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Abstract 

The diversity of biological and ecological characteristics of organisms, and the underlying genetic patterns and 
processes of speciation, makes the development of universally applicable genetic species delimitation methods 
challenging. Many approaches, like those incorporating the multispecies coalescent, sometimes delimit populations 
and overestimate species numbers. This issue is exacerbated in taxa with inherently high population structure due to 
low dispersal ability, and in cryptic species resulting from nonecological speciation. These taxa present a conundrum 
when delimiting species: analyses rely heavily, if not entirely, on genetic data which over split species, while other 
lines of evidence lump. We showcase this conundrum in the harvester Theromaster brunneus, a low dispersal taxon 
with a wide geographic distribution and high potential for cryptic species. Integrating morphology, mitochondrial, 
and sub-genomic (double-digest RADSeq and ultraconserved elements) data, we find high discordance across analy-
ses and data types in the number of inferred species, with further evidence that multispecies coalescent approaches 
over split. We demonstrate the power of a supervised machine learning approach in effectively delimiting cryptic spe-
cies by creating a “custom” training data set derived from a well-studied lineage with similar biological characteristics 
as Theromaster. This novel approach uses known taxa with particular biological characteristics to inform unknown taxa 
with similar characteristics, using modern computational tools ideally suited for species delimitation. The approach 
also considers the natural history of organisms to make more biologically informed species delimitation decisions, 
and in principle is broadly applicable for taxa across the tree of life.
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Background
Organismal diversity is underpinned by diversity in life 
history and ecological characteristics among taxa, which 
in turn produce different underlying genetic patterns at 
the population and species levels [1–5]. Biological char-
acteristics can determine the process and type of specia-
tion. For example, nonecological speciation (speciation 

without divergent natural selection) produces ecologi-
cally similar/identical species that are allo- or parapat-
ric replacements of each other [6, 7] and is more likely 
in low dispersal taxa that also show niche conservatism 
[8]. These biological and ecological characteristics often 
lead to cryptic speciation across many plant and animal 
taxa, where they complicate the application of many 
commonly used species criteria, and species delimitation 
relies largely, if not entirely, on genetic data.

The underlying diversity in speciation processes chal-
lenges the idea that any single genetic species delimita-
tion model can be universally applicable. For example, 
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multiple empirical studies have shown that commonly 
used multispecies coalescent (MSC) models can over-
split species level diversity in low dispersal taxa because 
such systems violate the underlying assumption of pan-
mixia [9–14], a sentiment echoed in theoretical litera-
ture [15]. Regardless of ongoing debates (e.g., [16]), we 
argue simply that MSC implementations taken at face 
value, and with well-resolved genomic or sub-genomic 
data, have strong potential to inflate species numbers 
in low dispersal systems (e.g., [17]). A solution to over-
reliance on genetics is integrative species delimitation 
[18, 19]. However, in many poorly known or “cryptic biol-
ogy” taxa (e.g., [20]), like minute animals that live under 
rocks and logs, integrating behavioral, ecological, and/or 
phenotypic data is challenging to impossible. Morpho-
logical conservatism resulting from niche conservatism 
[21] means that distinct species are often not morpho-
logically diagnosable. In an integrative framework, some 
lines of evidence cannot be feasibly studied, while oth-
ers are clearly conservative. This leads to a fundamen-
tal conundrum—how can we rigorously delimit species 
when genetic analyses are biased to inflate, and other evi-
dence is inaccessible or lumps evolutionarily significant 
diversity?

Many taxa in the arachnid order Opiliones present 
challenges for species delimitation. Their microhabitat 
specificity and low dispersal ability leads to nonecological 
speciation and high population genetic structure, where 
related congeners rarely co-occur in sympatry ruling out 
direct tests for reproductive isolation (e.g., [10, 22–29]). 
The biological characteristics associated with noneco-
logical speciation in low dispersal Opiliones make several 
commonly used species criteria inapplicable or inap-
propriate in these systems. For example, morphological 
conservatism diminishes the utility of the morphologi-
cal species criteria, and niche conservatism precludes 
ecological species criteria. In these cases, genetic data 
become the primary data type for species delimitation. 
However, these complexes represent classic cases of “too 
little gene flow”, where distinguishing population genetic 
structure from species level divergence is not easy, and 
genetic species delimitation analyses overestimate spe-
cies diversity (e.g., [10, 30, 31]).

Dispersal-limited microhabitat specialists are found 
in a diverse array of other taxa, including vertebrates 
and plants, with equal difficulty in resolving species-
population boundaries (e.g., [12, 14]). This under-appre-
ciated issue remains one of the most difficult challenges 
for empirical species delimitation and its implications 
extend to a diverse array of taxa regardless of biologi-
cal characteristics (e.g., [32]). A possible solution to this 
issue is to use information from known systems to infer 
the unknown. In practice, this means using information 

derived from taxa with robust well-established species 
limits to infer species limits in a difficult cryptic spe-
cies complex that shares similar biological and ecologi-
cal characteristics and mode of speciation. Supervised 
machine learning is ideally suited for this approach, as 
known labeled data sets can be used to train a model that 
is then applied to an unknown unlabeled data set.

Here we use a combination of somatic and reproductive 
morphology, mitochondrial DNA, double-digest RAD-
Seq (ddRAD; [33]), and ultraconserved elements (UCEs; 
[34, 35]) to illustrate the species conundrum in Thero-
master brunneus [36], a widely distributed species from 
the southern Appalachian Mountains with high potential 
for cryptic speciation (Fig. 1). Our goal is not to exhaus-
tively test species limits using every data and analysis 
type, but instead to demonstrate the difficulty of delim-
iting species in such taxa using common genetic species 
delimitation approaches. We highlight and emphasize a 
novel supervised machine learning approach, using train-
ing data from known taxa with similar biological charac-
teristics as T. brunneus, to effectively (and conservatively) 
delimit cryptic species using phylogenomic data.

