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Abstract

enzyme activities and antioxidant levels.

Background: The relationships among energy metabolic levels, behavioral and other physiological traits help to
determine the trade-off of energy allocation between different traits and the evolution of life-history driven by
natural selection. However, these relationships may be distinctive in selected animal taxa because of their unique
traits. In the present study, the relationships among energy metabolic levels, behavioral defense strategies, and
antioxidant capacity were explored in three freshwater turtle species with different shell morphologies, by
assessing responses to attack, righting time, shell morphology, whole-organism metabolic rates, tissue metabolic

Results: The Chinese three-keeled pond turtles, Chinemys reevesii, showed a passive defense strategy, relatively
larger shells, a higher resting metabolic rate (RMR) and higher antioxidant levels compared to the snapping turtle,
Chelydra serpenting, or the Chinese soft-shelled turtle, Pelodiscus sinensis. These latter two species both showed an
active defense strategy, a higher factorial aerobic scope and better muscle anaerobic metabolic capacity but
relatively smaller shells, lower RMR and antioxidant capacity.

Conclusion: Our results indicate a negative relationship between RMR and activity levels in behavioral defense
strategies along small-big shell continuum among the three turtle species. We also found a positive relationship
between antioxidant capacity and energy metabolism but a negative one between antioxidant capacity

and activity levels in defense strategies. The present study indicated a role of turtle shell in forming unique
relationship between energy metabolic levels and behaviors in freshwater turtle taxa and a possible trade-off
between the maintenance of physiological homeostasis and activity levels in energy allocation.
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Background

Energetics and animal behaviors (e.g. predator avoidance
strategies, boldness or exploration) are related to each
other because both are associated with the slow-fast
life-history continuum [1-3]. Thus, the relationship be-
tween energy metabolism and specific behavioral traits
can show the consequences of natural selection as well as
suggest the evolution of life histories and can also be
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expanded to link with other physiological or morpho-
logical traits [2, 4, 5]. For example, basal metabolic rate
(BMR) was shown to correlate positively with animal
activity levels at an interspecific level among most bird
species [6—8] and also correlate positively with antioxidant
capacity, an important redox balance parameter [9]; both
indicated evolution along the slow-fast continuum. How-
ever, the relationship between energy metabolic levels and
animal behaviors is not consistent across all animal taxa.
In addition to behavioral traits, the links between energy
metabolism and physiological or other traits also matter
because they reflect the principle of energy allocation to
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other different functions based on the activity levels [3].
Natural selection generally acts most directly on behaviors
and/or energy metabolism, but much less directly on
lower-level physiological or other traits [10, 11]. Thus, ex-
ploring the relationship among energy metabolic level, be-
havioral and other traits in specific animal taxa can help
our understanding of how interspecific variations are
maintained among related species by revealing how selec-
tion affects behaviors, energy metabolism and other traits
and also reveal which traits are dominant therein.

The unique traits of freshwater turtles raise questions
about their evolution, behaviors and physiology. They
have peculiar characteristics as their unique shell [12]
and their long lifespan [13]. The shell offers extra pro-
tection when turtles are attacked by predators or en-
counter environmental stressors but shell formation
would incur extra energy costs during development and
growth. Thus, the presence of the shell may result in
special relationship between energy metabolic levels and
turtle behaviors under the selection of predation or en-
vironmental stress, which may further affect other
physiological traits. Among freshwater turtle species, in-
terspecific variations in shell morphology, behavioral
traits (e.g. righting response) and physiological traits
(e.g. antioxidant capacity or immunity) have been widely
observed [14-19]. How these variations were shaped,
maintained and linked may be explained by the relation-
ship between energy metabolism and these traits al-
though this relationship is not yet well understood.

