostoma formosae, 
Scobinancistrus aureatus, and Rineloricaria melini.

3. Medium papillae

These papillae are roundish and of medium height 
(300–400 μm) and of 100–300 μm diameter (Fig.  1G). 
The tip seems rather flexible, but the base rather stiff. 
We observed them in Otocinclus cocama, Rhinotocin-
clus isabelae, Acanthicus adonis (Fig.  1G), Peckoltia 
sabaji, Ancistomus spilomma, Ancistrus cirrhosus, 
Ancistrus dolichopterus, Ancistrus luzia, Ancistrus 
sp. L107, Ancistrus sp. L519, Baryancistrus niveatus, 
Baryancistrus xanthellus, Chaetostoma dorsale, Chae-
tostoma lineopunctatum, Dekeyseria picta, Guy-
anancistrus brevispinis, Hypancistrus contradens, 
Hypancistrus inspector, Hypancistrus sp. L174, Hypan-
cistrus zebra, Hypostomus cochliodon, Leporacanthicus 
joselimai, Leporacanthicus cf. galaxias, ‘Spectracan-
thicus’ immaculatus, Panaqolus sp. L271, Panaqolus 
sp. L351, Panaque nigrolineatus, Parancistrus nudi-
ventris, Pseudacanthicus sp. L97, Pseudacanthicus sp. 
L185, Pseudacanthicus sp. L273, Pseudacanthicus sp. 
L65, Pseudacanthicus spinosus, Pseudolithoxus dumus, 
Scobinancistrus pariolispos, Cteniloricaria platystoma, 
Farlowella oxyrryncha, Farlowella platorynchus, Hemi-
odontichthys acipenserinus, Lamontichthys filamento-
sus, Lamontichthys stibaros, Sturisomatichthys aureus, 
and Sturisomatichthys festivus.

4. Long papillae

The papillae are roundish and long (500–550 μm) and of 
80–100 μm diameter (Fig. 1H). The tip seems rather flex-
ible, but the base rather stiff. We detect long papillae in 
Ancistrus claro, Ancistrus megalostomus, Aphanotorulus 
horridus, Hypancistrus sp. L333 (Fig.  1H), Hypostomus 
bolivianus, Hypostomus laplatae, Parancistrus auran-
tiacus, Peckoltia sp. L76, Scobinancistrus raonii, Pseudo-
rinelepis genibarbis, and Rhinelepis aspera.

Morphology of unculi
We could not detect a high degree of intraspecific vari-
ability in species with more than one examined specimen 
(Additional file 1: Figure S1). Overall, we can differentiate 
eight types related to the unculi on the papillae surfaces 
(see below) (Fig. 2).

1. No unculi

Here, no small projections but a rather bulky surface of 
the papilla is found (Fig.  2A). The surface seems rather 
stiff. We observed this in Rhinotocinclus isabelae, Ancis-
trus ranunculus, Dekeyseria picta, Hypancistrus sp. L174, 
Hypancistrus zebra, Leporacanthicus joselimai, Lepora-
canthicus cf. galaxias, ‘Spectracanthicus’ immaculatus, 
Parancistrus aurantiacus, Parancistrus nudiventris, Cros-
soloricaria cephalaspis, Loricaria luciae, Loricaria simil-
lima, and Pseudohemiodon almendarizi (Fig. 2A).

2. Suction cups (no unculi)

On the central surface of the papilla, a round to oval 
structure with a thick outer bulge and an inner depres-
sion is determined (Fig. 2B). The papillae themselves vary 
from 150 to 200 μm in diameter and the structure is of 
about 50 μm in diameter. The tip of each papilla seems 
flexible and the base rather stiff. This surface structure is 
detected in Acanthicus adonis (Fig. 2B).

3. Elongated unculi with hook-like tips

Long projections of 15–20 μm length are situated in the 
centre of each papilla (Fig. 2C). Each papilla hosts 20–40 
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Fig. 2 Types of unculi. A None is present, Pseudohemiodon almendarizi. B Suction cup, Acanthicus adonis. C Hooks, Ancistrus sp. L464. D Mushrooms, 
Chaetostoma formosae. E Small mushrooms, Spatuloricaria puganensis. F Honey‑combed, Ancistrus megalostomus. G Long filaments, Pseudacanthicus 
pitanga. H Folds, Hypostomus bolivianus. Scale bars: A, H, E 100 µm; B 150 µm; C, D 15 µm; F 50 µm; G 1 mm
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single unculi, depending on the papilla size. The tips of 
the unculi are formed like a hook and most of them are 
pointed into the same direction. Tips of the hooks seem 
rather stiff, whereas the bases seem rather flexible. We 
document these unculi in Ancistrus sp. L464 (Fig.  2C) 
and Lamontichthys stibaros.