Results
Taxon sample
Our taxon sample included specimens from 76 different 
localities (Additional file  1: Table  S1), 18 of which were 
only available for morphological study (i.e. preserved in 
70–80% ethanol). All specimens are deposited in the San 
Diego State University Terrestrial Arthropod Collection. 
Locality data for all specimens housed in this collection 
(with SDSU_TAC or SDSU_OP catalog numbers) have 
been deposited at the Symbiota Collections of Arthro-
pods Network (https://​scan-​bugs.​org/​portal).

Historically, the type specimens of Theromaster brun-
neus and T. archeri have never been directly compared 
by those who described or made any taxonomic acts 
affecting these species [37–39]. Further complicating the 
issue, these two species are reported from the same cave 
(McFarland Cave, AL) [37, 38]. Sympatry among conge-
neric Laniatores is extremely rare in northern temperate 
taxa. Several observations of Theromaster exist on iNat-
uralist from caves in northeast Alabama, however all of 
the individuals photographed are juveniles, which do not 
possess diagnostic species-specific characters.

Our examination of the male holotype of T. archeri did 
not alleviate any uncertainty. The genitalia and both pedi-
palps were previously dissected from the specimen and 
are no longer associated with the vial. As such, we cannot 
conduct comparative genitalic analyses or even confirm 
the sex of the specimen; all female Theromaster lack the 
cheliceral projections that are diagnostic for T. brunneus. 
It is possible that T. archeri is a local cave-adapted form 

https://scan-bugs.org/portal
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of T. brunneus at the southern limits of the distribution, 
however neither the description nor our examinations 
suggest any cave adaptation. We unfortunately cannot 
confirm or deny species limits and therefore must retain 
T. archeri as a distinct species based on historical work. 
The final determination will likely only be possible with 
DNA sequencing of the holotype specimen (i.e., [40]), 
although we do not expect either outcome (a valid spe-
cies or local population of T. brunneus) to affect species 
delimitation results in this study. It could be possible that 
our TAG lineage (see below) corresponds to T. archeri.

Morphological analyses
Voucher specimen data and accession numbers are 
provided in Additional file  1: Table  S1. Representative 
morphological images (Figs.  2, 3, Additional file  2: Figs. 
S1–S5) confirm the highly conservative morphology 
across Theromaster, including male genitalia and male 

cheliceral modifications, a sexually dimorphic feature. 
However, there is clear differentiation in the habitus mor-
phology of Roan Mountain (OP322, location #33), which 
has a more pointed eye mound, dorsal tergites clearly 
separated by grooves, more obvious dorsal spines, and 
more defined pigmentation patterns (Fig. 3). This speci-
men is clearly distinguished based on the morphological 
species criterion, suggesting at least two putative species.

Phylogenetic and clustering analyses
Accession numbers for all samples sequenced in this 
study are provided in Additional file 1: Table S1. RAxML 
analysis of cytochrome c oxidase subunit I (COI) was 
mostly poorly supported but revealed highly divergent 
Roan Mountain and “Southwest” lineages. RAxML analy-
ses of ddRAD data (~ 75% taxon occupancy matrix with 
1001 loci and 89,663 nucleotides) show at least seven 
main lineages (Fig. 3, Additional file 2: Fig. S7, Additional 

Fig. 1  Distribution of Theromaster brunneus sampled in this study. Colors correspond to lineages identified in phylogenomic analyses (see Fig. 3). 
Numbers correspond to locations included in ddRAD analyses (Additional file 1: Table S1); sites with an enclosed circle were also sequenced for 
UCEs. Left inset: general distribution of Theromaster. Right inset: live photo of T. brunneus. Clade names: Great Smoky Mountain National Park 
(GSMNP), Tennessee Valley (TNV), northern Trans Asheville (nTA), southern Trans Asheville (sTA)
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Fig. 2  Representative morphological images for select lineages of Theromaster brunneus. Each row of images corresponds to a single male 
individual, with the voucher information indicated in the left-most image. Columns of morphological characters correspond to chelicerae, pedipalp, 
and penis (L–R). Colors correspond to lineages identified in phylogenomic analyses (see Fig. 3)
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file  1: Tables S2–3). Relationships among these lineages 
are all highly supported (bootstrap of 100), but a hand-
ful of nodes within some clades show lower support, 
although all but one of these nodes are still above 70. 
SVDQuartets analyses result in similar lineage compo-
sition and interrelationships, but with generally weaker 
support (Additional file  2: Fig. S8). Excluding a single 
instance of sympatry at Roan Mountain, all main lineages 
are allopatric (Fig. 1).