The aim of our study was to explore the relationships
among energy metabolism, behavioral and physiological
traits in freshwater turtles and how the shell participates in
these relationships. We selected three freshwater turtles liv-
ing in similar habitats for the study: the Chinese three-
keeled pond turtle Chinemys reevesii that has a hard shell,
the Chinese soft-shelled turtle Pelodiscus sinensis with a soft
shell and the snapping turtle Chelydra serpentina with a
small plastron [20-22]. Among behavioral traits, behavioral
defense strategies were chosen because they link with
short-term fitness and can be affected by natural selection
of predation or environmental stress. Two main defense
strategies are observed in freshwater turtles: the active and
the passive. The active strategy showed high activity level
along with rapid behavioral response (e.g. escape or bite
back) to attack or stress and efficient anaerobic metabolism
[23, 24]. The passive strategy includes a low activity level
along a defensive strategy of retracting head, legs and tail
into the shell for a long time [23]. Direct energy costs of ac-
tive behaviors can be avoided but an extra energy invest-
ment into the shell may be necessary for the passive
strategy. Thus, we predicted a negative relationship be-
tween activity levels used in defense strategies and energy
metabolic capacity along a small-big shell continuum (see
Fig. 1b), which may be different from that seen in birds
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(Fig. 1a). At the same time, the present study also assessed
on antioxidant capacity because it links with long-term fit-
ness and stress tolerance [25, 26]. In the passive strategy,
the use of long-term hiding in the shell may promote high
constitutive antioxidant capacity. Thus, we also predicted a
negative relationship between activity levels in defense
strategies and antioxidant capacity in freshwater turtles
(Fig. 1b) and a further positive correlation between energy
metabolic capacity and antioxidant capacity, which is simi-
lar to that seen in birds (shown as Fig. 1a). In the present
study, different behavioral defense strategies of the three
species were distinguished by variation in righting time and
direct responses to attack. Whole-organism metabolic rate
and tissue metabolic enzyme activities were employed to in-
dicate energy metabolic capacity as well as tissue total anti-
oxidant capacity (TAC) and antioxidant enzyme activities
to indicate antioxidant capacity. Shell morphology was
assessed by measuring carapace height/width ratio and
plastron/carapace flat area ratio.

Methods

Animals holding and experimental process

Chinese soft-shelled turtles, P. sinenesis (n =15, mass
=112.6 £ 8.3 g), were obtained from a turtle hatchery
facility (Yutian County, Hebei province, PR China). C.
reevesii (n =15, mass =108.2+5.9¢) and C. serpentina
(n=15, mass=148.5+5.2g) were obtained from an
aquarium market (Beijing Guanyuan market, PR China).
All turtles were raised in tanks (70 x 50 x 40 cm with water
depth of about 6 cm) at 26 +1°C (a suitable temperature
for the feeding and growth of all three species) for at least
6 weeks. All turtles were given commercial feed daily.
Photoperiod was kept at 12 L/12 D.

After acclimation, all turtles were assessed for (a) behav-
ioral traits: righting time (RT) and response to attack
(RTA), (b) morphological traits: carapace height/width ra-
tio (H/W ratio), plastron/carapace flat area ratio (P/C ra-
tio), and (c) metabolic traits: RMR, maximum metabolic
rate (MMR), net aerobic scope (NAS) and factorial aerobic
scope (FAS). Then turtles were transferred back to their
original tanks for another two weeks. Afterwards, all indi-
viduals of each species were divided into two groups. One
group was defined as the control group without treatment
(n=7). The other group, which was defined as the elec-
trical stimulated group (ESG, n =8), experienced forced
movement by electrical stimulation (30-50V, 20 hz, 10
msec, 5min or to exhaustion) [27-29]. After treatment,
all turtles were sacrificed to excise liver, heart and skeletal
muscle of the left forelimb. Liver and heart were weighed
to provide liver index and heart index. All tissues were
frozen in liquid nitrogen immediately and stored at — 80°
C. Activities of selected enzymes were measured. These
included (a) energy metabolism related mitochondrial
respiratory enzymes: succinate dehydrogenase (SDH),
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Fig. 1 The relationships among energy metabolic capacity, behavioral defense strategies and antioxidant capacity observed in birds a,
and predicted for freshwater turtles with the inclusion of shell morphology b

respiratory complex III (C3), cytochrome ¢ oxidase (CO)
and lactate dehydrogenase (LDH), and (b) antioxidant
enzymes: TAC, superoxide dismutase (SOD) and catalase
(CAT). Levels of lactic acid (LA) and ascorbic acid (AA)
in tissues were also measured.