4. Mushroom-like unculi

Here, elongated unculi of 15–25 μm with flattened tips 
are found (Fig. 2D). The papillae are entirely covered with 
25–40 unculi, depending on the size of the papillae. The 
tips seem rather stiff, whereas the bases seem rather flex-
ible. This is observed in Otocinclus cocama, Ancistrus 
cirrhosus, Ancistrus claro, Ancistrus luzia, Ancistrus sp. 
L107, Ancistrus sp. L519, Chaetostoma dorsale, Chae-
tostoma formosae (Fig.  2D), Chaetostoma lineopunc-
tatum, Scobinancistrus aureatus, Scobinancistrus raonii, 
Cteniloricaria platystoma, Farlowella oxyrryncha, Far-
lowella platorynchus, Lamontichthys filamentosus, Sturi-
somatichthys aureus, and Pseudorinelepis genibarbis.

5. Small mushroom-like unculi

In some species, unculi of 10–15 μm length with flat-
tened tips are found (Fig.  2E). The papillae are covered 
with 10–15 unculi. The tips seem rather stiff, whereas 
the bases seem rather flexible. We document this type of 
unculi for Hypancistrus contradens, Rineloricaria melini, 
Hemiodontichthys acipenserinus, and Spatuloricaria pug-
anensis (Fig. 2E).

6. Honey-combed pattern

Here, the whole papilla surface (150–200 μm diameter) 
pattern is reticulated (Fig.  2F). The parts of the struc-
ture interacting with the target surface seem rather flex-
ible and the bases rather stiff. This type is determined for 
Ancistrus megalostomus (Fig. 2F).

7. Long filamentous unculi

Unculi are thin (~ 1 µm thick) and of 10 μm length 
(Fig.  2G). On each papilla, 30–40 single filaments 
are found. They seem very flexible. This surface pat-
tern is detected in Hypancistrus sp. L333, Pseuda-
canthicus pitanga (Fig.  2G), Pseudacanthicus sp. L97, 
Pseudacanthicus sp. L185, Pseudacanthicus sp. L273, 

Pseudacanthicus sp. L65, Pseudacanthicus spinosus, Stur-
isomatichthys festivus, and Rhinelepis aspera.

8. Folds

Unculi are of 800–1000 μm length and of 90–100 μm 
width (Fig.  2H). On each side of the papilla, the unculi 
are arranged inversely. At the very tip of papilla, the 
unculi form a fold. The unculi seem rather flexible on 
their bases and stiff at their tips. This pattern is detected 
in Aphanotorulus horridus, Baryancistrus niveatus, Bary-
ancistrus xanthellus, Hypostomus bolivianus (Fig.  2H), 
Hypostomus laplatae, Panaqolus sp. L271, Panaqolus sp. 
L351, Panaque nigrolineatus, Peckoltia sp. L76, and Sco-
binancistrus pariolispos.

Relationship between ecology, morphology, 
and systematic position
Most of the studied taxa either inhabit rivers with strong 
or medium current (see Additional file  1: Table  S1). In 
strong current, most species could be found on stone, 
followed by wood, and finally sand. Most of the species 
inhabiting streams with medium current inhabited wood, 
followed by stone, sand, and both wood and stone. Only 
one species was found in slow flowing water; here the 
studied species adhered to wood.

In strong currents, most species possessed medium 
papillae, followed by long, flat, and short papillae (see 
Additional file 1: Table S1). Most taxa bore either mush-
rooms or no unculi, followed by long filaments, folds, 
honey-combed and hooks. In medium currents, most 
species possessed medium-sized papillae, followed by 
long, short and flat papillae. Here, most species bore 
mushrooms or folds, followed by no unculi, small mush-
rooms, long filaments, hooks and suction cups. The two 
species inhabiting slow streams possessed long papil-
lae with mushroom-shaped unculi; these species can be 
found on wood.

When the substrate is on the focus, we find that most 
species could be found on stone, followed by wood, sand, 
and finally both wood and stone (see Additional file  1: 
Table  S1). Most species adhering to stone were found 
in rivers with strong current, followed by medium cur-
rent. Wood as preferred substrate seemed to be mostly 
inhabited in medium currents, followed by strong and 
slow current. Most species inhabiting sand were found in 
streams with medium, followed by strong current. Both 
wood and stone were inhabited in medium currents.

Most stone-inhabitants possessed medium papillae, 
followed by long, short and flat papillae (see Additional 
file 1: Table S1). Here, most taxa bore no unculi, followed 



Page 7 of 16Krings et al. Frontiers in Zoology           (2023) 20:37  

Fig. 3 Summary of ecological data and results from morphological analyses, visualized on a cladogram. From left to right: current type, preferred 
substrate, papilla type, unculi type, proposed type of interaction between substrate and organism – for each species studied. When the field 
is empty, no data was available
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by long filaments and mushrooms, folds, and finally 
honey-combed papillae  and small mushrooms. When 
wood was preferred, most taxa possessed medium papil-
lae, followed by long, short, and finally flat ones. Most 
species bore mushrooms, followed by folds, hooks, and 
finally long filaments, no unculi or suction cups. Sand-
inhabitants mostly possessed flat papillae, followed by 
medium and short ones. Here, taxa bore mostly no unculi 
or small mushrooms. The two species adhering to both 
wood and stones possessed medium papillae with either 
long filaments or mushrooms.