Both partitioned RAxML and SVDQuartets analy-
ses of the concatenated UCE matrix (70% taxon occu-
pancy with 324 loci and 108,875 nucleotides) generally 
supported the ddRAD topology, with Roan Mountain, 

Southwest, and TAG as divergent and early-diverging lin-
eages (Fig. 3, Additional file 2: Fig. S9). However, in both 
the RAxML and SVDQuartets trees, the “southern Trans 
Asheville” (sTA) clade was not recovered as a monophyl-
etic group. All nodes in the UCE RAxML tree have a pos-
terior probability greater than 0.95, with the exception of 
a single node with 0.94. DAPC clustering of the ddRAD 
SNPs reveal optimal K values (Additional file  2: Fig. 
S10) that correspond to the main lineages, with further 
subdivisions for the sTA and “Tennessee Valley” (TNV) 
groups recovered in phylogenetic analyses. STRU​CTU​
RE analyses of ddRAD SNPs likewise recover the main 
lineages, but as K values increase, further subclusters are 

Fig. 3  Phylogenomic results based on RAxML analysis of ddRAD and UCE data, with representative habitus images of select lineages. All nodes 
have 100% bootstrap support unless indicated. A ddRAD phylogeny of the 61_48 dataset (see Additional file 1 for matrix details). TNV, GSMNP, nTA, 
and sTA lineage samples were included in DAPC and STRU​CTU​RE analyses. B UCE RAxML phylogeny based on the 70% taxon occupancy matrix
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found that correspond to geographic and/or phyloge-
netic groupings (Additional file 2: Fig. S11). The best-fit K 
value is K = 3 using the ∆K method [41], but K = 10 using 
the Pritchard et  al. [42] method. VAE analyses cluster 
samples as in other analyses, and UCEs show more over-
lap among groups (Additional file 2: Fig. S12).

Phylogenomic species delimitation
The COI bPTP analyses supported 11 species (Additional 
file 2: Fig. S6), splitting most main genetic lineages into 
at least two species. BFD* hypothesis testing results are 
presented in Fig.  4 and Additional file  1: Tables S4–S5. 
Matrices consisted of 1828 and 415 SNPs for ddRAD and 
UCE datasets, respectively. The ddRAD dataset favored 
K = 3 corresponding to Roan Mountain, Southwest, and 

all other samples, however, the likelihood continuously 
increased with increasing number of species (Fig. 4A, B). 
BFD* analyses for the UCE dataset favored all samples as 
species (K = 15), with a second less likely peak at K = 3 
(Fig. 4C, D).

CLADES requires that every predefined population, 
defined here as the main ddRAD genetic lineages, have 
at least one representative sequence present at every 
given locus in the input file. As such, the final T. brun-
neus dataset included 52 UCE loci. CLADES analyses 
of the UCE SNP dataset based on the “general” training 
dataset favored all populations as species, while analy-
ses based on the “custom” training dataset favored two 
cryptic species (Fig. 5), corresponding to Roan Mountain 
and Southwest clade. While a “ground truth” for what the 

Fig. 4  Results of SNAPP/BFD* species delimitation analyses based on SNP datasets. A, B ddRAD phylogeny based on RAxML analysis of the 18_12 
taxon occupancy matrix, with vertical lines indicating species hypotheses tested, and likelihood estimates for each hypothesis (averaged from two 
runs). C, D UCE phylogeny based on RAxML analysis of the 70% taxon occupancy matrix, with vertical lines indicating species hypotheses tested, 
and likelihood estimates for each hypothesis (averaged from two runs). Note: branch lengths for both cladograms were adjusted to fit vertical lines 
for easier interpretability and have no relative meaning; the phylogeny is purely to depict branching pattern and hypotheses tested. Blue vertical 
lines in A and C and blue data points in B and D indicate species hypothesis decisively favored by Bayes Factor analyses (see Additional file 1: 
Table S5 for values). Colors correspond to lineages identified in phylogenomic analyses (see Fig. 3)
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actual cryptic species are is lacking, the effectiveness of 
a “custom” dataset relative to a “general” dataset can be 
assessed when comparing assignment probabilities of 
specimens that are from the same geographic location. In 
these cases, the probability that specimens from the same 
location belong to the same species should be relatively 
high due to the allopatric nature of species in low dis-
persal taxa undergoing nonecological speciation. When 
using the “general” training dataset, specimens from the 
same geographic location were classified on average as 
the same species with 0.116 probability, while with the 
“custom” dataset, specimens from the same population 
were classified on average as the same species with 0.753 
probability.

Although we have high confidence in our species 
delimitations, we refrained from formally describing 
the two new species until more specimens of the unde-
scribed species from Roan Mountain can be collected.

Discussion
Major portions of the tree of life include branches (spe-
cies) that are unknown or poorly known, and integrative 
studies in such taxa are challenging for many reasons. At 
the same time, collecting sub-genomic data for these taxa 
has become increasingly easy, leading to species delimita-
tions founded largely, if not entirely, upon genetic data. 
Many studies have documented overestimation of spe-
cies numbers by commonly used genetic delimitation 
methods both in empirical (e.g., [9–11, 13, 14, 31, 32, 
43, 44]), and theoretical/simulation studies [12, 15, 17, 
45, 46]). Increasing the number of loci may also increase 
support for an incorrect hypothesis in Bayesian analyses 

[47], and most relevant here, supporting species level 
divergences for intraspecific populations [44]. Research-
ers studying cryptic species with inherently high popula-
tion structure and allo- or parapatric distributions face a 
dilemma when delimiting species. Current phylogenomic 
species delimitation analyses overestimate species num-
bers, and without morphology, behavior, or distribution 
to assist, the degree of over-splitting is unknown. Sys-
tematists researching these taxa must be conservative in 
final species hypotheses (e.g., [17]), while simultaneously 
acknowledging that the actual number of species may 
still be underestimated.

In our study, most genetic analyses recover at least six 
lineages as species (Fig. 4), but the consensus favors three 
species (Roan, SW, all others), the latter two of which 
are morphologically cryptic. The supervised machine 
learning approach we employed with a “custom” training 
data set provided a reasonable and biologically informed 
hypothesis of three total species. Phylogenies derived 
from ddRAD and UCEs were essentially congruent, but 
the inferred number of species in the BFD* analyses 
differed. Both had a peak at K = 3, but UCE data had a 
higher likelihood at K = 15, and we argue that leading 
to this peak at K = 15 in the UCE data, the MSC over-
splits because these taxa clearly violate the assumption 
of panmixia within species. BFD* analyses using ddRAD 
data did not overestimate species. However, like UCE 
analyses, there is an obvious increasing trend in likeli-
hood with increasing species numbers leading us to ask 
if K = 3 would still be the most likely hypothesis if more 
sequenced samples from different collecting localities 
(i.e., populations) had been included. As a validation 
approach, only a limited set of species-level hypotheses 
are tested in empirical studies using BFD*. It might be 
beneficial for researchers using this approach, especially 
for low dispersal taxa, to fully explore hypotheses to see if 
“false positives” are more prevalent.

