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NGS barcoding reveals high resistance of a
hyperdiverse chironomid (Diptera) swamp
fauna against invasion from adjacent
freshwater reservoirs
Bilgenur Baloğlu1, Esther Clews2 and Rudolf Meier1,3*

Abstract

Background: Macroinvertebrates such as non-biting midges (Chironomidae: Diptera) are important components of
freshwater ecosystems. However, they are often neglected in biodiversity and conservation research because
invertebrate species richness is difficult and expensive to quantify with traditional methods. We here demonstrate
that Next Generation Sequencing barcodes (“NGS barcodes”) can provide relief because they allow for fast and
large-scale species-level sorting of large samples at low cost.

Results: We used NGS barcoding to investigate the midge fauna of Singapore’s swamp forest remnant (Nee Soon
Swamp Forest). Based on > 14.000 barcoded specimens, we find that the swamp forest maintains an exceptionally
rich fauna composed of an observed number of 289 species (estimated 336 species) in a very small area (90 ha).
We furthermore barcoded the chironomids from three surrounding reservoirs that are located in close proximity.
Although the swamp forest remnant is much smaller than the combined size of the freshwater reservoirs in the
study (90 ha vs. > 450 ha), the latter only contains 33 (estimated 61) species. We show that the resistance of the
swamp forest species assemblage is high because only 8 of the 314 species are shared despite the close proximity.
Moreover, shared species are not very abundant (3% of all specimens). A redundancy analysis revealed that ~ 21%
of the compositional variance of midge communities within the swamp forest was explained by a range of
variables with conductivity, stream order, stream width, temperature, latitude (flow direction), and year being
significant factors influencing community structure. An LME analysis demonstrates that the total species richness
decreased with increasing conductivity.

Conclusion: Our study demonstrates that midge diversity of a swamp forest can be so high that it questions global
species diversity estimates for Chironomidae, which are an important component of many freshwater ecosystems.
We furthermore demonstrate that small and natural habitat remnants can have high species turnover and can be
very resistant to the invasion of species from neighboring reservoirs. Lastly, the study shows how NGS barcodes can
be used to integrate specimen- and species-rich invertebrate taxa in biodiversity and conservation research.
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Background
Freshwater ecosystems are under threat worldwide from
habitat destruction, pollution, and climate change. As a
result, global freshwater biodiversity is declining more
rapidly than the diversity of many stressed terrestrial
ecosystems (e.g., 1–8% species loss per decade: [1]). Such
loss of freshwater biodiversity affects food webs, nutrient
cycling, climate, air quality, and water supply [2, 3]. One
problem with monitoring the health of freshwater sys-
tems is the lack of efficient and rapid assessment tools
for species-rich invertebrates [4–8] that often constitute
much of the biomass and occupy many critical niches. A
good example is non-biting midges (Chironomidae: Dip-
tera) that are an important indicator taxon because they
are found in most freshwater habitats [5, 9–12], have high
specimen abundance, and are particularly species-rich
(sometimes having more species than all other insect spe-
cies in an aquatic environment combined [13]). In
addition, the larval stages of chironomids are relatively im-
mobile. Therefore midge communities have the potential
to reflect water quality in sampling locations [5, 14]. Chi-
ronomids are also an important food source for predators
such as odonates, fish, and birds, and act as important de-
composers of organic matter [10, 15, 16]. However, reli-
able sorting/identification to species-level using traditional
techniques is so expensive that in many studies chirono-
mids are either only identified to genus/subfamilies, or
they are altogether neglected [4].
The cost of midge identification via morphology is high

because it usually requires dissection and mounting of
specimens onto microscopic slides ([17–19]; i.e., 15–
20 min per specimen: [20]). Moreover, it is usually the lar-
vae that are collected while the species names and much
of the identification literature is for adults [21, 22]. As a
result, species-level chironomid data are rarely used al-
though access to such information would be desirable be-
cause different chironomid species vary in their sensitivity
to environmental parameters [5, 10, 11, 23–26]. For in-
stance, congeners in Cricotopus, Polypedilum, and Tany-
tarsus differ considerably with regard to their tolerance to
heavy metals, pesticides, and nutrient-levels [27, 28]. It is
here that the DNA barcodes obtained with Next Gener-
ation Sequencing (“NGS barcodes”) can help because they
allow for fast, cost-effective (<USD 0.40/specimen), and
thus large-scale species-level sorting with apparently little
impact on taxonomic accuracy [6, 20, 29], because DNA
barcodes are capable of distinguishing most species of
Chironomidae (80–90% congruence: [18, 30, 31] and allow
for studying the composition of taxonomically complex
chironomid communities [5, 25, 32–35]. NGS barcodes
are arguably the next logical step because they overcome
the cost problem of traditional “Sanger” barcodes (USD
8–17/specimen: [6, 22, 29]) and allow for barcoding all
specimens even if a sample is specimen-rich.