With regard to the phylogenetic position (Fig.  3), we 
found that species inhabiting streams with strong current 
belonged to Hypostominae, Loricariinae, and Rhinel-
epinae. Rivers with medium current were colonized by 
Hypoptopomatinae, Hypostominae, and Loricariinae. 
The one species living in slow flowing waters belonged 
to the Rhinelepinae. In most cases, when more than 
one species of a genus was studied (Leporacanthicus, 
Panaqolus, Scobinancistrus, Parancistrus, Baryancistrus, 
Chaetostoma, Hypostomus, Loricaria, Lamontichthys, 
Sturisomatichthys, Farlowella), we found that the taxa of 
the same genus preferred the same current type. In some 
cases (Pseudacanthicus, Hypancistrus, Ancistrus, Peck-
oltia), species of the same genus inhabited different cur-
rent types (Fig. 3).

Preference of stone could be determined in some taxa 
of Hypostominae, Loricariinae, and Rhinelepinae (Fig. 3). 
Wood-preference was found in Hypoptopomatinae, 
Hypostominae, Loricariinae, and Rhinelepinae. Sand-
dwelling was observed in Dekeyseria (Hypostominae) and 
some Loricariinae taxa. Both wood and stones were only 
inhabited by Sturisomatichthys, belonging to Loricariinae. 
In most cases, when more than one species of a genus was 
studied (Pseudacanthicus, Leporacanthicus, Panaqolus, 
Scobinancistrus, Parancistrus, Hypancistrus, Peckoltia, 
Baryancistrus, Chaetostoma, Hypostomus, Loricaria, 
Lamontichthys, Sturisomatichthys, Farlowella), we found 
that the taxa of the same genus preferred the same sub-
strate. Only in Ancistrus, species adhere to different sub-
strates (Fig. 3).

Flat papillae were detected in Hypostominae and 
Loricariinae (Fig. 3). The short type was determined for 
Hypoptopomatinae, Hypostominae, and Loricariinae. 
Medium-sized ones were identified for Hypoptopo-
matinae, Hypostominae, and Loricariinae. Large ones 
were found in Hypostominae and Rhinelepinae. In some 
cases, when more than one species of a genus was stud-
ied (Leporacanthicus, Panaqolus, Baryancistrus, Lori-
caria, Lamontichthys, Sturisomatichthys, Farlowella), 
we found that the taxa of the same genus possessed the 
same papilla type. In most cases (Pseudacanthicus, Sco-
binancistrus, Hypancistrus, Ancistrus, Chaetostoma, 

Hypostomus, Parancistrus, Peckoltia), species of the same 
genus showed different types (Fig. 3).

Unculi of the fold type were determined in Hypostomi-
nae (Fig.  3). The suction cups were only found in Acan-
thicus adonis (Hypostominae) and the honey-combed 
type in Ancistrus megalostomus (Hypostominae). Hooks 
were detected in Ancistrus sp. L464 (Hypostominae) and 
Lamontichthys stibaros (Loricariinae). Mushrooms were 
determined in Hypoptopomatinae, Hypostominae, Lori-
cariinae, and Rhinelepinae. Small mushrooms were found 
in Hypancistrus contradens (Hypostominae) and some 
Loricariinae. Long filaments were detected in taxa of 
Hypostominae, Sturisomatichthys festivus (Loricariinae), 
and Rhinelepis aspera (Rhinelepinae). No unculi were 
found in some species of Hypoptopomatinae, Hypostomi-
nae, and Loricariinae. In most cases, when more than one 
species of a genus was studied (Pseudacanthicus, Lepora-
canthicus, Panaqolus, Parancistrus, Baryancistrus, Chae-
tostoma, Hypostomus, Loricaria, Farlowella), we found 
that the taxa of the same genus possessed the same unculi 
type. In some cases (Scobinancistrus, Hypancistrus, Ancis-
trus, Lamontichthys, Sturisomatichthys), species of the 
same genus showed different types (Fig. 3).

Proposed interaction between organisms and substrate
As comparative experimental data on species with dif-
ferent mouthpart morphologies is lacking, we can only 
hypothesize about their attachment capabilities. How-
ever, attachment structures were well investigated in 
various animal phyla and basic principles of adhesion and 
interlocking are known, we can infer some functionality 
based on the morphology analysis together with mate-
rial property estimations and propose hypotheses about 
the interaction of papillae and unculi with some differ-
ent kinds of substrate that can be found in nature (Fig. 4). 
These substrate types include stiff and smooth (stones 
or wood that were smoothened by the stream), stiff and 
rough (stones or wood), or soft substrate (plant covers on 
stone or wood).