Training data justification and considerations
In this study we present a first attempt at demonstrating 
the potential of a supervised machine learning approach 
to genetic species delimitation using biologically relevant 
customized training data sets. Here we provide some jus-
tification for our training data set choice and considera-
tions for future work. In the case of Opiliones, which are 
largely understudied from a modern genetic perspective, 
there is scant genome-scale species level data available 
to serve as training data. Many Opiliones studies focus-
ing on species delimitation using genetic data to identify 
or conclude the presence of cryptic species, resulting in 
uncertainty across species boundaries (e.g., [30, 31, 43]). 
The level of congruence and support for species delimi-
tations seen in Metanonychus is exceptional [10], making 

Fig. 5  Species delimitation results supported across data and 
analysis types. For any given analysis, multiple bars of the same color 
indicate lineages that were split in that analysis, and any lineages 
that were lumped in any given analyses are colored gray. Colors 
correspond to lineages identified in phylogenomic analyses (see 
Fig. 3)
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this the most suitable training dataset for low-dispersal 
Opiliones to date, with potential application to many 
other unresolved putative cryptic species complexes.

Genetic statistics can be useful in identifying the over-
lap of actual and potential species boundaries between 
data sets. For UCE loci, the mean K2P-corrected genetic 
distance across all T. brunneus samples is 2.98% (range 
0.37–8.92) and falls within the range of genetic distances 
seen across species of Metanonychus (mean = 14.746, 
range = 1.59–26.91). Speciation events within Metanon-
ychus span recent and older divergences, where the mean 
K2P-corrected divergence of COI across the shallowest 
species-level split is 13.15% and the deepest split has a 
mean divergence of 27.15%. Mean COI divergence across 
Theromaster samples is 6.51%, with a maximum of 20.2%. 
Taken together, these genetic measures indicate that any 
potential species-level divergences in T. brunneus fall 
within the range of actual species divergences seen in 
Metanonychus. Sensitivity to the underlying model is an 
obvious and related consideration. In this regard, in taxa 
with better representation of genome-scale species level 
data, it would be worthwhile to explore varying combina-
tions of suitable taxa in the training data set. For exam-
ple, including shallower or deeper species divergences, or 
data from a phylogenetically more diverse range of taxa 
(i.e., from other genera or families with similar biological 
characteristics).

One concern relates to the differences in disper-
sal dynamics between the regions each taxon is found 
in (Pacific Northwest for Metanonychus and southern 
Appalachians for Theromaster). Dispersal dynamics and 
bio-/phylogeographic histories are different across these 
regions, where geologic and other abiotic factors (e.g., 
river formation) can drive the speciation process, espe-
cially for the ancient and more topographically complex 
southern Appalachian Mountains. Despite these differ-
ences, given the biological and ecological similarity of 
these taxa, we hypothesize that while the dynamics differ 
across regions, their responses and associated genetic sig-
natures to any abiotic factors influencing speciation will 
be similar. It follows that using taxa that inhabit the same 
region should increase the effectiveness of our supervised 
approach, much in the same way as comparative phyloge-
ography is a powerful approach for elucidating common 
underlying regional biogeographic patterns (e.g., [48, 
49]).

There are many questions in relation to the choice of 
training and testing datasets that deserve further atten-
tion. How closely related must the taxa be to be con-
sidered similar enough for this approach? What is an 
appropriate divergence date threshold? How ecologically 
similar (e.g., degree of climatic variable overlap) should 
they be? Questions relating to similarity and divergence 

dates can be explored with further data sets, as well as the 
relative importance of genetic versus ecological similar-
ity between training and testing taxa. This choice will in 
fact be dependent on the organismal type and may ulti-
mately need to be somewhat subjective, where the expe-
rience and organismal knowledge of the taxonomist will 
be critical in determining suitability of any training data 
set. Niche overlap can be quantified, however, in the case 
of our study the differences in local climates and the geo-
graphic distance between their respective distributions 
makes assessing niche overlap difficult. More impor-
tantly, the bioclimatic variables used in species distribu-
tion modelling do not necessarily capture the similarity 
in microhabitat “climate” for taxa found underneath the 
forest surface, living in deep leaf litter and underneath 
woody debris. Future studies should advance towards 
quantifiable metrics that determine if a species group(s) 
is an appropriate training dataset, as well as attempting 
this approach on taxa that are more directly linked to the 
bioclimatic variables used in species distribution model-
ling (e.g., plants).