We here use NGS barcodes for > 14.000 chironomids to
study the species richness and turnover between adjacent
natural and artificial urban habitats. The artificial habitats
are three reservoirs (Lower Peirce: 62 ha, Upper Peirce:
303 ha; Upper Seletar Reservoir: 313 ha) while the natural
habitat is Singapore’s largest swamp forest remnant
(90 ha) which is home to slow-moving and small-sized
streams (< 2 m wide, depth < 80 cm: [36]). Note that all
three reservoirs have similar environmental conditions
[37] due to water transfers [38] and the midge fauna of
the reservoirs has been regularly sampled as part of a
freshwater quality monitoring program. Combined, the
reservoirs are five times larger, and the boundaries are less
than 1 km away from the swamp forest [36]. The plant
and vertebrate species of this swamp forest have been pre-
viously studied, but prior to this study its chironomid
fauna was largely unknown [39]. Note that this swamp
forest is the largest remnant of its kind in Singapore and
thus of high national conservation value. This was also
one of the motivations for testing whether its chironomid
fauna is resistant against the anthropogenically-mediated
biotic influences of the adjacent reservoirs.
By studying midges from reservoirs and the swamp forest,

we hope to contribute to a better understanding of chirono-
mid species turnover in tropical habitats. More specifically,
we first quantify the species diversity of the chironomid fauna
in the swamp forest remnant using NGS barcoding applied
to a large specimen sample. The second aim is to compare
the chironomid fauna of the adjacent urban and natural habi-
tats. The replacement of native with urban species can lead
to undesirable homogeneous biotic communities by dimin-
ishing the faunal distinctions between habitats and regions
[40]. As shown for some taxa in urban-gradient studies
(plants; [41], ants; [42, 43], birds; [44]), native species are be-
ing replaced with urban species upon the invasion of natural
habitats. However, there is very little data for invertebrates
and even less for chironomids. Much of the midge research
focuses on nuisance species while their impacts on the adja-
cent native fauna have received less attention [15, 45–47].
The third aim of our study is to understand species turnover
within the swamp forest communities. We use the available
environmental information to study the correlation between
community composition and these parameters via multivari-
ate statistical analyses. We specifically ask what environmen-
tal variables determine the chironomid community in the
swamp forest, whether any species are intermixing between
the habitats, and if so, whether the urban reservoir species in-
vade the adjacent wild habitats?

Methods
Field sampling
Swamp forest – Sampling larvae
Between October 2013 and December 2014, 40 sites in
the slow-moving streams of Nee Soon Swamp Forest
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were sampled (see Additional file 1: Table S1) by the
Tropical Marine Science Institute (TMSI). These sites,
located within the protected Central Catchment Nature
Reserve (CCNR), were selected to represent the whole
catchment. CCNR covers 20 km2 and is surrounded by
highways and major roads as well as residential areas.
For each sampling site, 12 physical and chemical param-
eters (cross-sectional area, stream width, stream order,
stream velocity, stream discharge, maximum depth, aver-
age depth, turbidity, dissolved oxygen, and pH) were
collected, and GPS coordinates were recorded (see
Additional file 2: Table S2 for details). As the freshwater
streams in Singapore are short, narrow and shallow (i.e.,
ranging from 1 to 2 m width and 10–80 cm depth) [48],
qualitative kick sampling as described in [49] was used
at each site, where chironomid larvae were collected
using kick nets (36 × 30 cm, 250 μm mesh size) over a
2-min period along three replicates of 10 m stretches.
All larvae (n = 6620) were preserved in isopropanol.

Swamp forest – Sampling adults
As part of a long-term insect biodiversity project, one site
(1°23′00.3″N 103°48′46.5″E) in the deep forested seg-
ments of Nee Soon Swamp Forest was sampled for adults
using two Malaise traps between January 2012 and Janu-
ary 2013, four times a month. Alcohol-preserved adult
specimens (n = 1551) were extracted from these samples.