The flat papillae (detected in Pseudacanthicus pitanga, 
Ancistrus ranunculus, Crossoloricaria cephalaspis, Pseu-
dohemiodon almendarizi, Loricaria luciae, Loricaria 
simillima, Spatuloricaria puganensis, and Pterosturisoma 
microps) seem to be composed of rather rigid material, 
which is embedded in the softer and more flexible lip 
(Fig.  4A). In some species (Ancistrus ranunculus, Cros-
soloricaria cephalaspis, Pseudohemiodon almendarizi, 
Loricaria luciae, and Loricaria simillima), no unculi were 
detected and the papilla surface seems to be rather bulky. 
During attachment, the papillae are probably capable of 
interlocking with rather stiff and rough substrate (Ancis-
trus ranunculus), which is facilitated by the soft embed-
ment. We, however, expect these species to underperform 
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on stiff and smooth substrates and to hardly attach to soft 
substrates (plant covers), since contact areas are reduced 
(Fig. 4A). This could potentially explain, why this pattern 
is mostly found in species living on sand or mud (Crosso-
loricaria cephalaspis, Pseudohemiodon almendarizi, Lori-
caria luciae, and Loricaria simillima), where attachment 
will probably not play such an important role. Here, the 
species probably only temporarily attach to substrate (e.g., 
to rough substrate or wood) and might not need a tight 
and more continuous attachment. However, thick mucus, 
covering the bulky surface, might compensate these 
shortcomings, which should be investigated in the future. 
However, in some species (Pseudacanthicus pitanga, and 
Spatuloricaria puganensis), these papillae are covered by 
flexible long and thin filaments or by small mushrooms. 
Here, we expect the unculi to adapt to the substrate 
increasing either adhesion (by filaments) or interlocking 
(by mushrooms) (Fig. 4E,G).

The short papillae were detected in Hypoptopoma 
inexspectatum, Scobinancistrus aureatus, Ancistrus sp. 
L464, Chaetostoma formosae, and Rineloricaria melini. 
These papillae seem to have limited range of motion as 
well, but could potentially function as bolsters, when the 
unculi interact with the substrate, or support rearrange-
ment during attachment, because the papillae tips seem 
to be flexible. They were either covered by unculi of the 

mushroom type (Scobinancistrus aureatus, Chaetostoma 
formosae), hooks (Ancistrus sp. L464), or short mush-
rooms (Rineloricaria melini). Here, unculi together with 
the flexible papillae could enable a tight interaction with 
the stiff and rough or with the soft substrate by inter-
locking and with the stiff and smooth one by adhesion 
(Fig.  4C–E). However, mucus could also be potentially 
distributed between the unculi and additionally support 
adhesion under water.

The medium-sized papillae were detected in most 
studied species. Due to the length of the papillae we 
expect this type to have a higher range of motion, which 
presumably enables them to adapt to rather challeng-
ing surfaces. The bases of the papillae seem to be stiffer 
and the tips more flexible, and therefore we expect high 
attachment forces, as the flexible papilla tips (which 
make unculi bases flexible) can easily adapt to corru-
gated substrates and to interact with them. They were 
usually covered with unculi, either with mushrooms 
(Otocinclus cocama, Ancistrus sp. L519, Ancistrus sp. 
L107, Ancistrus cirrhosus, Ancistrus luzia, Chaetostoma 
dorsale, Chaetostoma lineopunctatum, Lamontichthys 
filamentosus, Sturisomatichthys aureus, Farlowella plato-
rynchus, Farlowella oxyrryncha, and Cteniloricaria platy-
stoma), hooks (Lamontichthys stibaros), folds (Panaqolus 
sp. L271, Panaqolus sp. L351, Panaque nigrolineatus, 

