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Abstract

Background: The maintenance of species and the promotion of speciation are closely related to chromosomal
rearrangements throughout evolution. Decapoda represents the most species-rich order among crustaceans and,
despite its ecological and economic importance, little is known about decapod karyology. We aim at cytogenetically
characterizing two sympatric prawn species.

Results: Analysis of mitotic metaphases and meiotic diakinesis of the common prawn Palaemon serratus and the
rockpool prawn P. elegans, revealed considerable differences between their karyotypes including chromosome
numbers and sex determination systems. The cytogenetic data for P. serratus showed a diploid number of 56 and
the putative absence of heteromorphic sex chromosomes. However, the diploid chromosome number in P. elegans was
90 for females and 89 for males. The karyotype of the females consisted of the three largest acrocentric pairs and 42
submetacentric and metacentric pairs, while the karyotype of the males comprised a clearly identifiable large metacentric
chromosome and two acrocentric pairs as well as the smaller 42 pairs. These results highlight the presence of the
XiXXoXo/ X X5 multiple sex chromosome system in P. elegans, which constitute the only sexual system for Decapoda
reported cytogenetically using modern techniques. The origin of this sex chromosome system is discussed.
We hypothesize that the chromosome evolution within the genus could involve several fusion events giving
rise to a reduction on the chromosome number in P. serratus. In both species, the major ribosomal genes
were located in two chromosome pairs and hybridization signals of the telomeric sequences (TTAGGG), were
visualized at the telomeres of all chromosomes. C-banding revealed that, when present, constitutive heterochromatin
had a predominantly telomeric distribution and no centromeric constitutive heterochromatin was observed.

Conclusions: Although more comparative cytogenetic analyses are needed to clarify our hypotheses, the findings of
this work indicate that the prawns of the genus Palaemon represent a promising model among Decapoda
representatives to investigate the karyotype evolution and the patterns of sex chromosome differentiation.
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Background

Decapoda is the most species-rich order within Crustacea.
This extremely diverse group plays a key role in the
aquatic trophic relationships [1, 2] and many of these spe-
cies have a significant commercial importance since they
are exploited for human consumption in different coun-
tries around the world [3, 4]. However, despite the import-
ance of this group, the limited knowledge of decapod
crustacean karyology constitutes an obstacle to elucidate
different modes of sex determination, the occurrence of
chromosomal rearrangements along their evolution or
clarify phylogenetic relationships between related species.
To our knowledge, during the last 25 years karyological
data have only been reported in 46 species of decapods be-
longing to 10 families (for a review, see [5]). This scarcity
of studies is mostly caused by decapod chromosomes pe-
culiarities, usually small-size, numerous and highly con-
densed [6].

The family Palaemonidae comprises 981 species [7] of
which only 13 belonging to three genera (Palaemon,
Exopalaemon and Macrobrachium) have been studied at
the cytogenetic level. These species show a wide karyo-
typic diversity and remarkable differences in their dip-
loid chromosome number (Table 1). The existence of
sex chromosomes was never determined cytogenetically
in any species of the genera of Palaemonidae family and
only rarely in Decapoda.

The genus Palaemon Weber, 1795 (Crustacea: Deca-
poda) is a group of caridean prawns of the family Palae-
monidae. Recently, phylogenetic and taxonomic revisions
changed the status of the genus Palaemon [8—11] as well
as the number of its species. The genus Palaemon cur-
rently comprises 86 species, two of which have been

Table 1 Chromosome numbers in the members of the family
Palaemonidae

Species Chromosome number Reference
Palaemon serratus 2n = 56 (5]
Palaemon khori 2n =9 [36]
Palaemon elegans 2n = 894/909 This study
Exopalaemon modestus 2n =90 [34]
Exopalaemon carinicauda 2n =90 [35]
Macrobrachium carcinus 2n =94 [59]
Macrobrachium superbum 2n =100 [60]
Macrobrachium siwalikensis 2n =100 [61]
Macrobrachium nipponense 2n = 104 [62]
Macrobrachium idella 2n =104 [63]
Macrobrachium scabriculum 2n =104 (64]
Macrobrachium lamarrei 2n =118 [65]
Macrobrachium rosenbergii 2n =118 [65]
Macrobrachium villosimanus 2n =124 [66]
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recently described (Palaemon minos sp. nov. and Palae-
mon colossus sp. nov.) [10].