Behavioral traits

Righting time reflects the response to being overturned
and the hiding time until the predator leaves [14, 30]. The
response to attack reflects the choice between different be-
havioral defense strategies of freshwater turtles when dis-
turbed. The water temperature for all behavioral assays
was maintained at 26 °C and a 30 min acclimation period
to testing area was applied for each turtle before treat-
ments. For the righting time survey, each turtle was placed
in one thermostatic chamber (diameter =20 cm, water
depth =5cm). After acclimation, turtles were turned up-
side down in the chamber to start the test. The righting
process was recorded with a camera to the nearest second
starting from the moment that the turtle was placed upside
down to the moment that the animal righted itself com-
pletely [31]. For response to attack, a similar method was
used as described by Chang et al. [32]. Each turtle was
placed in one tank (140 x 60 x 70 cm, water depth =5 cm)
and was tapped on the carapace with a tweezer from a hid-
den position. The immediate response was recorded and
graded with the following criteria: (1) run away, (2) stay
still, (3) turn to attack, or (4) retraction into the shell. Each
individual was tested twice, as in previous related studies
[14, 31].

Shell morphology, liver and heart index

Maximum carapace height and carapace straight width
were measured with a digital caliper (Pro skit, PR China)
to the nearest millimeter. According to the model of
Domokos and Viarkonyi [15], H/W ratio of turtles was
used to judge if the turtle species belonged to “flat tur-
tles” (H/W under approx. 0.6), “medium turtles” (H/W
between 0.6 and 0.8) or “tall turtles” (H/W above
approx. 0.8) groups. Flat areas of carapace and plastron
were measured with a camera and assessed using image
analysis software (Digimizer, Belgium). The P/C ratio
was used to compare the degree of shell coverage of the
three turtle species. Liver index and heart index were
calculated as the ratio of tissue wet weight to fresh ani-
mal body weight.

Metabolic rates and aerobic scope

RMR of each turtle was measured in air at 26 °C using an
airtight chamber (diameter =20 cm, height = 6.5 cm) and
oxygen sensor (FireStingO2, Pyro science, Germany). Tur-
tles were fasted for 24h and kept still in the chamber.
Each individual was acclimated to the experimental envir-
onment for 30 min with the cover off. Then the cover was
closed tightly, the survey was started and the change in
oxygen percentage (%) over 30 min was recorded. To
measure the MMR, turtles were forced to run for 5 min or
until exhaustion in response to electrical stimulation
(30-50V, 20 hz, 10 msec). Then the turtle was quickly
placed in the chamber to measure the change in oxygen
percentage (%) over the following 30 min. The change in



Zhang et al. Frontiers in Zoology (2019) 16:3

oxygen percentage inside the chamber during the initial
100 s was chosen to calculate the MMR. The air volume
was measured by filling the chamber with water in the
presence of the animal and then measuring the volume of
water to the nearest milliliter. FAS (defined as the MMR/
RMR ratio) and NAS (defined as difference between
MMR and RMR) were calculated [33].

Biochemical assays

After sampling, tissues were homogenized in phosphate buff-
ered solution (9 g/L NaCl, 726 mg/L. Na,HPO,-7H,0, and
210 mg/L KH,PO,, pH7.2) for biochemical assays. Reagent
kits (Nanjing Jiancheng, PR China) were used to measure
the activities of SDH, C3, CO, SOD, CAT, LDH, TAC and
LA level according to the instruction manual for each kit.

Gradient centrifugation was employed to isolate mito-
chondria from tissue homogenates for the SDH, C3 and CO
activity assays. To do this, homogenates were centrifuged at
1000 g for 10 min, then supernatants were removed and
recentrifuged at 12000 g for 15 min, followed by retrieving
pellets, that were then washed and resuspended (all steps
were done at 4°C). SDH activity was measured using a
2,6-dichlorophenolindophenol (DCPIP) reduction reaction.
The DCPIP reduction speed was determined by the change
in absorption value at 600 nm [34]. C3 activity was mea-
sured using a reaction in which the C3 complex reduced ox-
idized cytochrome c to the reduced form in the presence of
a hydrogen donor and the increase in absorbance at 550 nm
was measured for 2min [35]. CO activity was measured
using a reaction that converted cytochrome c to its oxidized
form and the decrease in absorbance value at 550 nm was
measured for 1 min [35].