Fig. 4 Proposed interaction between some papillae and unculi types and some substrate occurring naturally in the habitat (stiff and smooth 
as e.g. rounded stone or wood; stiff and rough as e.g. wood or stone; soft substrate as e.g. plant covers on stone or wood). The grey color 
gradients in the structures relate to the mechanical properties (black = stiff; white = flexible), which are inferred from manipulation of structures 
and by documenting the artefacts caused by drying and shrinking. Purple boxes identify the structures, which probably facilitate interlocking 
(interlocking type) and the blue boxes identify the structures, which probably support adhesion to the target surface (adhesion type). Hexagons 
show, how presumably well the specific structures enable attachment with the target surface (orange = not well, yellow = medium, green = well). 
A Flat papillae with no unculi but a bulky surface. B Medium papillae with suction cups. C Medium papillae with hooks. D Medium papillae 
with mushrooms. E Medium papillae with small mushrooms. F Medium papillae with honey‑combed unculi. G Medium papillae with long 
filaments. H Medium papillae with folds
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Scobinancistrus pariolispos, Baryancistrus xanthellus, 
and Baryancistrus niveatus), long filaments (Pseudacan-
thicus spinosus, Pseudacanthicus sp. L97, Pseudacanthi-
cus sp. L65, Pseudacanthicus sp. L185, Pseudacanthicus 
sp. L273, and Sturisomatichthys festivus) or short mush-
rooms (Hypancistrus contradens  and Hemiodontichthys 
acipenserinus). The species bearing mushrooms, hooks, 
or short mushrooms can probably interact with the stiff 
and rough substrates and the soft substrate (plants, bio-
film, etc.) by interlocking and with the stiff and smooth 
substrate by adhesion (Fig. 4C–E). However, on stiff and 
smooth substrates, contact points might be reduced, 
since less unculi are in contact. For the species bearing 
long filaments, we expect a high degree of interlocking 
on stiff and rough or soft substrates and of adhesion on 
stiff and smooth substrate, as these soft structures seem 
flexible enough to establish contact on most surfaces 
(Fig. 4G). The unculi of the fold type are potentially rather 
used for establishing contact by interlocking, since their 
tips seem to be rather stiff (Fig. 4H). We expect this type 
to underperform on soft substrates (i.e., plant covers); 
however, mucus between these structures might increase 
their attachment ability. In one species (Acanthicus 
adonis), we determined medium papillae with a suction 
cups surface pattern. Due to morphology and material 
property estimation, we expect this type to adhere tightly 
with stiffer surfaces (both smooth and rough), but under-
perform on soft substrates (Fig. 4B). Only a few species 
(Rhinotocinclus isabelae, Leporacanthicus joselimai, 
Leporacanthicus cf. galaxias, ‘Spectracanthicus’ immacu-
latus, Parancistrus nudiventris, Hypancistrus sp. L174, 
Hypancistrus zebra, and Dekeyseria picta) did not have 
unculi but rather a bulky surface (Fig. 4A). For these spe-
cies, we expect an interlocking mechanism to be present. 
In this case, the relatively flexible papilla bases probably 
adapt to the target surface and the stiffer bulky surface 
enables interlocking with the rough and stiff substrate.

Long papillae were detected in some species (Scobinan-
cistrus raonii, Peckoltia sp. L76, Parancistrus auran-
tiacus, Hypancistrus sp. L333, Ancistrus claro, Ancistrus 
megalostomus, Aphanotorulus horridus, Hypostomus 
bolivianus, Hypostomus laplatae, Pseudorinelepis geni-
barbis, and  Rhinelepis aspera). Because of their length, 
we expect these papillae to adapt best to very rough sur-
faces, due to an increased range of motion. On top of 
these papillae, we detected either mushrooms (Scobinan-
cistrus raonii, Ancistrus claro, and  Pseudorinelepis geni-
barbis), folds (Peckoltia sp. L76, Aphanotorulus horridus, 
Hypostomus bolivianus, and Hypostomus laplatae), bulky 
surface without unculi (Parancistrus aurantiacus), long 
filaments (Hypancistrus sp. L333 and Rhinelepis aspera) 
or honey-combs (Ancistrus megalostomus). Since the 
mushrooms, long filaments and honey-combs seem to be 

flexible, we expect these structures to adhere to any sur-
face either by interlocking or by adhesion (Fig.  4D,F,G). 
For the folds, which seem to be stiffer at their tips, we 
expect an underperformance on soft plant surfaces 
(Fig. 4H) due to their limited ability to adapt their shape 
to the target substrate, which would hinder the oral disc 
to form an effective seal. The bulky surfaces (Fig.  4A) 
potentially also underperform on soft plant surfaces, due 
to the limited flexibility, and on stiff and smooth surfaces, 
because interlocking is here not facilitated.

Ancestral state reconstruction
Ancestral state reconstruction (Additional file  1: Fig-
ure S3) suggested that Loricariidae lived initially lived 
in medium or strong currents. Only Pseudorinelepis 
genibarbis (Rhinelepinae) colonized slow-flowing rivers. 
Based on the tree, 19 shifts between streams with differ-
ent velocities were reconstructed.

With regard to the substrate, stone seemed to be ances-
tral (Additional file 1: Figure S4). There were at least 11 
shifts between substrate types, mostly from stony sub-
strates to wood. Only few species live in streams with 
sandy substrates, but even this habitat type has been col-
onized twice, in a larger clade of the Loricariinae and in 
Dekeyseria picta (Hypostominae).