Incorporating natural history into genetic species 
delimitation
Genetic species delimitation is driven largely by compu-
tational tools, model testing, and a desire for objectivity 
in analyses. However, this is increasingly at the expense 
of considering the biological characteristics of organ-
isms. Cryptic species, and those taxa that undergo non-
ecological speciation, are one of the biggest challenges 
in species delimitation, as many species criteria can-
not be used in practice. Moving forward, an additional 
approach to delimiting cryptic species with genetic data 
can be using information already available, in this case 
inferring species in difficult unknown systems by using 
data from robustly known taxa with similar biological 
characteristics and modes of speciation. Recent integra-
tion of machine learning in species delimitation [10, 50, 
51] provides algorithmic options which are versatile and 
customizable. Here we used a system-specific “custom” 
training dataset in a supervised machine learning frame-
work to delimit cryptic species, where the training data 
were derived from Metanonychus, a previously studied 
system with robust species supported through multi-
ple data types and with similar biological characteristics 
to Theromaster. These taxa share similar biological and 
ecological characteristics, most importantly dispersal 
ability and microhabitat preference, and both undergo 
the same type of speciation, and as such are expected to 
have comparable underlying genetic patterns associated 
with populations and species. The effectiveness of using 
customized and biologically relevant training data is evi-
denced by the probability of assigning specimens from 
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the same geographic location to the same species, which 
increased dramatically with the “custom” dataset relative 
to the “general”.

The power of applying a supervised machine learn-
ing approach derives from the ability to create custom 
training data sets that are specific to each study system, 
and to various classes of genetic data (e.g., UCE, RAD-
seq, Sanger), capturing the inherently different charac-
teristics of genetic data types. In this way, our approach 
combines a computational tool ideally suited for species 
delimitation, in this case, a supervised machine learn-
ing algorithm as a classification tool, with knowledge 
of the biology and natural history of the focal organ-
isms derived from organismal expertise, leading to more 
informed, relevant, and reasonable species delimitation 
decisions when relying on genetic data only. The recently 
developed program DELINEATE [46] takes a similar 
approach, using the information from known species to 
calculate speciation parameters which are then applied 
to delimit unknown samples. Similarly, a reference-based 
taxonomic approach was used to delimit putative new 
species based on genetic distances of known species in 
a group of closely related and ecologically similar lizards 
[52].

Conclusions
There are extremely well-studied systems for which 
genetic species delimitation is largely successful, for 
example the model organism Drosophila [53]. However, 
for poorly studied groups (perhaps the majority of life) 
where basic biological and ecological knowledge can be 
difficult or impossible to acquire, inferring any biological 
details in an unknown or new taxon commonly relies on 
generalization from similar or closely related taxa where 
that information happens to be known. Our approach 
using known species limits in a supervised machine 
learning framework to infer unknown limits is a logical 
analytical extension of this inference process and should 
be universally applicable to species delimitation in any 
taxon, particularly when cryptic species are anticipated 
or prevalent.

Materials and methods
Study system and taxon sampling
The genus Theromaster [37] currently includes two 
described species: the widespread T. brunneus [36] 
(Fig. 1), and the poorly described T. archeri [38] from sev-
eral caves in extreme northeastern Alabama. Theromaster 
are small (body length usually < 3 mm), short-legged, and 
most often found in sheltered microhabitats under rocks 
and logs. Because of these natural history characteristics, 
we anticipate high levels of population genetic structur-
ing and potential cryptic diversification, as seen in many 

other northern temperate Opiliones with similar biol-
ogy (e.g., [24–26, 43]). Cryptic diversification is further 
expected because T. brunneus occurs in one of the most 
topographically complex regions of North America, the 
southern Appalachian Mountains. The Southern Appala-
chians are a well-known biodiversity hotspot for animals 
including vertebrates (e.g., [54–58]) and arthropods (e.g., 
[26, 59–61]). For arachnids, almost all available molecu-
lar datasets for “wide-ranging” taxa in this region indi-
cate in situ phylogeographic diversification, with multiple 
lineages that likely represent cryptic species (e.g., sum-
marized in [43, 61, 62].

Theromaster brunneus is known from less than 10 lit-
erature records [37–39, 63] from western North Caro-
lina, eastern Tennessee, northern Georgia, and northern 
Alabama. However, our own collections and museum 
specimens indicate a broader distribution (Fig. 1) that is 
atypically large for a single species of northern temper-
ate laniatorean Opiliones. We first constructed a distri-
bution map for T. brunneus, based on original collections 
from the Hedin lab and collections of Dr. William Shear 
(specimens now housed at San Diego State University). 
Our specimen sample spans the known geographic dis-
tribution of the species, including specimens from near 
the type locality (“valley of Black Mountains”, North 
Carolina). All samples used in this study are identified 
as or considered T. brunneus; specimens morphologi-
cally identifiable as the questionable T. archeri could not 
be collected. To attempt to resolve the taxonomic issues 
associated with T. archeri we also examined the holo-
type specimen held in the American Museum of Natural 
History. Previous UCE-based phylogenomic analyses of 
travunioid harvestmen strongly supported a Theromas-
ter + Erebomaster clade [64]; as such we used Erebomas-
ter samples as outgroups for mitochondrial and UCE 
datasets, and rooted ddRAD phylogenies (without Erebo-
master) based on the UCE topology.

Morphology
Adult male T. brunneus have distinctive cheliceral modi-
fications, making this taxon easily recognizable. Whole 
specimen and cheliceral segment digital images were 
captured using a Visionary Digital BK plus system (http://​
www.​visio​naryd​igital.​com). Multiple individual images 
were merged into a composite image using Helicon Focus 
6.2.2 software (http://​www.​helic​onsoft.​com/​helic​onfoc​
us.​html). For imaging, left chelicerae and pedipalps were 
dissected from male specimens. Male penises that were 
not already protruding from the genital operculum were 
physically extracted using a blunt insect micro pin. Cheli-
cerae, penis, and pedipalps were examined using scan-
ning electron microscopy (SEM). Specimens destined 
for SEM imaging were mounted onto stubs, critical point 

http://www.visionarydigital.com
http://www.visionarydigital.com
http://www.heliconsoft.com/heliconfocus.html
http://www.heliconsoft.com/heliconfocus.html
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dried, coated with 6 nm platinum, and imaged on the FEI 
Quanta 450 FEG environmental SEM at the San Diego 
State University Electron Microscope Facility.