Reservoirs
The midge samples came from Lower Peirce (62 ha, 7 m
depth), Upper Peirce (303 ha, 22 m depth), and Upper
Seletar Reservoir (313 ha, 17 m depth) [37, 38] and were
sampled as part of freshwater quality monitoring. The
samples were collected from Upper Seletar using
an Ekman grab measuring 20 cm × 20 cm and from
Lower and Upper Peirce Reservoirs using stainless steel
cages, i.e., colonization-type invertebrate sampler, meas-
uring 20 cm × 10 cm, described in Loke et al. [50]. The
colonization samplers were designed for Singapore’s
aquatic habitats to enable invertebrate collection from
hard-bottomed urban reservoirs [50, 51]. The specimens
were preserved in isopropanol. We here include those
samples that were collected during the same time pe-
riods that were covered by the swamp forest survey.
They are Upper Seletar (n = 3647: October 2013 to
June 2014, 11 sampling dates), Upper Peirce (n =
1056: January to April 2014, three sampling dates),
and Lower Peirce (n = 1306; January to April 2014,
three sampling dates). Environmental variables were
not collected for the reservoirs. Therefore, the reser-
voir chironomids were only used for species diversity
and turnover analysis.

PCR amplification and NGS barcoding
NGS barcodes were amplified for each specimen using
the direct polymerase chain reaction (direct PCR) proto-
col described in [20] that avoids DNA extraction. PCR
reactions were carried out in 20 μL volumes containing
2 μL of BioReady rTaq 10× Buffer, 1.5 μL of 2 mM
dNTP mixture, 0.25 μL of BioReady rTaq DNA polymer-
ase, 2 μL (1 mg/mL) of BSA and 2 μL of 10 uM forward
and reverse primers. Specimen-specific amplicon se-
quencing was carried out using unique combinations of
tagged primers ([29], Baloğlu et al., unpublished).
Degenerate metazoan primers (COI; mlCO1intF:
5’-GGWACWGGWTGAACWGTWTAYCCYCC-3′ [52]
and jgHCO2198: 5’-TAIACYTCIGGRTGICCRAARAA
YCA-3′ [53]) were used for the new PCR reaction con-
ditions. The samples that failed at direct PCR stage were
processed with QuickExtract (Quick Extract DNA™).
The specimens were immersed in 20 μl of the extraction
solution and otherwise processed following the manufac-
turer’s instructions. PCR products were pooled and sent
for library preparation. NGS barcoding of specimens (n
= 14.180) was carried out on multiple MiSeq 2 ×
300 cycle runs that also sequenced specimens for other
projects.

MOTU delimitation
Sequences were delimited into molecular operational
taxonomic units (MOTUs) using Objective Clustering at
3–5% with uncorrected pairwise distances [54]. This
range of thresholds has been shown to produce a stable
number of clusters that is largely congruent with species
boundaries as determined by morphology ([29], Baloğlu
et al., unpublished). Some of the resulting MOTUs could
be identified to species using an available barcode data-
base for midges that was generated from specimens
which were identified to species based on morphology as
part of a nuisance midge study [19].

MOTU identification
In order to determine whether a barcode pertains to a
midge species, we use two checks. The first is based on
morphology and consists of two steps. The samples were
first presorted by parataxonomists with experience in
processing biomonitoring samples. Second, each speci-
men was then again handled individually during the dir-
ect PCR setup; i.e., morphologically disparate specimens
unlikely to belong to Chironomidae were eliminated.
However, it can be difficult to distinguish chironomid
larvae from the larvae of close relatives such as Cerato-
pogonidae [55]. We, therefore, implemented an add-
itional quality control step at the genetic level. Each
haplotype was BLASTED against Genbank’s COI data-
base (accessed in October 2017) using MEGABLAST
and identifications were obtained using Readsidentifier
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[56]. The results were used to eliminate barcodes that
may not pertain to Chironomidae. We kept all barcodes
that satisfied one or several of the following criteria (see
Additional file 3): (1) barcode match to Chironomidae >
96% (39 MOTUs). (2) Top 10 BLAST hits pertaining to
Chironomidae (229 MOTUs). (3) 7–9 of the top 10
BLAST hits are Chironomidae (4) < 7 of the top 10
BLAST hits are Chironomidae, but the remaining hits
are to very different taxa (15 MOTUs: hits to Tachini-
dae, Drosophilidae, Syrphidae, Muscidae, moth, etc.). (5)
MOTUs with > 10 specimens with all top hits to Schizo-
phora. These were kept because Schizophora larvae can-
not be confused with midge larvae and the large number
of specimens rules out pre-sorting error (5 MOTUs). (6)
Lastly, we kept those MOTUs (N = 8) where some of the
top hits were to other aquatic Diptera, but the midge
hits had higher identities.