With regard to the papillae (see Additional file 1: Fig-
ure S5), either the medium or long papilla was ancestral. 
In the group containing Loricariinae, Hypostominae, and 
Hypoptopomatinae the medium-sized papillae evolved 
and were kept in most lineages. Long papillae are found 
in all examined Rhinelepinae, but convergently evolved 
from medium papillae at least seven times convergently 
within Hypostominae. The flat papilla evolved at least 
four times convergently from the medium-sized type 
(within Loricariinae: in Pterosturisoma microps, Spatu-
loricaria puganensis, and the group containing Crosso-
loricaria and Loricaria highlighted in Additional file  1: 
Figure S5 by a blue box; within Hypostominae: in Ancis-
trus ranunculus and Pseudacanthicus pitanga). Medium 
papilla evolved at least five times into short papillae.

With regard to the unculi, the ancestral state recon-
struction suggested that mushrooms were ancestral 
(Additional file 1: Figure S6). Mushrooms were replaced 
by long filaments at least two times convergently (in 
Rhinelepinae: in Rhinelepis aspera; in Loricariinae: in 
Sturisomatichthys festivus). Evolution from mushrooms 
to hooks convergently happened in Lamontichthys stiba-
ros and in Ancistrus sp. L464. Mushrooms convergently 
evolved into small mushrooms in Hypancistrus con-
tradens and ‘Spectracanthicus’ immaculatus in Hypos-
tominae and in the group of Loricariinae highlighted 
in Additional file  1: Figure S6 by a blue box. In the lat-
ter, small mushrooms were lost in the clade containing 
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Crossoloricaria, Pseudohemiodon, and Loricaria. In 
Hypostominae, mushrooms were lost several times, but 
apparently were regained in Scobinancistrus aureatus 
and Scobinancistrus raonii. Mushrooms evolved into 
honey-combs in Ancistrus megalostomus. In the group 
highlighted in Additional file  1: Figure S6 by a red box, 
folds evolved, which were lost convergently again. Long 
filaments convergently evolved at least four times, 
whereas suction cusps evolved only in Acanthicus adonis. 
In Hypoptopomatinae, the mushrooms were lost in Rhi-
notocinclus isabelae.

With regard to the interaction type, ancestral state 
reconstruction suggested that both adhesion and inter-
locking occurred in the ancestral state (Additional 
file  1: Figure S7). Within Rhinelepinae, Loricariinae, 
and Hypostominae, adhesion-dominated interaction 
convergently evolved at least four times (in Rhinelepis 
aspersa, Ancistrus megalostomus, Sturisomatichthys fes-
tivus, the group containing Acanthicus, Leporacanthi-
cus, and Pseudacanthicus). Within the latter group, this 
shifted to interlocking in Leporacanthicus. Using both 
adhesion and interlocking was convergently replaced by 
interlocking-dominated attachment at least five times 
(in Loricariinae: in the group containing Crossoloricaria, 
Pseudohemiodon, and Loricaria; in Hypoptopomatinae: 
in Rhinotocinclus isabelae; in Hypostominae: in Dekey-
seria, in Ancistrus ranunculus, in the group contain-
ing Panaque and Ancistomus highlighted in Additional 
file 1: Figure S7 by a red box). In the latter group, inter-
locking changed to adhesion-dominated attachment in 
Hypancistrus sp. L333 and to both types of interaction 
convergently in Hypancistrus contradens, Scobinancistrus 
aureatus, and Scobinancistrus raonii.

Discussion
We here aim at presenting the structural diversity of 
papillae and unculi types in Loricariidae. As here only 
67 species were studied, we expect that more diversity 
can be potentially discovered, when more species are 
included in such a study.

The loricariid oral disc is composed of upper and lower 
jaw and is surrounded by a softer outer rim, which was 
found to make tight contact with the substrates dur-
ing attachment [6]. This seems similar to the soft tissues 
surrounding the suckers of remoras, which conform to 
the local roughness and curvature of the substrate [91], 
or to the outer papillae, setae or microvilli (which are of 
smaller diameter and densely packed) of the clingfish and 
loaches [16, 17, 41, 42, 70, 71].

The fleshy lips of Loricariidae are highly variable with 
regard to morphology, size and the content of collagen, 
which was previously found to relate to the substrate 
and the flow [92]. The collagen probably reinforces the 

oral suction cups and reduces slipping, failure or buck-
ling in streams with high flow velocities [92], while being 
manipulated and bolstered by the jaws and maxillary bar-
bels [73]. The lips are covered ventrally by uniculiferous 
papillae [73, 74, 76, 80], which probably increase wet fric-
tion and hydrodynamic adhesion to reinforce the seal of 
the oral disc [48, 80]. The geometry and arrangement of 
papillae in other fish taxa were previously found to sup-
port the resistance to shear forces and to arrests cracks 
at the interface between suction cups and substrate, 
which would compromise the subambient pressure in the 
mouth chamber [16, 17, 41, 70, 71]. This mechanism is 
partially similar to segmented adhesive pads of insects 
[27, 32, 93].