Mitochondrial data collection and analysis
A partial fragment of the mitochondrial COI gene was 
amplified using PCR primers and conditions as in Hedin 
and Thomas [26] and Derkarabetian et al. [65] for a total 
of 39 T. brunneus samples from throughout its distribu-
tion. PCR products were purified using Millipore plates, 
Sanger sequenced in both directions at Macrogen USA 
(Rockville, MD), then edited and aligned manually using 
Geneious 10.1 (Biomatters Ltd.). Gene trees were recon-
structed using RAxML v8 [66], with a GTR GAMMA 
model applied to separate codon partitions. RAxML was 
called as follows: -# 500, -n MultipleOriginal, -# 1000, -n 
MultipleBootstrap. The resulting COI RAxML gene tree 
was used as input for bPTP species delimitation analyses 
through the bPTP server (https://​speci​es.h-​its.​org/, [67]). 
Two replicate analyses were run for 100,000 generations, 
with thinning at 100, and a burnin of 0.1.

ddRADSeq data collection and analysis
Sixty-one Theromaster specimens from 50 distinct geo-
graphic locations were included in a “complete” (n = 61 
samples) matrix for ddRAD analyses (Fig.  1). Prepara-
tion of the ddRAD libraries followed Burns et al. [68] and 
Derkarabetian et  al. [24], adapted from Peterson et  al. 
[33]. DNA was extracted from whole specimens using 
the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valen-
cia, CA) following the manufacturer’s protocol. We used 
restriction digest enzymes EcoRI-HF and Msp1 (New 
England Biolabs, Ipswich, MA), and the correspond-
ing adapters from Peterson et  al. [33]. Briefly, ~ 500  ng 
of genomic DNA was digested for 3 h in a 50 μl reaction 
with 100 units each of the restriction enzymes EcoRI-HF 
and Msp1 (New England Biolabs, Ipswich, MA), and 1X 
CutSmart Buffer (New England Biolabs). Samples were 
purified using Agencourt AMPure XP bead cleanup 
(Beckman Coulter, Inc., Brea, CA). Adapters were ligated 
to digested DNA in a 40 μl reaction that consisted of 33 μl 
digested DNA, 1.05 μM MspI P2 adapter, 0.54 μM EcoRI 
P1, 400 units of T4 DNA-ligase, and 1X T4 DNA ligase 
reaction buffer (New England Biolabs). Ligation reac-
tions were incubated at room temperature for 40  min, 
heat killed at 65 °C for 10 min, then cooled to room tem-
perature at a rate of 2 °C per 90 s. Samples with different 
adapters were pooled by column and then purified using 
AMPure XP bead cleanup. Pooled samples were then 
size selected to a size range of 400–600  bp with a Pip-
pin Prep automated size-selection instrument (Sage Sci-
ence, Beverly, MA). Primers with Illumina indices were 
added to the pooled samples using PCR; 50 μl reactions 

consisted of 23 μl DNA template, 2 uM PCR Primer P1, 
2 uM PCR primer P2 (eight types for second-tier multi-
plexing, one per pooled sample), and 1X Phusion High 
Fidelity PCR Mastermix (New England Biolabs). Cycle 
conditions were 98 °C for 30 s, 12 iterations of 98 °C for 
10  s and 72  °C for 20  s (with a 16% ramp to slow cool-
ing), and 72  °C for 10 min. PCR products were purified 
via AMPure XP bead cleanup and quantified using a Bio-
analyzer (Agilent Technologies, Santa Clara, CA). A pool 
consisting of an equimolar quantity of each library was 
sequenced as 100 bp SE reads on the Illumina HiSeq2500 
platform at the University of California, Riverside’s Insti-
tute for Integrative Genomics Biology—Genomics Core 
Facility.

ddRAD data were processed using the denovo assem-
bly method of ipyrad v.0.5.15 [69], with the following 
settings adjusted from default: mindepth_majrule = 6, 
clust_threshold = 0.9, filter_adapters = 2, filter_min_
trim_len = 35, max_Indels_locus = 4, max_shared_
Hs_locus = 0.1. For the full 61-sample dataset, we ran 
min_samples_locus at 31 (50% complete matrix, called 
61_31) and 48 (~ 75% complete matrix, called 61_48). 
Maximum likelihood analyses of 61_31 and 61_48 matri-
ces were run with RAxML v8 [66] using 1000 rapid boot-
strap replicates and the GTRGAMMA model. These 
analyses of 61-sample matrices indicated three divergent 
and early-diverging lineages (see “Results” section). Given 
the congruent recovery of three early-diverging lineages, 
we excluded these early-diverging samples and re-ran 
min_samples_locus at 45 and 51 for a reduced 51-sam-
ple dataset (called 51_45 and 51_51 respectively). These 
datasets only included “Tennessee Valley” (TNV), Great 
Smokey Mountain National Park (GSMNP), “northern 
Trans Asheville” (nTA), and “southern Trans Asheville” 
(sTA) lineages. This strategy effectively increases the 
number of loci retained for these derived lineages (see 
[70]).