Portions of each tissue homogenate were centrifuged at
4500g and 4°C for 10 min to provide supernatants for
antioxidant enzyme activity assays, LDH activity and LA
content. TAC was measured by determining the absorp-
tion value at 520 nm when Fe** was reduced to Fe** in
the presence of antioxidants [36]. SOD activity was mea-
sured using a cytochrome c reduction inhibition reaction
in a xanthine-xanthine oxidase system and the degree of
inhibition was measured by the absorption value at 550
nm [37]. CAT activity was measured by determining the
rate of H,O, decomposing in 1 g protein per second with
the change of absorption measured at 405 nm. LDH activ-
ity was measured using the reverse reaction in which LDH
catalyzes the conversion of lactate to pyruvate using
NAD" as the hydrogen donor. Then 2,4-dinitrophenylhy-
drazine was used to determine pyruvate product levels,
monitored by absorption change at 440 nm. LA content
was measured following the method of Buttery et al. [38].
LA was transformed to pyruvate with the generation of
NADH, which reacted with phenazine methosulfate; then
the products reduced p-iodonitrotetrazolium to its re-
duced form which was assessed by the absorption value at
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530 nm. Total protein content was measured according to
the Coomassie blue dye-binding method with bovine
serum albumin as the standard [39].

We employed the method described in Chen et al
[40] to measure tissue AA content, which is an essential
antioxidant in turtles [41, 42]. Tissues were homoge-
nized with 15% cold-phosphoric acid at a ratio of 1:19
(w/v) and then homogenates were centrifuged at 20,000
g for 20 min. The supernatants were used for high per-
formance liquid chromatography (HPLC) analysis with
electrochemical detection (Waters 2695/2487, USA) and
a 5pum analytical column (4.6 x 250 mm, Aglient, USA).
Injection volume was 20 pL, flow rate was 1 mL per min
and ultraviolet detection was set as 243 nm.

Statistics

The hierarchical clustering algorithm was generated with
all data according to a Euclidean method. The clustering
analysis and the heatmap were conducted with R v. 3.5.0
(Development Core Team 2018). Then, all data were
checked for normality by the Kolmogorov-Smirnov test
and homogeneity of variance. For metabolic rates, a general
linear model was employed to conduct interspecies com-
paration with mass as covariate. For enzyme activities and
LA level, intraspecific differences between the control
group and the treatment group (ESG) were assessed via a
t-test. If no significant difference between the two groups
was found, data of the two groups were combined for inter-
specific comparison. Interspecific variations in all parame-
ters, except metabolic rates, were detected using one-way
ANOVA followed by Tukey HSD post hoc test, or Kruskal-
Wallis test followed by Mann-Whitney U post hoc test for
data that did not fit the check for normality or variance
homogeneity. P < 0.05 was set as the significance level. The
correlations among different morphological and physio-
logical parameters were analyzed using Pearson’s correl-
ation analysis, while the correlations between behavioral
parameters, which are discrete variables, and others were
analyzed using Spearman’s correlation analysis.

Results

Clustering results showed that the 45 turtles can be di-
vided into two groups according to all parameters mea-
sured (Fig. 2). One group included all individuals of P.
sinensis and C. serpentina. The other one included all C.
reevesii individuals. Detailed results were shown in Figs.
3, 4, 5 and 6 or Additional file 2: Figure S1, Additional
file 3: Figure S2 and Additional file 4: Figure S3.

Behavioral traits

In the righting test, C. reevesii spent the longest time
whereas P. sinensis spent the shortest time in righting
themselves (RTc¢  eevesii = 66.6 £16.05, RTc serpentina =
63.3+33.0s and RTp gensis= 1.3 +0.25s, X = 22.746,
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df=2, P< 0.001, Fig. 3a). The three turtle species also
showed different responses to attack (x*=16.941, df =2,
P < 0.001, Fig. 3b). More than half of C. reevesii retracted
into shell whereas the others ran away. All P. sinensis ex-
cept one ran away when faced with attack and most C. ser-
pentina stayed still (Fig. 3b).

Metabolic rates, aerobic scopes and metabolic enzyme
activities

C. reevesii showed the highest RMR compared with the
other two species (Fy41 = 10438, Pgpecies < 0.001, Ppags =
0.259 and Piyteraction = 0-551, Fig. 4a). Maximum metabolic
rate (MMR) of these three turtle species showed no
difference (F41 = 0.169, Pgpecies = 0.845, Ppass =0.020 and
Py teraction = 0.886, Fig. 4a). Factorial aerobic scope (FAS) of
both C. serpentina and P. sinensis were higher than that of
C. reevesii (Fpa1 =4.592, Pspecies = 0.016, Ppaes = 0.427 and
Pinteraction =0.978, Flg' 4'3.).