The unculi, which can be found on top of the papillae, 
are potentially involved in feeding [73, 76, 81]. But addi-
tionally, they probably increase the friction/interlocking 
during attachment on rough substrates [6, 48, 67, 74, 
81]. This, together with the mucus, increases attachment 
strength as in other fish taxa [9, 72, 94].

With regard to interspecific variation of papilla size 
and morphology in Loricariidae, there is a huge lack of 
knowledge. In the here examined species, we were able 
to recognize four papilla types (Fig.  1), which differ in 
their height and range of motion, and eight unculi types 
(Fig. 2).

The reconstructions of ancestral habitats and character 
states (Additional file 1: Figures S3-S7) suggested that the 
different habitat types were colonized repeatedly and the 
states of all studied traits convergently evolved multiple 
times in Loricariidae. High levels of convergent evolution 
were previously also proposed for mandibles and body 
shapes in suckermouth armoured catfishes [2, 3] and for 
foot adhesive pads in animals [32].

With regard to the ecological data collected in the field, 
the current (slow, medium, strong) and the preferred 
substrate (stone, wood, sand) type, we could detect that 
medium and long papillae were often found in species 
inhabiting strong and medium currents. The length of 
the structure probably relates positively to the attach-
ment ability on most types of substrate, except surely for 
sand. This is likely important in strong currents, since 
with higher current velocities higher forces act on the fish 
and thus a higher attachment is needed. With regard to 
the unculi we found that folds, mushrooms, as well as no 
unculi related to medium and strong currents. Here, we 
propose that the presence of unculi and the surface pat-
tern of the papillae increase the attachment performance 
by interlocking, which is especially necessary in strong 
currents. This however awaits further investigation in e.g. 
the course of controlled experiments on model species 
with different unculi and papilla types. The comparison 
of the ancestral state reconstructions (Additional file  1: 
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Figures S3-S7) revealed no obvious correlations between 
habitat shifts and the evolution of specific character 
states.

Since comparative experiments on species with differ-
ent mouthpart morphologies have not been performed, 
we could only hypothesize about their attachment capa-
bilities to some natural surfaces that are omnipresent in 
the fish habitat (stiff and smooth as e.g. rounded stones 
and wood; stiff and rough as e.g. rough stones or wood; 
soft as e.g. plants covering stones or wood) in this man-
uscript. However, our hypotheses were based on the 
knowledge about attachment structures in other animal 
phyla and the basic principles of adhesion and interlock-
ing. With this we could infer some functionality based on 
the morphology analysis together with material property 
estimations and propose hypotheses about the interac-
tion of papillae and unculi with different kinds of sub-
strate (Fig. 4). Since attachment in gobies was previously 
found to rely on the ability to form an effective seal and 
to underperform on rougher surfaces [13, 49], we expect 
therefore that the suction cusp unculi type underper-
forms on stiff and rough surfaces as well.

We, however, do not know the position of the unculi 
and the papillae during attachment, which hopefully 
can be tested experimentally in the future. In addition to 
the micro- and nanostructures, the mucus covering the 
mouth apparatus is on expect to contribute to the contact 
formation and adhesion as well and therefore should be 
investigated deeply in the future.

Conclusion
The oral discs of suckermouth armoured catfish (Lori-
cariidae), which enable attachment and interlocking to 
various natural surfaces, are highly diverse with regard to 
the morphology of the papillae and of the unculi, small 
horny projections. Here, we studied 67 taxa and deter-
mined four papilla types and eight unculi types. From 
handling the structures and from drying artefacts we 
could infer some information about their material prop-
erties. This, together with their shape, enabled us to 
carefully propose hypotheses about mechanisms of inter-
actions of oral disc structures with natural substrates 
typical for respective fish species. Reconstructions of 
ancestral habitats and states indicated frequent habitat 
shifts and a highly convergent evolution of most charac-
ter states in Loricariidae. There is no obvious correlation 
between habitat shifts and the evolution of specific char-
acter states.

Methods
Specimens and preparation
In this project, 67 species and undescribed taxa (here 
named according to their L numbers) were studied (see 

Additional file  1: Table  S1). For each species, between 
one and five specimens were examined, depending on the 
availability of material: some species are quite rare and 
only one specimen could be gathered, whereas for other 
taxa more individuals could be used (see Additional 
file  1: Table  S1). From the species with a higher quan-
tity of individuals, we were able to study the intraspecific 
variability with regard to the morphology of the adhesive 
suckermouth papilla structures. Since this was not high, 
we decided to include the species with only one speci-
men in this study as well. As papillae and unculi are regu-
larly shed, we investigated every papilla on the studied lip 
part to obtain information about unculi types.

We did not experiment with living fish or kill fish for 
this study; instead we used the network of German suck-
ermouth catfish owners (they were kept either directly 
by DKV or other hobbyists) which provided us with 
specimens that died naturally in the aquariums (fish died 
between 1995 and 2022). All animals were wild caught, 
imported to Germany by the ornamental fish trade, and 
then kept by hobbyists. Fish were, directly after death, 
fixed and stored in 70% EtOH.