Using unlinked SNPs (a single randomly sampled SNP 
per locus) from the 61_48 matrix, we reconstructed both 
a “lineage tree” (individuals as OTUs) and “species tree” 
using SVDquartets [71] in PAUP ∗ v4.0a152 [72] with 
n = 500 bootstraps. For the species tree, specimens were 
partitioned into groups following major clades recov-
ered in RAxML and SVDquartets lineage tree analy-
ses. Using the 51_45 unlinked SNPs matrix (n = 1122 
unlinked SNPs), we performed k-means clustering of 
PCA-transformed data using the find.clusters R function 
(“adegenet” package) [73, 74]. Missing data were replaced 
by the mean frequency of the haplotype in the sample 
(scaleGen(data, NA.method = "mean"). The Bayesian 
information criterion (BIC) was used to compare cluster-
ing models with a maximum of K = 20, retaining all prin-
cipal components, and replicating the analysis 10 times. 

https://species.h-its.org/
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We then conducted a discriminant analysis of principal 
components (DAPC), retaining approximately one-
quarter of the principal components and all discriminant 
functions. Using the same unlinked SNPs matrix, STRU​
CTU​RE 2.3.4 [42] runs were conducted using an admix-
ture model with uncorrelated allele frequencies. All other 
priors were left as default. For individual K values rang-
ing from 2–12, analyses were replicated four times, each 
run including 200,000 generations with the first 20,000 
generations removed as burnin. Data were summarized 
using CLUMPAK [75], with a best-fit K chosen utilizing 
the ∆K method of Evanno et  al. [41], and the prob (K) 
method of Pritchard et al. [42].

Based on phylogenetic analysis of the UCE and 
61-sample RADSeq datasets, plus STRU​CTU​RE [42] and 
DAPC [76] analyses of the 51-sample RADSeq dataset 
(see “Results” section), we chose 18 samples to represent 
all primary Theromaster lineages. For these 18 samples 
we re-ran ipyrad using settings as above, at 18_12 occu-
pancy. From this, an unlinked SNPs file was created using 
the Phrynomics package ([77], https://​github.​com/​
bbanb​ury/​phryn​omics), where nonbinary characters 
were removed and bases were translated. To further visu-
alize genetic structure and clustering within Theromaster, 
we analyzed this dataset using a Variational Autoen-
coder (VAE) implemented with a modified version of the 
sp_deli script (https://​github.​com/​sokry​pton/​sp_​deli) 
derived from Derkarabetian et  al. [40]. The matrix was 
run through the VAE five times and the analysis with the 
lowest average loss after removing 50% burnin was con-
sidered the optimal output.

UCE data collection and analysis
Studies have shown the utility of UCEs at shallow levels 
(e.g., [78, 79]), particularly in arthropod taxa (e.g., [40, 80, 
81]). The UCEs targeted in the arachnid probe set [82] 
are exonic in origin with the “core” UCE corresponding 
to coding region while the “flanking” region are non-
coding introns [83]. As such, in taxa with high popula-
tion structure, flanking non-coding regions of UCEs are 
informative for population level structure and can be 
used in phylogenomic species delimitation analyses [40]. 
Representative samples for UCE sequencing were chosen 
based on preliminary RAD analyses, subsampling main 
lineages (see Fig. 2).

Sequence capture of UCEs followed the protocol of 
Derkarabetian et  al. [64]. A subset of 15 samples rep-
resenting all major ddRAD lineages were used in UCE 
experiments and were prepared in multiple library prep-
aration and sequencing experiments. Protocols across 
these experiments were largely identical, differing mainly 
in sequencing platform. Genomic DNA was extracted 
from either multiple legs or whole bodies using the 

Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, 
CA). Extractions were quantified using a Qubit Fluorom-
eter (Life Technologies, Inc.) and quality was assessed 
via gel electrophoresis on a 1% agarose gel. Up to 500 ng 
were used in DNA fragmentation procedures, either 
using a Bioruptor or a Covaris M220 Focused-ultrason-
icator, as in Derkarabetian et al. [64]. UCE libraries were 
prepared using the KAPA Hyper Prep Kit (Kapa Biosys-
tems), using up to 250 ng DNA (i.e., half reaction of man-
ufacturer’s protocol) as starting material. Ampure XP 
beads were used for all cleanup steps. For samples con-
taining < 250 ng total, all DNA was used in library prep-
aration. Target enrichment was performed on pooled 
libraries using the MYbaits Arachnida 1.1K version 1 kit 
(Arbor Biosciences, Ann Arbor, MI) following the Target 
Enrichment of Illumina Libraries v. 1.5 protocol (http://​
ultra​conse​rved.​org/#​proto​cols). Hybridization was con-
ducted at either 60 or 65 °C for 24 h, with a post-hybridi-
zation amplification of 18 cycles. Following an additional 
cleanup, libraries were quantified using a Qubit fluorom-
eter and equimolar mixes were prepared for sequencing 
either with an Illumina NextSeq (University of California, 
Riverside Institute for Integrative Genome Biology) with 
150  bp PE reads, or an Illumina HiSeq 2500 (Brigham 
Young University DNA Sequencing Center) with 125 bp 
PE reads (see Suppl. Material 1).

Raw demultiplexed reads were processed with the Phy-
luce pipeline [84]. Quality control and adapter removal 
were conducted with the Illumiprocessor wrapper [85, 
86]. Assemblies were created with Velvet [87] at default 
settings. Contigs were matched to probes using mini-
mum coverage and minimum identity values of 65. UCE 
loci were aligned with MAFFT [88] and trimmed with 
Gblocks [89, 90] implemented in the Phyluce pipeline. 
All individual UCE loci were imported into Geneious 
10.1 (Biomatters Ltd.) and manually inspected to check 
for obvious alignment errors and remove putatively non-
homologous sequences (e.g., any sequences more diver-
gent than outgroup taxa).