The selected species, the common prawn P. serratus
and the rockpool prawn P. elegans, have a wide geograph-
ical distribution from the North Sea to Mauritania and
Namibia, respectively, including the Mediterranean and
Black Seas [12, 13]. These species differ in physiology, life
history strategies and larval development [14—16]. They
are both marine prawns, but whereas P. serratus inhabits
estuaries in the reproductive season, P. elegans is common
in tidal rockpools, Zostera, Posidonia and Cymodocea
meadows and it also can be found in slightly brackish
water close to river mouths [17].

Whilst the species are morphologically similar, it is un-
known whether they share chromosome number and
morphology. The karyotype of P. serratus was recently
described. In our previous study, the karyotype of P. ser-
ratus was described [5].

Here, we aim at: (i) extending the previous knowledge
on the cytogenetics of P. serratus; (ii) providing the first
karyological data for P. elegans and compare them with
what is known about P. serratus and (iii) identifying their
sex chromosome systems. For this purpose we have
studied the mitotic and meiotic chromosomes of both
species and applied conventional staining and banding
techniques, fluorescence in situ hybridization (FISH)
with 185-5.85-28S rDNA and telomeric (TTAGGG),,
(TTAGG), and (TAACC), probes.

Methods

Biological material and chromosome preparation
Specimens of P. serratus and P. elegans used in this
study were collected from the Artabro Gulf (43° 25'N, 8°
20°W) in the northwest of Spain. Animals were captured
with a fish trap and carried alive to the laboratory. Ani-
mals were kept at 18 °C in an aerated aquarium and fed
with frozen brine shrimp for 24 h. Individuals were
sorted into species [13] and the sex was determined by
the presence (in males) or absence (in females) of the
masculine appendix on the endopodite of the second
pleopod [18]. Metaphase chromosome spreads were ob-
tained according to previously described protocol [5].
Briefly, adult shrimps were injected at the epimeral line
with 0.005% colchicine solution (5 pl/g body weight) 3—
5 h before anesthetization by exposure to ethyl ether.
Cefalothorax content (including gonad, circulatory tis-
sue, digestive tissue and muscular tissue) was removed
from each individual and then immersed into a hypo-
tonic solution of 0.56% KCl for 10 min at room
temperature. The tissue was then fixed four times in
freshly prepared ethanol/glacial acetic acid (3:1) for
20 min each time at 4 °C, followed by overnight incuba-
tion in a fresh fixative at 4 °C. The following day a piece
of about 3 mm of the heterogeneous fixed material was
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dissolved in 45% acetic acid and a cell suspension was
obtained. Then, 4-5 drops of this suspension were pipet-
ted onto pre-heated slides at 43 °C and air-dried.

Chromosome staining and fluorescence in situ
hybridization

The slides were stained with anti-fade medium Vecta-
shield (Vector Laboratories) containing 1.5 pL/mL 4, 6-
diamidino-2-phenylindole (DAPI). C-banding was per-
formed on metaphase plates following Sumner [19].

To locate the position and number of the 185-5.8S-
28S rDNA sites we used the DNA probe pDm 238 from
Drosophila melanogaster [20] labeled with FITC by using
Prime-It Fluor fluorescence labeling kit (Stratagene) fol-
lowing the manufacturer’s instructions.

Chromosome mapping of the telomeric sequences was
carried out using a (TTAGGG)n Cy3-labeled pan-telomeric
probe (Cambio) according to the instructions of the manu-
facturer; a PCR generated pentanucleotide (TTAGG)n re-
peat according to Ijdo et al. [21] labeled with rhodamine-
dUTP and the (TAACC), probe was synthesized and dir-
ectly 5 labeled with Cy3 (Isogen Life Science).