Statistical analyses
Community analyses
To estimate chironomid species richness, we plotted
species accumulation curves for each habitat with
iNEXT [57] and tested for significant differences be-
tween habitat types by assessing the overlap of the 95%
confidence intervals (CIs). We treated individual habitats
as samples and used sample-based rarefaction curves
standardized to sample coverages to compare species
richness between habitat types [58]. Distance matrices

were generated from the site-species data matrices using
the Bray-Curtis metric [59]. Mantel tests were used to
assess correlations among assemblage similarity matrices
with the vegan package [60]. The species overlap be-
tween the reservoirs and the swamp forest was assessed
using the number of shared species and the number of
specimens for each shared species. Furthermore, the dir-
ectionality of the species intermixing (e.g., reservoirs to
the swamp forest or swamp forest to the reservoirs) was
investigated by comparing the abundances of the shared
species for each habitat.

Chironomid community structure in swamp forest
A multivariate approach (redundancy analysis, RDA)
was used to assess whether there are important local
variables that correlate with the chironomid community
structure at the swamp forest sites (implemented using
vegan package). The samples at each site were standard-
ized to 70% sampling coverage (a measure of sampling
completeness; see [61]) to minimize differences in abun-
dance due to the different time/area sampled (see final
analysis; Additional file 1: Table S1). As a result, only 28
of 40 sites were used for the following analysis (Fig. 1b).
The species data matrix of 145 species in these sites was
related to a total of 13 environmental (10 physicochemi-
cal, two spatial and one temporal) variables in RDA.
Two variables (cross-sectional area and maximum
depth) were removed from the analysis as they were

Fig. 1 a Rarefaction curves (solid line) and extrapolation (dashed line) for chironomid communities of Nee Soon and reservoirs in Singapore. The
95% confidence intervals (shaded areas) were obtained by a bootstrap method based on 200 replications. b The distribution of the 28 sampling
sites in the swamp forest and the three sampling sites in three reservoirs in the Central Catchment Region of Singapore. Different colors are
given for each habitat. Stream lines were adopted from [102]
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highly correlated with stream width and average depth.
All other predictor variables were tested for collinearity
using variance inflation factor (VIF) function in R, but
no VIF values larger than ten were found (see Additional
file 2: Table S2). Thus they were retained. The statistical
power of all analyses was assessed using a Monte Carlo
permutation tests (n = 999).

Linear models
To assess the effects of environmental variables on spe-
cies richness, evenness, and Shannon’s diversity in the
swamp forest, linear mixed effect (LME) analysis was
performed. This model was selected because it can ac-
count for non-independence of errors, i.e., due to spatial
autocorrelation [62]. Spatial autocorrelation occurs when
pairs of values, measured at given distances in space, are
more similar than expected by chance alone [63].
Models with spatial correlation structures were gener-
ated using the corrSpatial argument in the nlme package
[64]. Akaike information criterion (AIC) was used to
compare the models. The model with the smallest AIC
value was preferred. Hill numbers of order q: Species
richness (q = 0), Shannon diversity (q = 1) and Simpson
diversity (q = 2) were obtained with iNEXT. These values
were used as dependent variables for three separate lin-
ear mixed-effects models [65] using the lme function
with maximum likelihood estimation. For each model,
continuous physicochemical variables and one categor-
ical variable (presence-absence of the reservoir species)
were used as fixed effects (without interaction term)
nested within the sampling year as a random effect (see
Additional file 2: Table S2). The categorical variable was
used to test if reservoir species influenced the species
richness in the swamp forest. Models were refined fol-
lowing the guidance in [66]: all parameters were in-
cluded in the initial model with non-significant terms
removed manually in a stepwise process, assessed by
selecting the model with the lowest AIC value. If re-
moval of a nonsignificant term increased the AIC value,
the term was retained in the refined model. Once the
final models were obtained, a linear model was fitted
after removing random effects to assess the significance
of each term in the model. The adjusted R2 value of the
fitted model was calculated and compared with the ad-
justed R2 of models fitted with each parameter removed
in turn. The relative contribution of each parameter in
explaining the variance of the model was then calcu-
lated as a percentage of the total variance explained.
p values for regression coefficients were obtained
using the car package [67]. Statistics and graphical
outputs were computed with the ade4 package [68].
All statistical analyses were performed in R Version
3.4.0 [69] unless stated otherwise.

Results
Chironomid species richness at the reservoirs
In total, 33 species were observed in the reservoirs, and
61 ± 21 is the estimated species richness (Chao2).
Across the three reservoirs, the most common chirono-
mid species, Polypedilum quasinubifer, accounted for
48% of 3464 total chironomid specimens followed by
Polypedilum sp. (near leei) (17%). The latter is likely to
be a cryptic species related to P. leei, i.e., morphologic-
ally similar, however genetically more than 6% apart.
The number of barcodes, sequenced specimens, and
species for the individual reservoirs was as follows:
Lower Peirce Reservoir: 544 of 1306; 17 observed spe-
cies; 21 ± 5 estimated species; Upper Peirce Reservoir:
602 of 1056 specimens; 19 observed species; 25 ± 8
estimated species; Upper Seletar Reservoir: 2318 of
3647; 18 observed species; 33 ± 14 estimated species.
The comparatively low barcoding success rate was
due to sample handling (treatment with carbonated
water and preservation in methylated ethanol).