Concatenated and partitioned phylogenetic analyses 
were run on two datasets differing in the taxon cover-
age needed to include a locus in the final dataset: 50% 
and 70%. Maximum likelihood analyses were run with 
RAxML v8 [66] using 200 rapid bootstrap replicates and 
the GTRGAMMA model. Using the 70% concatenated 
UCE matrix we also reconstructed a lineage tree using 
SVDquartets [71] with n = 500 bootstraps. Finally, we 
made a 50% taxon coverage unlinked SNP dataset from 
alignments with a custom wrapper script using snp-sites 
[91] to convert alignments to vcf format, randSNPs_
from_vcf.pl (https://​www.​biost​ars.​org/p/​313701/) to 
select a single random SNP from each alignment’s vcf file, 
vcf2phylip.py (https://​github.​com/​edgar​domor​tiz/​vcf2p​

https://github.com/bbanbury/phrynomics
https://github.com/bbanbury/phrynomics
https://github.com/sokrypton/sp_deli
http://ultraconserved.org/#protocols
http://ultraconserved.org/#protocols
https://www.biostars.org/p/313701/
https://github.com/edgardomortiz/vcf2phylip
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hylip) to convert vcf files back to phylip, and AMAS [92] 
to concatenate all randomly selected SNPs into a single 
phylip file. The Phrynomics R package ([77], https://​
github.​com/​bbanb​ury/​phryn​omics) was used to select 
only biallelic SNPs and translate SNPs to integers. The 
VAE was run on this dataset as done with ddRAD data.

Bayes factor delimitation* analyses
We conducted BFD* [93, 94] species delimitation analy-
ses using SNPs derived from both the ddRAD and UCE 
data using SNAPP [95] implemented in the BEAST 2.4.5 
package [96]. Analyses were run on the 18_12 ddRAD 
and the 50% taxon coverage UCE datasets. For each SNP 
dataset we tested multiple alternative species hypoth-
eses. Hypotheses tested were derived from other data 
types and analyses used in this study including morpho-
logical, COI, and phylogenetic and STRU​CTU​RE/DAPC 
analyses of nuclear data. To test the BFD* approach to its 
fullest extent in this study system (and hence its poten-
tial to delimit populations), we also included a nested set 
of hypotheses up to the maximum potential number of 
species, where every specimen was considered a differ-
ent species. All BFD* analyses were run for 100,000 gen-
erations, with 10,000 generations as pre-burnin, 48 steps, 
and an alpha value of 0.3. Two replicates of each analysis 
were run to check for convergence. A comparison of mar-
ginal likelihoods was conducted using Bayes factors [97], 
with values above 10 considered to be decisive support.

Supervised machine learning analyses
We analyzed UCE loci with the supervised machine 
learning species delimitation program CLADES [50]. 
CLADES is a classification model derived from a type 
of machine learning algorithm called a support vector 
machine to classify samples as either “same species” or 
“different species” using multi-locus data in a two-species 
model. CLADES computes five summary statistics from 
the data (both training and testing) and uses these statis-
tics as features to create the model and classify samples: 
private positions, folded-SFS with k bins, pairwise differ-
ence ratio, FST, and longest shared tract (defined in [50]). 
A training data set, where pairwise comparisons of all 
samples are defined a priori as either the same or differ-
ent, is used to build the model and classify a test dataset 
with unknown species status.

We analyzed Theromaster UCE data in CLADES 
using two training data sets. First, Pei et  al. [50] pro-
vided a training data set called “All” (which we refer 
to as “general” here) based on simulated data with 
varying values of theta (Θ), migration rate, and diver-
gence time under a two species model. This “general” 
data set is meant to be broadly applicable across taxa 

as simulated data encompass the broad diversity of 
genetic patterns across plants and animals [50]. Sec-
ond, we developed a “custom” training data set derived 
from the well-known, robust species of Metanonychus 
recently revised in an integrative taxonomic context 
[25]. All Metanonychus species are easily diagnosed 
based on both somatic and genitalic morphology, with 
both mitochondrial and nuclear data supporting spe-
cies status across a broad array of analysis types. Most 
importantly, Metanonychus and Theromaster share 
similar biological and ecological characteristics, includ-
ing low dispersal ability and microhabitat preferences. 
Microhabitat preference and ecological similarity are 
largely based on our experience collecting these taxa 
over many years. Quantifying biological and ecologi-
cal similarity, as well as dispersal ability, is difficult in 
poorly-known taxa with cryptic biology, like those that 
occupy “hidden” microhabitats (see “Discussion” sec-
tion for further justification).

For both Theromaster and Metanonychus, datasets 
included all UCE loci shared across all samples in each 
data set (n = 52 for Theromaster, n = 12 for Metanon-
ychus) (the “spp” dataset of Metanonychus in [10]). To 
create the “custom” Metanonychus training dataset, 
we ran the Metanonychus UCE loci through CLADES 
against the “general” training dataset. As expected, and 
found in Derkarabetian et  al. [40], analyses favored all 
populations as species, and all output files reflected this. 
The output files contain pairwise comparisons of all spec-
ified populations,  those files with pairwise comparisons 
between populations that belonged to the same species 
as delimited in Derkarabetian et  al. [10] were manually 
modified to reflect that the samples belonged to the same 
species (switching + 1 to − 1). All relevant files required 
for the model (see CLADES documentation) were manu-
ally created from these output files. LibSVM [98] was 
used to create the “*.model” file from the “*.sumstat.
scale” file using default parameters, with the addition of 
training for probability estimates (− b 1).

Following creation of this “custom” training dataset, we 
ran the T. brunneus dataset against it using CLADES. We 
excluded the Roan sample from these analyses because 
this specimen (i.e., species) is morphologically distin-
guishable from the rest of T. brunneus and is represented 
by only a single specimen. In this way our goal was to 
assess the success of this approach on a dataset consisting 
only of morphologically similar lineages that are putative 
cryptic species.
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