In situ hybridization was performed as described in
Gonzalez-Tizén et al. [22] with minor pre-hybridization
and post-hybridization modifications. The slides were
pretreated with DNAse-free RNAse (100 pg/mL in 2 x
SSC) for 30 min at 37 °C, washed in 2 x SSC for 5 min
and dehydrated in a graded ethanol series. Post-
hybridization washes consisted of two 5-min incubations
in 2 x SSC at 37 °C and at room temperature, respect-
ively, followed by a 5-min incubation wash in 0.1 M
Tris, 0.15 M NaCl and 0.05% Tween-20 at room
temperature. Chromosomes were counterstained with
40 pL of anti-fade medium Vectashield containing
1.5 pL/mL DAPL

Images were captured using a Nikon Microphot-FXA
epifluorescence microscope equipped with a Nikon DS-
QilMc digital camera and processed with the NIS-
Elements D 3.10 software.

The cytogenetic analyses described above were per-
formed on P. serratus and P. elegans with the exception
of the 45S rDNA chromosomal location in P. serratus,
characterized in a previous work [5].

Results

Karyotypes, heterochromatin distribution and
Fluorochrome staining

Mitotic and meiotic metaphases were obtained from 18 P.
elegans specimens (8 females and 10 males) and 10 P. serra-
tus specimens (6 females and 4 males). At least 15 meta-
phases per individual were observed, specifically 126 in P.
elegans females, 153 in P. elegans males, 92 in P. serratus fe-
males and 31 in P. serratus males.
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The diploid chromosome number in P. elegans was 90
for females and 89 for males (Fig. 1a, b; Table 1). The
karyotype consisted of 43 autosomal chromosome pairs:
5 metacentric/submetacentric, 4 subtelocentric/telocen-
tric, and 34 hardly distinguishable due to size similarities
(Fig. 2). The karyotype of the females also included two
large telocentric sex chromosome pairs (Fig. 2a), while
that of the males included one clearly identifiable large
metacentric chromosome and two telocentric chromo-
somes (Fig. 2b). Thus, male heterogamety is evidenced
by a metacentric chromosome present only in the male
karyotype (Y chromosome) which is the largest element
of the complement. During meiotic diakinesis, each arm
of the large metacentric Y is terminally associated with
one acrocentric chromosome (X; and X,) forming a tri-
valent (X;X,Y, Fig. 1d). Therefore, in diakinetic plates
males exhibited 43 autosomal bivalents and one sex tri-
valent while females showed 45 undistinguished biva-
lents (Fig.1d, c).

In P. serratus, the karyotype was identical to that pre-
viously described (2n = 56) [5]. At meiotic diakinesis 28
bivalents in both sexes were observed (Fig. 1e).

Fluorochrome staining with DAPI revealed bright
centromeric/pericentromeric AT-rich blocks on all chro-
mosomes in P. elegans and P. serratus (Fig. 1) whereas
interstitial bands were observed on the four largest chro-
mosomes of P. serratus. In P. elegans chromosomes
DAPI-bands were noticed in some terminal regions,
always weaker than those found at the centromeres. We
also detected large telomeric DAPI faint segments in a
few chromosomes.

C-banding revealed that, when present, constitutive het-
erochromatin had a predominantly telomeric distribution
in both species of Palaemon (Fig. 3a, b). Furthermore, no
centromeric constitutive heterochromatin was observed.
A large heterochromatic block was also found in the telo-
meres of four small size chromosomes in both species. In
P. elegans the two X chromosomes and the Y chromosome
were C-negative (Fig. 3a). In P. serratus, small weak bands
of heterochromatin were also localized in interstitial posi-
tions of the large metacentric chromosomes. Slides con-
taining C-banded chromosomes were previously stained
with DAPI (Fig. 3¢, d).