Chironomid species richness of the swamp forest
Based on a total of 6620 larval specimens sorted to Chi-
ronomidae, 4027 specimens were successfully barcoded
(~ 61%). Of these, 417 were removed during the contam-
ination check. Hence, a total of 3610 specimens were
retained for further analysis (58.2%: 3610/6203). A total
of 215 species was observed (estimated: 258 ± 16) with
the proportion of singletons being high (23.2%) for the
larval community of the Nee Soon Swamp Forest. More-
over, we barcoded 1551 adult specimens which yielded
1.278 sequences. After contamination check, 1141 adult
specimens were retained for further analysis (81.1%:
1141/1414) and clustered into 158 putative species based
on genetic distances (estimated: 214 ± 20). Single-
tons again represented a large proportion of the fauna
(54 species, 34.2%), indicating the need for additional
sampling. A total of 289 species were observed for the
combined dataset of adult and larvae at Nee Soon
Swamp Forest (n: 4751; estimated species richness:
336 ± 16). Adult and larval stages could be matched for
84 putative species.

Stability of MOTU/species estimates for larval
communities
The number of estimated MOTUs/species using the bar-
coding data was largely stable across a range of genetic
distance thresholds: 227 (3%), 215 (4%), and 211 (5%).
Most of the MOTUs were congruent (n: 197) between
different thresholds, and the discrepancies were due to
the assignment of 87 specimens lumping or splitting into
different MOTUs depending on thresholds; i.e., the as-
signment of only 2% of the total number of specimens is
sensitive to clustering thresholds. Given the stability of
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the results, we thus used MOTUs at 4% for all subse-
quent analyses. Most midge species were only found in
Nee Soon Swamp Forest (207 of 240 species) while the
observed chironomid richness in the three reservoirs
was low as indicated by overlapping confidence intervals
(see Fig. 1a).

High species turnover between the reservoirs and the
swamp forest
A total of 314 species was observed (estimated 371 ± 18)
for the combined dataset of swamp forest and the reser-
voirs. However, the two habitats shared only eight species
(Additional file 4: Table S3). Their overall community
composition was not significantly correlated, based on an
abundance dataset (NSSF - USR: Mantel R = − 0.03, NSSF
- UP: R = − 0.02, NSSF - LP: R = − 0.02, p > 0.05 for all).
Reservoirs shared more species with each other but only
the Lower Peirce and Upper Peirce reservoirs had signifi-
cant albeit weakly correlated community composition (R
= 0.19, p < 0.05) while they were dissimilar to Upper Sele-
tar reservoir (LP - USR: R = − 0.07, UP - USR: R = − 0.11,
p > 0.05 for both).
Of the final 28 sampling sites, only eight sites shared

species with the reservoirs: seven sites each shared one
species while one site (NS32, see Additional file 1: Table
S1) shared six species. NS32 was relatively well sampled
and is in close proximity to Upper Seletar Reservoir. We
investigated the putative directionality of the species
mixing (e.g., reservoirs to the swamp forest or swamp
forest to the reservoirs) by comparing the abundances of
the shared species in each habitat. We found that

Tanytarsus formosanus had higher abundance in the
swamp forest (82 specimens) than in the reservoirs (only
four specimens) while the remaining six species were
more common in the reservoirs and one species oc-
curred in equal abundances in both habitats. All shared
species had been previously recorded from the reservoirs
in Singapore ([19, 20, 70] Baloğlu et al., unpublished).
We hypothesized that those swamp forest sites sharing
species with the reservoirs had overall lower species di-
versity than those without reservoir species. Using LME,
we tested this hypothesis and found that there was no
significant effect of the presence of reservoir species on
the overall species richness, Simpson, and Shannon di-
versity indices (see Table 1).