In general, suckermouths are very variable between 
species. To illustrate this diversity, we have included 
some images of alive fish in the Additional file  1: Fig-
ures S8-S23. For this study, we studied the lower left lip 
of the specimens, which were carefully dissected using 
scalpel and forceps. Samples were stored in 70% EtOH 
and cleaned from mucus by a short ultrasonic bath for 
2 min. The samples were dried in a critical point dryer 
(Betta-Tech-Controls, Blakelands, UK). For this method, 
samples were transferred to 100% EtOH first, then to the 
liquid  CO2 and then slowly critical point dried from the 
 CO2.

Scanning electron microscopy
Lips were attached to scanning-electron-microscopy 
(SEM) sample holders by double-sided adhesive carbon 
tapes. Samples were then sputter-coated with gold–pal-
ladium (layer of 10 nm) employing a Leica EM SCD400 
(Leica Microsystems, Wetzlar, DE). All samples were 
documented with a Scanning Electron TM3000 Tabletop 
Microscope (Hitachi, Tokyo, JP). All images were taken 
with different magnifications (30x – 2500x) at 5 kV.

Some lips from species with multiple animals at hand 
were investigated more detailed employing a cryo-SEM 
S4800 (Hitachi, Tokyo, JP) equipped with the Gatan 
ALTO-2500 cryo-preparation system (Gatan, Abingdon, 
UK). For this purpose, the lips were carefully attached to 
SEM sample holders and then frozen in liquid nitrogen 
at – 210 °C, to avoid the formation of ice crystals, in the 
cryo-preparation chamber. Then, the temperature was 
raised to − 95  °C, initiating the process of sublimation 
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(freezing-drying). After sublimation for 5–7 min., the 
temperature was reduced to − 140  °C and the sample 
was sputter-coated by gold–palladium (layer of 3–4 nm) 
directly in the cryo-preparation chamber. Afterwards the 
samples were transferred into the SEM and observed at  
– 120 °C at 3 kV accelerating voltage.

We concentrated on two different hierarchical levels 
of the oral disc morphology: the labial papillae and the 
unculi on the papillae. In few species, the unculi type 
could not be determined due to high content of mucus. 
In these cases, we were only able to collect data on papilla 
morphology.

Material property estimation
We did not perform any material property tests for this 
manuscript. However, from the manipulation of papil-
lae before critical point drying by forceps and from 
the observation of artefacts resulting from drying and 
shrinking of the unculi and the papillae, we can propose 
some hypotheses about the relative stiffness and flexibil-
ity of different sites of samples. We hope that the charac-
terization of material properties of different parts of the 
sucker can be addressed by using micro- and nanoinden-
tation in the future.

Data on ecology
Since data on the precise microhabitat of each spe-
cies are lacking and await future investigations, we here 
rather chose rather broad categories (see Additional 
file  1: Table  S1). The current or stream (macro habitat) 
was categorized in slow, medium and strong. We use this 
term according to its meaning as a flowing body of water 
or a ‘continuous flow of a liquid’. It can either be a small 
creek with slow current, a broad river with fast current, 
or a stream in between. The preferred substrate (micro 
habitat) was wood, stone, wood and stone, or sand. This 
data was obtained from the personal observation of the 
collectors, mainly DKV, in the field (see Additional file 1: 
Figure S2 and Table S1).

Systematization
We studied 67 species belonging to four subfamilies of 
Loricariidae: Hypoptopomatinae, Loricariinae, Rhinele-
pinae and Hypostominae (see Additional file 1: Table S1). 
To gain insight, whether the specific morphology of the 
suckermouth structures relates to phylogeny, we plot-
ted the data obtained on a cladogram based on recent 
phylogenies [95–98]; personal comment from Jon Arm-
bruster, Auburn University]. Within each genus, we 
sorted the species in alphabetical order, since there is, to 
the best of our knowledge, no phylogeny which includes 
all of the species studied.

Character state evolution
Ancestral states of habitats and characters at internal 
nodes were reconstructed under maximum parsimony 
assumptions using the Trace Character History command 
in Mesquite [99]. Current velocity (slow, medium, strong) 
and interaction states (adhesion, both, interlocking) were 
treated as ordered; substrate states (wood, stone, sand) 
were treated as unordered. Transitions between flat, short 
and medium papillae as well as between medium and long 
papillae were counted as one step; transitions between 
flat or short and long papillae were counted as two steps. 
Unculi were classified into two categories, one including 
folds, suction cups and honey combed unculi, the other 
including hooks, mushrooms, small mushrooms and long 
filaments. Transitions within a category were counted 
as one step; transitions between the two categories were 
counted as two steps. Transitions between any state of 
unculi and no unculi were counted as one step.
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