Chromosomal mapping of the 185-5.85-28S rDNA genes
In situ hybridization of the 185-5.85-28S rDNA genes
on meiotic chromosomes of both sexes of P. elegans re-
vealed four sites of probe hybridization (Fig. 3e, f). The
rDNA probe mapped the free telomeres of two bivalents
paired at one end (dumbbell-shape bivalents). Both 18S—
5.85-28S rDNA-bearing chromosome pairs were hetero-
morphic showing different hybridization intensity of the
homologous chromosomes. FISH signals coincided with
the heterochromatic blocks observed.
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trivalent. (e) Meiotic diakinesis of P. serratus male. The bar equals 10 um

Fig. 1 Metaphase plates of P. elegans (a) female and (b) male. Meiotic diakinesis of P. elegans (c) female and (d) male; the arrow shows the sex

Chromosomal location of the telomeric probes

In situ hybridization of the (TTAGGG),, (TTAGG), and
the (TAACC), telomeric sequences were made in P. ser-
ratus and P. elegans. No hybridization signals were de-
tected with the (TTAGGG), or the (TAACC), probes
while FISH with the (TTAGG), pentanucleotide repeat
produced discrete fluorescence signals at the telomeres
of all chromosomes in P. serratus and in all the diaki-
netic bivalents in P. elegans (Fig. 3g, h).

Discussion

Chromosome number and karyotypes

The diploid chromosome number obtained in this study
for P. elegans falls within the range of the published
chromosome numbers in other members of the family
Palaemonidae, with P. serratus displaying the lowest
number in the family (2n = 56).

The lack of cytogenetic studies in other members of the
genus Palaemon hinders the definition of clear trends in
karyotype evolution in these species. However, some evi-
dence supports the hypothesis that the chromosome

evolution within the genus could involve several fusion
events giving rise to a reduction on the chromosome
number in P. serratus: i) We observed interstitial DAPI-
bright bands on the large metacentric chromosomes of P.
serratus, being DAPI-positive bands that are characteristic
of centromeric regions in both Palaemon species, as ob-
served in other families of decapods such as Astacidae
[23, 24], Cambaridae [25], Nephropidae [26], Scyllaridae
[27] and Palinuridae [28]. ii) The presence of interstitial
C-bands on these chromosomes may represent a chromo-
some fusion event. In general, decapod species on which
this technique has been performed to date showed posi-
tive C-bands at the centromeres of almost all chromo-
somes (e.g. [29-32]), with the only exception of P.
serratus and P. elegans wherein heterochromatin is lo-
cated, mainly, in the telomeres. Macgregor and Sessions
[29] postulated that the heterochromatin expansion is
originated in the centromeres and then is dispersed to-
wards the telomeres. Hence, according to this theory, dis-
persed distributions of heterochromatin (interstitial or
telomeric) have an older phylogenetic status. lii) Recent
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molecular phylogenetic studies have suggested that genus
Exopalaemon should be included within Palaemon [8, 33].
Among Exopalaemon, karyological analysis of E. modestus
and E. carinicauda, have shown a diploid chromosome
number of 90 [34, 35]. More recently, the determination of
the Palaemon khori karyotype was performed showing
2n = 96 [36].

In the light of our results, the phylogeny and the
chromosome numbers found in the family Palaemonidae
(Table 1), it seems likely that the high chromosome
number detected represents the ancestral condition in
this lineage whereas the reduced chromosome number
of 2n = 56 observed in P. serratus constitutes a derived
character. According to that, it seems plausible that the
fusions constitute the main mechanism responsible for
the origin of the P. serratus karyotype, which was also
suggested for Astacidae and Parastacidae among Deca-
poda [24]. Further cytogenetic studies are still necessary
in order to determine the mechanisms underlying the
karyotype evolution in this group of species.

Ribosomal loci

As previously reported in P. serratus [5], P. elegans re-
vealed four sites of 185-5.8S-28S rDNA probe
hybridization corresponding to two loci. Given the diver-
gence observed between both karyotypes, this may con-
stitute a plesiomorphic condition for genus Palaemon.
In all cases, the ribosomal clusters were located in ter-
minal positions on two small chromosome pairs. In
addition, conspicuous heterochromatin blocks were

located in the major ribosomal genes sites, closely re-
lated to large telomeric DAPI faint segments, highlight-
ing the rDNA GC-richness as reported for a wide variety
of organisms (e.g. [37] and references therein).