Habitat characteristics and chironomid species
composition in the swamp forest
We found considerable variation in some of the environ-
mental variables in Nee Soon Swamp Forest (see
Additional file 2: Table S2). For instance, among physico-
chemical variables, water depth and turbidity ranged from
2.9 to 62.1 cm and from 0 to 1142.4 NTU, respectively.
The first two axes of the RDA ordination analysis
accounted for 64% of the total variance in the chironomid
community composition, with the first axis explaining
26% of the variation and the Monte Carlo tests were sig-
nificant for all axes, respectively (see Table 2 and Fig. 2).
All environmental variables combined explained 21% of

the compositional variance. However, significant environ-
mental (physicochemical, spatial, and temporal) variables
selected by forward selection procedure explained only

Table 1 Linear mixed effects model to determine the relationships between three response variables (species richness, Shannon
index, and Simpson index) in separate models and the continuous physicochemical variables and one categorical variable in 28 Nee
Soon Swamp Forest sites

Species richness Shannon index Simpson index

Term % Adj. R2 P % Adj. R2 P % Adj. R2 P

Conductivity 64.8 ns 69.8 * 78.8 *

Width 0 ns 0 ns 0 ns

Dissolved oxygen 15.6 ns 14.08 ns 6 ns

pH 0 ns 5.02 ns 15.2 ns

Presence of reservoir species 0 ns 0 ns 0 ns

Stream depth 0 – 0 – 0 –

Stream order 19.6 – 11.1 – 0 –

Stream discharge 0 – 0 – 0 –

Turbidity 0 – 0 – 0 –

Average velocity 0 – 0 – 0 –

Temperature 0 – 0 – 0 –

Total variance explained (Adj. R2) 0.12 0.27 0.17

The relative contribution (%) of each term in explaining model variance was calculated as % difference in adjusted R2 comparing the full refined model and the
model with each term removed. Stream depth, stream order, stream discharge, turbidity, average velocity, and the temperature were removed during model
refinement. Symbols indicate the presence or the significance of the term within the refined model: 0, negative adjusted R2 values; −, not present in the refined
model; ns, not significant, * = P < 0.05
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18% of the compositional variance at Nee Soon (F = 1.80,
P = 0.001). Dissolved oxygen levels, stream order, width,
temperature, and the conductivity emerged as the most sig-
nificant explanatory variables among the physicochemical
variables (see Additional file 5: Table S4). Another signifi-
cant variable was latitude which mostly represents flow dir-
ection from the upper to lower catchment. Variation
partitioning analyses revealed that 10% of the total variance
was explained by physicochemical variables alone, and 19%
of the total variance was explained by all the variables (see
Additional file 6: Table S5).

What explains chironomid species richness in the swamp
forest?
There was no evidence of spatial autocorrelation be-
tween the samples at different sites, as the AIC values of
the models with spatial error structures were higher than
the null models (data not shown). Therefore, the models
without the spatial autocorrelation structure were se-
lected. Statistical modeling (LME) was used to identify
the dominant physicochemical variables in influencing
the species richness, Shannon diversity, and Simpson di-
versity. We found that all three response variables were
best predicted negatively by conductivity (i.e., ionic con-
centrations) with this term explaining most of the attrib-
uted variance in the model (Table 1), however, this was
only significant for Shannon and Simpson diversity indi-
ces. Stream width, dissolved oxygen levels, pH, and the
presence of reservoir species in the swamp forest were
retained in the final models as non-significant terms, but
only explained a small proportion of the variance.

Discussion
Impressive species richness of a tropical swamp forest
remnant
Our study reveals a surprisingly species-rich chironomid
community (336 estimated species) in the slow flowing

streams of a relatively small (90 ha) remnant of a previ-
ously much larger swamp forest [71]. In order to fully
appreciate these numbers, one should consider what is
currently known about the global species diversity of
Chironomidae. Different authors estimate that there are
at least 10.000–20.000 species of which only approxi-
mately 5.000 have been described [72, 73]. However, our
data imply that swamp forests can be so rich in midge
diversity (nearly 350 species on 90 ha) that the global
species estimates appear very conservative. After all, Nee
Soon Swamp Forest is only a tiny remnant of an original
lowland swamp forest [74] that was part of a more exten-
sive freshwater swamp forest originally covering 5% of
Singapore [71, 75]. Most of the world’s tropical swamp for-
ests are found in Southeast Asia’s Indo-Malayan region
(peat swamp forests: [76] and in the Amazon basin (fresh-
water swamp forests: [77]) and they collectively occupy a
very large area (> 13 million ha; [78]) and are found on
many geographically separated peninsulas and islands. Such
biogeographic configurations tend to favor speciation. We
propose that the chironomid midge diversity of swamp for-
ests alone could exceed the lower bound estimates for glo-
bal chironomid diversity. Unfortunately, much of this
diversity is threatened with destruction, because especially
the Southeast Asian peat swamps are disappearing fast [76]
in the quest for more land for oil palm plantations and
paper pulp production. For instance, more than half of the
original peat swamp forest in Sumatra and Borneo have
been converted to agriculture [79].
Our estimated chironomid species richness values ex-

ceed all values reported for chironomids in tropical
streams, such as 299 species across 31 4th- to 6th-order
West African streams, 250 species from 13 3rd- to
6th-order northwestern Costa Rican streams [80, 81],
and 195 species from 15 1st- to 2nd-order streams in
Brazil [82]. It has been suggested that the high richness
values for tropical streams are mainly due to high