In the liver, SDH activity of C. reevesii was higher
than the other two species (F; 4, =70.002, P< 0.001,
Fig. 4b). Hepatic C3 activities of C. reevesii and P.
sinensis were higher than that of C. serpentina (x> =
10.758, df =2, P =0.005, Fig. 4c). P. sinensis had the
highest muscular LDH activity, while that of C. reeve-
sii was the lowest (Fy4, =25.267, P< 0.001, Fig. 4d).

Forced movement only induced muscle LA accumula-
tion in C. serpentina and P. sinensis but not in C. ree-
vesii (Pc serpentina < 0.001; Pp. sinensis = 0.045 and Pc.
reevesii = 0.722, Fig. 4e).

Morphological traits, liver and heart index

C. reevesii showed the highest carapace H/W ratio
(Fp,42=611.948, P< 0.001), P/C ratio (F,4,=382.29,
P <0.001), liver index ()(2 =32.949, df=2, P<0.001)
and heart index (F,40=14.24, P<0.001) among the
three turtle species (Fig. 5). P. sinensis showed a
higher P/C ratio but lower values for other morpho-
logical parameters than those of C. serpentina (Fig. 5).
Both H/W ratio and P/C ratio positively correlated
with RMR among the three species (RMR vs. H/W ra-
tio: r=0.322, P= 0.031; RMR vs. P/C ratio: r = 0.510,
P <0.001).

Antioxidant capacity

In hepatic antioxidant defense, C. reevesii showed the
highest TAC among the three species (F; 4, =20.515,
P <0.001, Fig. 6a). The SOD activity in the liver of C.
serpentina was the lowest among the three turtles (x*
=29.4123, df =2, P<0.001, Fig. 6b). In the heart, C.
reevesii showed the highest TAC as well as CAT
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Fig. 5 The carapace height/width ratio a, plastron/carapace flat area ratio b, liver index and heart index c in three freshwater turtle species.
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activity (TAC: x*>=23.279, df=2, P<0.001, Fig. 6c;
CAT: x* = 31.529, P <0.001, Fig. 6d).

Correlation among behavioral traits, RMR, metabolic and
antioxidant capacity

The righting time correlated positively with shell mor-
phological traits, liver index, RMR and TAC in the liver
and heart of the three turtle species (Table 1). Response
to attack only correlated positively with H/W ratio and
liver index (Table 1). Both behavioral traits correlated
negatively with muscle LDH activity (Table 1).

Of all antioxidant components measured in the
three species, hepatic SOD activity correlated posi-
tively with TAC in the liver (r=0.524, P<0.001) and
CAT activity positively correlated with TAC in the
heart (r = 0.482, P =0.001). Furthermore, these param-
eters positively correlated with RMR (hepatic TAC vs.
RMR: r=0.330, P=0.027, Fig. 7a; hepatic SOD vs.
RMR: r=0.400, P=0.006, Fig. 7b; cardiac TAC vs.

RMR: r=0.425, P=0.005, Fig. 7c; cardiac CAT wvs.
RMR: r = 0.426, P = 0.003, Fig. 6d, respectively).

Discussion

Relationships among energy metabolic levels, behavioral
and other traits link with energy constraints and trade-offs
driven by natural selection. In the present study, as we
predicted, a negative relationship was observed between
energy metabolic levels, antioxidant capacity and activity
levels in behavioral defense strategies along small-big shell
continuum, indicating two possible branches in freshwater
turtle taxa driven by the predation or environmental stress
(Fig. 2).

Negative relationship between metabolic level and
activity levels in defense strategy linked with shell
morphology

The behavioral assays showed that a passive defense strat-
egy was used by C. reevesii whereas an active defense
strategy was used by C. serpentina and P. sinensis (Fig. 3).
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Both the long righting time and the behavioral response,
retraction into the shell, showed by more than half of the
C. reevesii individuals indicated that C. reevesii tended to
hide in their shell and endure the disturbance until a con-
firmation of safety was achieved. However, the strategy of
P. sinensis was the complete opposite. P. sinensis showed
rapid righting and escape behaviors when disturbed, indi-
cating high activity levels in its defense strategy (Fig. 3).
Interestingly, C. serpentina showed a short righting time
and did not show behavioral response when disturbed