Moreover, in P. elegans both rDNA-bearing chromo-
some pairs showed heteromorphism in size of the 185—
5.85-28S rDNA locus between homologous as observed in
males of some species of the Astacidae [23, 24]. Mlinarec
et al. [24] have speculated from these findings that the
heteromorphic chromosome pair could represent male
sex chromosomes suggesting the presence of an XX-XY
sex determination system, even though the karyological
characterization of females is a pending issue. Conversely,
our results show that in P. elegans the heteromorphic
rDNA-bearing chromosome pairs correspond to auto-
somes, which have been reported for many animal groups
(e.g. [38—-41]).

Telomeric repeats
This study shows for the first time the presence of the
TTAGG repeat, known as the ancestral motif of arthropod
telomeres, in the family Palaemonidae [42]. Since the pres-
ence of this repeat has not been demonstrated in most
decapod families, it is interesting to confirm the constant
presence of this motif within Decapoda, particularly when
some animal groups have lost the TTAGG repeat during
their evolution such as the crustacean species Asellus
aquaticus (Isopoda) [43].

FISH with the (TTAGGG)n probe found in all verte-
brates [44] and the (TAACC)n probe identified in the
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Fig. 3 C-banded plates of (a) meiotic diakinesis of P. elegans and (b) mitotic metaphase of P. serratus males. Single arrows show C-band blocks,
double arrow shows the sex trivalent (¢, d) The same meiotic diakinesis of P. elegans and mitotic metaphase of P. serratus males, stained with DAPI.
Chromosomal localization of the 185-5.85-28S rDNA genes of (e) P. elegans male and (f) female. Chromosomal localization of the (TTAGG)n telomeric
sequences in (g) P. elegans male and (h) P. serratus male. Asterisks in a and c¢ indicate the sex trivalent. The bar equals 10 um

shrimp Penaeus vannamei [45] gave no hybridization
signals. On the contrary, in both P. serratus and P. ele-
gans, the hybridization signals of the (TTAGG)n probe
were located at the telomeres of all chromosomes.
Nonetheless, no interstitial telomeric signals were found
as evidence of structural reorganizations occurring
throughout chromosomal evolution. However, the fusion
sites of ancestral chromosomes do not always preserve
the telomeric sequences, and when retained these non-
functional repeats could wundergo a progressive

degeneration or reduction [46], that could impede their
detection by FISH.

Sex chromosomes

The comparative analysis between the karyotypes of both
sexes of P. elegans in addition to their meiotic behaviour
showed a heteromorphism between males and females,
which is compatible with the presence of an X;X;X,X,/
X;X,Y sex chromosome system, in which the Y chromo-
some would correspond to the large metacentric
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chromosome exclusive to males, and the X; and X, chro-
mosomes would correspond to two of the largest acrocen-
tric chromosomes of the complement. According to this
system females of P. elegans have 2n = 90 (86 + X;X;X5X>)
whereas males have 2n = 89 (86 + X;X,Y).

Interestingly, the C-banding technique revealed a lack
of constitutive heterochromatin in the sex chromo-
somes, not even in the Y chromosome which also turned
out to be remarkably large.

Typically, during the evolution of sex chromosomes
from autosomes, the reduction of recombination be-
tween the sex-determining regions is the first step to
produce simple sex chromosome systems (XY or ZW).
Then, the differential accumulation of repetitive se-
quences and deleterious mutations favour the hetero-
morphism between the X and Y (or Z and W), either in
size, morphology or through banding techniques [47],
and the recombination is kept in the pseudoautosomal
regions of the sex chromosomes. In regard to the mul-
tiple sex chromosome systems, the initial stage of differ-
entiation seems to be associated with chromosomal
rearrangements between the chromosomes bearing sex-
determining genes and an autosome (e.g. [48—50]). Con-
sequently, due to rearrangements, even newly evolved
sex chromosomes can be heteromorphic [51] and not
necessarily involve heterochromatin increase [49]. These
considerations may explain the existence of meiotic re-
combination between the P. elegans X and Y chromo-
somes, the lack of heterochromatin in them and the size
of the euchromatic Y chromosome; indicating the possi-
bility that the multiple sex chromosome system in this
prawn species is a result of recent evolution. In light of
this possibility, and bearing in mind male and female
karyotypes and their meiotic behaviour, the initial step
of sex chromosome differentiation in this species could
be a centric fusion between two nonhomologous acro-
centric chromosomes, forming the large metacentric
neo-Y and leading to two acrocentric chromosomes
without homologous in males (neo-X; and X, chromo-
somes). Accordingly, during meiosis, the recently formed
neo-Y would pair with the neo- X; at one end and with
the neo-X, at the other end, which would lead to the
formation of a trivalent such as we observed.