Table 2 Weighted intraset correlation between the axes and the environmental variables following RDA of chironomid abundance
data from Nee Soon Swamp Forest

RDA1 RDA2 RDA3 RDA4

Eigen values 0.08 0.06 0.04 0.03

Accumulated % of the variance of species data explained 26 47 64 75

Correlation with axes

Dissolved oxygen −0.34 −0.68 −0.15 0.05

Stream order 0.005 −0.76 0.37 −0.08

Stream width −0.19 −0.29 0.63 0.13

Temperature −0.43 0.45 −0.25 −0.23

Conductivity 0.37 0.32 −0.21 −0.71

Latitude [flow direction] 0.78 −0.06 0.39 −0.1

Year 0.79 −0.23 −0.07 0.04

Only the significant variables are shown
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numbers of rare species with very low abundances. This is
also found in our study. A high proportion of species were
only present at low abundances, and nearly half of the spe-
cies were singletons. This implies that sampling has to be
extensive and that specimen-based techniques such as
NGS barcoding need to be used if most species are to be
detected because bulk processing methods relying on
metabarcoding struggle with detecting rare species based
on the analysis of pooled DNA extractions.
Could it be that our results based on NGS barcodes

overestimate species diversity? We believe that this is
unlikely because several studies have documented high
congruence between molecular and morpho-species for
chironomids [26, 31, 73, 83]. In addition, our results are
largely insensitive to which distance thresholds were

used to estimate species numbers. For example, when
we vary the clustering threshold from 3 to 5%, the corre-
sponding species numbers only change from 327 to 309,
i.e., overall stability at the MOTU level is at +/− 5%.
Note that it is very likely that a large proportion of the
species that were sequenced in this project are new to
science (see Additional file 3 for taxa list) because only
< 400 species of chironomid midges have been described
for the Oriental region [84]. Note also that while the
species numbers are likely to be only approximately cor-
rect, the species boundaries of a small number of
MOTUs would likely change during taxonomic revision
because DNA barcodes are likely to underestimate the
species diversity of recently diverged species and over-
estimate species diversity for those species with

Fig. 2 Ordination diagram from redundancy analysis (RDA) illustrating the relations between chironomid community composition and the
environmental variables that explained the most variance. Solid arrows indicate the direction of sharpest increase in abundance of
chironomid species
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diverging allopatric populations [85–89] because COI is
not a speciation gene [90].

Resistance of the swamp forest community to invasion
from reservoirs
Our results suggest that the chironomid communities of
both reservoirs and swamp forest are very resistant to
each other, i.e., their chironomid species richness and
community composition are very different. Of the 215
species collected during the study from the larval com-
munities, only eight species were found in the forest
streams and reservoir habitats, signaling nearly complete
community turnover within < 1 km. One could surmise
that the resistance may be related to water pH differ-
ences between swamp forest and the reservoirs (see
Additional file 2: Table S2). However, some nuisance
midges are known to tolerate wide ranges of pH. For ex-
ample, one of the species found in both habitats (Tany-
tarsus formosanus) is known from acidic rice fields in
Malaysia (pH: 5.15–7.7 [91]: abundance positively corre-
lated with pH). Polypedilum leei, another species that is
found in both habitats has previously been reported to
be present in acidic aquatic environments (pH: 4–7 [92],
pH: 4–7.1 [93]). However, both P. leei and P. quasinubi-
fer are widely distributed in Singapore’s reservoirs with
neutral to alkaline water ([38], Baloğlu et al., unpub-
lished). This means that pH alone is unlikely the only
reason why few species are shared between the habitats.
With two exceptions species mixing was one-directional

(reservoir to swamp forest; only exceptions are Tanytarsus
formosanus: more common in the swamp forest and Poly-
pedilum leei: equal abundance, see Additional file 4: Table
S3). Yet, the shared species were found across several
sampling sites in the swamp forest. This indicates that
there was no major influence of the reservoirs on the adja-
cent swamp forest chironomid communities. Instead, it
appears likely some chironomid adults are regularly blown
to the different sampling sites, but only very few can es-
tablish temporary populations (note that we mostly proc-
essed larval midges). Due to the change in the direction of
prevailing winds and the presence of both the Eastern and
Western monsoon, no prediction can be made as to how
wind will influence the direction of dispersal, but our re-
sults suggest that the overall integrity of Nee Soon’s midge
fauna is secure with regard to invasion from urban
reservoirs.