(Fig. 3). In Dodd and Brodie’s report [21], C. serpentina
moved to keep facing the attacker with lifting its shell and
biting behavior, but animals did not retract into their shell
when they encountered intense attack or were disturbed.
Thus, C. serpentina tend to be an active defense strategy
user with a high activity level in response to intense stress.
The active defense strategy of C. serpentina and P. sinensis
was also linked with the higher FAS value and better mus-
cular anaerobic capacity in both two species (Fig. 4a, d
and e). The higher FAS value reflects a higher oxygen debt

Table 1 Spearman’s correlation between behavioral and primary morphological parameters as well as physiological parameters (n = 45)

H/W ratio P/C ratio Liver index RMR Hepatic TAC Cardiac TAC Muscle LDH
Righting time
Coefficient 0.648 0357 0.701 0412 0429 0415 -0.728
Sig. < 0.001 0.016 < 0.001 0.005 0.003 0.005 < 0.001
Response to attack
Coefficient 0377 —-0.056 0405 0.16 -0.013 -0.067 —-0400
Sig. 0.011 0.714 0.006 0.294 0.932 0.663 0.007
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bearing capacity related to RMR [43]. High FAS has been
observed in fish and lizard species that frequently experi-
ence intense combat as the consequence of physiological
adaptation to high activity level [44—46]. Similarly, better
muscular anaerobic capacity, indicated by higher muscle
LDH activity and quicker LA accumulation in C. serpentina
and P. sinensis than that in C. reevesii (Fig. 4d and e), was
also shaped by high activity level in life history and has been
observed in animals that are good at diving, foraging and
escaping [47, 48].

The three freshwater turtles also varied in their resting
metabolic rates (RMR) with a higher RMR of C. reevesii
versus lower RMR in C. serpentina and P. sinensis (Fig. 4a).
The higher RMR of C. reevesii indicated higher energy
investment in maintenance [49] and links with relatively
larger organs, liver and heart, related to energy conversion
or supply (Fig. 5¢). In turn, the bigger liver also contributes
to the higher RMR because the liver usually shows high
mass-specific metabolic rates and can account for a large

part of whole-organism metabolic rate [3]. In addition, a
higher energy metabolic capacity in C. reevesii can also be
supported by higher hepatic SDH and C3 activities (Fig. 4b
and c¢). Mitochondria consume almost 90% of cellular res-
piration to provide ATP to power cell functions [50] and
this process depends on the SDH and C3 activities [51, 52].
Interestingly, a positive correlation was observed between
righting time and RMR among the three species (Table 1),
indicating that the species with the higher RMR showed a
more passive response when being placed upside down.
Thus, as we predicted in Fig. 1, C. reevesii showed a passive
behavioral defense strategy while a higher RMR than the
other two turtle species, which showed an active strategy
and lower RMR.

The reason for the negative relationship between RMR
and activity level in the behavioral defense strategies of
these turtles might be their unique morphological trait,
the shell. Our results indicated clear difference among the
shell morphology of the three species and relationship
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among shell morphologies, behavioral traits and RMR.
The shell of C. reevesii was higher (greater H/W ratio,
Fig. 5a) and had a relatively bigger plastron (higher P/
C ratio, 5B) than the other two species, which may
link with the passive defense strategy (Table 1). A
higher shell can offer better protection for turtles
against attack from predators and protect them during
hiding in shell [53] while a flatter shell, such as that of
C. serpentina or P. sinensis, is advantageous for swim-
ming or digging and benefits their survival in active
defense strategy [15, 54]. Similarly, the larger plastron
can offer a larger radius of protection for the ventral
side of turtles when they are overturned. Thus, the
variation in shell morphology matches the different
behavioral defense strategies of turtle species and can
also be observed in other animals that similarly carry a
similar shell, such as land snails [55]. At the same
time, shell morphology also linked with RMR among
the three turtle species with a positive correlation
(RMR vs. H/W ratio: r=0.322, P = 0.031; RMR vs. P/C
ratio: r=0.510, P<0.001), indicating a greater energy
cost to support bigger shells. The extra energy cost may
represent both the energy required to grow and main-
tain the shell and the energy debt involved in the daily
activity carrying the bigger shell. In fact, in the righting
response, turtle species with a higher shell need less en-
ergy investment for their self-righting than the species
with flat shell [15, 56]. Thus, the energy investment in
shell maintenance or structure may be an energy
budget in several turtle species, which can be reduced
to compensate for the more energy-demanding activity
in other species, and promote a unique trade-off of en-
ergy allocation between activity levels for behavioral
defense strategies and shell morphology.