Community patterns within Nee Soon Swamp Forest
Only a relatively small amount of the variance in midge
community structure could be explained by the environ-
mental parameters that were measured (~ 21%), but this
may not be surprising given that no data were available
for other variables known to be important such as food
availability [94], species interactions, substrate [95], and

the amount of vegetation cover [96]. Moreover, it is not
atypical for studies of chironomid communities to
find that abiotic factors explain a relatively small propor-
tion of the variation (i.e., < 30%: [97, 98]). In our study,
the most important physicochemical parameters were
dissolved oxygen levels, stream order, width, temperature,
and conductivity. This is in agreement with the previous
studies [99, 100]. The changes in the latitude in the study
are so small that the only spatial influence, “latitude” is
here likely to reflect the direction of water flow from upper
to lower catchment which may have some correlation with
stream order.
Conductivity (specific conductance) was negatively cor-

related with all three diversity indices but was significant
for Shannon and Simpson diversity indices. Conductivity
is here a measure of the concentrations of ions in the
water. Nee Soon streams were reported to have low to
medium conductivity (see Additional file 2: Table S2), in-
dicating the poverty of nutrients and ionic concentrations
in the water [101]. The uneven abundance of different
species at the swamp forest may explain why only these
two indices had a significant correlation, because these in-
dices utilize both abundance and species richness data.

Distribution of chironomid species within the swamp
forest
We sampled adults at one sampling location and larvae
at 40 sites. Overall, we were able to establish a
larval-adult association for 84 putative species which il-
lustrates the benefits of using cost-effective NGS bar-
codes on different life history stages [22]. However, it is
likely that equal sampling would have increased the
number of life stage matches. Overall, the larval sam-
pling sites that were close to the adult sampling site
were not likely to yield more associations. This may
imply that adults disperse widely but may not lay eggs
or may not be able to establish larval populations unless
the environmental conditions are suitable. Given that
some of the reservoir species were also found in Nee
Soon, albeit in small abundances, the dispersal ability of
chironomids may indeed not be the limiting factor for
explaining why certain species are found in particular
sites. It is more likely that the heterogeneity of the mi-
crohabitats is responsible for the species-rich and yet
very complementary adjacent chironomid communities
in the swamp forest.

Effect of geography on chironomid distribution across
reservoirs
Overall, we expected the three reservoirs to have similar
chironomid communities because the physicochemical
environments are similar based on a 13-year longitudinal
study of environmental conditions. In addition, there is
water flow from Upper Seletar to Lower Peirce and Upper
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Peirce Reservoirs [38]. However, according to a Mantel
test, only the chironomid communities of the neighboring
Lower and Upper Peirce reservoirs were very similar. The
midge community of Upper Seletar Reservoir which is to
the north of Nee Soon was more dissimilar despite the
short distance between the reservoirs. It is conceivable
that the swamp forest, with an environment that is
apparently hostile to reservoir midges, is an effective
barrier between the two similar reservoirs to the South of
the swamp forest and the third reservoir to the North.

Conclusions
Our results demonstrate that the tropical Nee Soon
Swamp Forest has a surprisingly rich chironomid species
diversity (~ 350 species) that is much higher than the di-
versity found in other tropical studies. Moreover, the
swamp forest chironomid community is dramatically dif-
ferent from the community in surrounding reservoirs.
Redundancy analyses and linear models suggest that the
chironomid communities in the swamp forest were re-
lated to a mixture of physicochemical variables, such as
dissolved oxygen levels, conductivity, stream order,
width, and temperature but not to the distance between
the sampling sites. However, the small amount of vari-
ance explained by these variables indicates that more en-
vironmental variables are needed for understanding the
complex chironomid community structures in swamp
forests. This study suggests that even fragmented or
small swamp forest remnants, like the Nee Soon Swamp
Forest, can be suitable habitats for a rich and likely na-
tive chironomid fauna. NGS barcoding was used in this
study because it allows for processing large numbers of
specimens. It can be easily adapted to other swamp for-
ests in Southeast Asia for which no data are available.
We thus hope that the results of this study will promote
further studies of chironomid communities across
Southeast Asia for characterizing and conserving the
threatened fauna of Southeast Asian swamp forests.
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coordinates) for the study sites. Kick net sampling was used for Nee Soon
Swamp Forest sites, and colonizer (UP, LP) and sediment grab (USR) were
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