Positive relationship between antioxidant capacity and
metabolic levels linked with different defense strategies
Good antioxidant defenses are important for all animals
to deal with oxidative stress and various chemical and
xenobiotic stresses. Among freshwater turtles, our re-
sults indicated a higher tissue antioxidant capacity along
with higher energy metabolic capacity (Figs. 6 and 7).
On one hand, a higher RMR means a higher energy cost
of self-maintenance and, in the present study, a possible
cost is the investment in antioxidant defense. On the
other hand, a higher RMR also may result in more react-
ive oxygen species (ROS) production, thereby promoting
a higher tissue antioxidant capacity [57]. For example,
hepatic SOD activity correlated with the mitochondrial en-
ergetics, probably to eliminate superoxide radicals (O,")
generated in mitochondria in association with high rates of
aerobic respiration among the three species (Additional file 3:
Figure S2).
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The variation in antioxidant capacity also linked with
different behavioral defense strategies (Table 1). The pas-
sive defense strategy of C. reevesii may result in animals
taking refuge in an adverse environment, such as hiding
underwater to escape predators but without access to air
to breathe. There turtles can experience hypoxia/anoxia
stress which is associated with excessive ROS generation
in animal tissues [26]. A high constitutive antioxidant
capacity favors the maintenance of redox balance with-
out an extra energy investment when animals face with
environmental stress frequently. Thus, high antioxidant
capacity could be an important physiological adaption to
the passive behavioral defense strategy of freshwater tur-
tles, such as C. reevesii.

Trade-off between behavioral activities and physiological
homeostasis

The relationships among energy metabolism, behavioral
traits and other traits reflect trade-offs of energy alloca-
tion, which is driven by natural selection (Engqvist et al.
2015; Houston and Mcnamara 1989; Réale et al. 2010;
Reznick et al. 2000). Our results provided evidence of
the special negative correlation between energy metabol-
ism, antioxidant capacity and behavioral activity levels in
different defense strategies of freshwater turtles (as
shown in Fig. 1b). These relationships link with the en-
ergy allocation trade-off between maintenance of physio-
logical homeostasis (big shell, high RMR and antioxidant
defense) and activity levels (high FAS and efficient mus-
cular anaerobic capacity) (Cohen et al. 2008; Galliard et
al. 2013). Physiological homeostasis can be considered as
less variation in physiology over time. Repeated regula-
tion of homeostasis is costly due to the expense of
adjusting all physiological processes and producing mol-
ecules involved in homeostatic regulation (Cohen et al.
2008). Among freshwater turtle species, the size and
mineralization of the shell has been shown to be positively
correlated with protection against predator attack or en-
vironmental stresses [58, 59]. At the same time, a high
constitutive antioxidant capacity can maintain redox bal-
ance without extra energy cost in transcription and trans-
lation of antioxidant proteins when animals encounter
predator attack or environmental stresses [60, 61]. Thus,
some turtle species, such as C. reevesii, invest much en-
ergy in building their shell and in high constitutive anti-
oxidant levels while showing a passive endurance strategy
under stress or attack (Fig. 2 Branch 2). This strategy fur-
ther avoids frequent fluctuations in physiological pro-
cesses such as energy metabolism or redox balance.
Oppositely, other turtle species, including C. serpentina
and P. sinensis, show a high investment in behavioral
defense strategies and are good at muscle anaerobic mech-
anism (Fig. 2 Branch 1). They may thus form shells with
lower protection and lower constitutive tissue antioxidant
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capacity which both can be related to a relatively lower
energy investment in maintenance. However, they may
benefit from their strategy because immediate and active
defense responses to extrinsic factors may cause greater
adaptability to a changing environment.

Conclusions

The present study assessed the relationships among en-
ergy metabolism, behavioral and physiological traits in
three freshwater turtle species. Our results indicated a
negative relationship between energy metabolic levels
and activity levels in behavioral defense strategies, which
is shaped by the extra energy investment needed to sup-
port shell morphology. We also found an interspecific
variation in antioxidant capacity promoted by both en-
ergy metabolic levels and behavioral defense strategies.
A possible trade-off of energy allocation between the
maintenance of physiological homeostasis and animal
activity levels can be inferred under the selective pres-
sures of predation and environmental stress.
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