In neither this nor our previous report [5], did we
identify sex chromosomes in P. serratus. Also, we did
not find differences in the constitutive heterochromatin
pattern between sexes. Even so, the results demonstrated
that the sex chromosome systems of both congeneric
species are different since mitotic and meiotic meta-
phases displayed the same chromosome number in both
P. serratus males and females, making a multiple sex de-
termination system impossible in that species. In this re-
gard, future studies involving comparative genomic
hybridization would be helpful in investigating the
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putative absence of heteromorphic sex chromosomes in
detail in the aforementioned species.

A review of the literature suggests that the multiple sex
chromosome system X;X;X>X5/X;X,Y found in P. elegans
may be unprecedented among decapods with the excep-
tion of Cervimunida princeps [52]. However, without add-
itional studies using current techniques, the C. princeps
sex determination system formulated in 1959 is question-
able considering that it was based on male chromosome
number (2n = 109) and the presence of three univalents at
meiotic metaphase I, observations that could correspond
for instance to an XX/XY;Y, system.

The present data show the first karyotype with distin-
guishable heteromorphic sex chromosomes within the
family Palaemonidae, where a ZZ/ZW sex chromosome
system had been suggested for Macrobrachium rosenber-
gii, in which it is believed that the female is the hetero-
gametic sex on the basis of molecular studies [53]. In
fact, the ZZ/ZW sex-determining mechanism was never
determined cytogenetically in any member of Decapoda
although its existence has also been inferred in the cray-
fish species Cherax quadricarinatus (infraorder Astaci-
dea) [54] and some penaeid shrimps (for a review, see
[55, 56]). In contrast, male crabs (infraorder Brachiura)
are reported to be the heterogametic sex based on their
karyotype, with an XX/XY sex chromosome system and
even an XX/XO system being observed (see the reviews
[6, 57]). Notwithstanding, due to the inherent limitations
of the techniques used at the time, we should be cau-
tious as to the reliability of these studies. Recently, the
ZZ/ZW sex determination system was proposed for the
Chinese mitten crab Eriocheir sinensis (infraorder Bra-
chiura) based on QTL mapping and confirmed by trip-
loid induction experiments [58].

Our results on Palaemon sex determination systems
and our bibliographic review reveal a large variability
within Decapoda. They also show the difficulty of identi-
fying sex chromosomes in this order using cytogenetic
methods. The absence of heterochromatic blocks in the
sex chromosomes in P. elegans could be a widespread
characteristic in decapods. Besides, the high chromo-
some number and their small and homogenous size
complicate the identification of sex chromosome pairs,
especially if the meiotic stage, where the homologous
are connected and the chromatin more condensed, is
not analyzed.

Conclusions

This and our previous study [5] show that the congeners
P. serratus and P. elegans present a high degree of diversity
in their chromosome number, karyotype and sex deter-
mination system, ranging from the putative absence of
heteromorphic sex chromosomes to the multiple chromo-
some system (X;X;X5X5/X;X,Y). Such variability, even
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between species so closely related, makes this genus a
promising model among Decapoda to investigate not only
the karyotype evolution but also the patterns of sex
chromosome differentiation.

In this perspective, future comparative cytogenetic
analyses comprising other Palaemon species are needed
to clarify the hypothesis developed in this work where
fusions events would constitute the main mechanism of
karyotype evolution in the genus. Likewise, the sex de-
termination system in P. serratus and the existence of
additional sex chromosome systems in the genus that
shed light on the genus sex chromosome evolution are
interesting aspects to be elucidated in further studies.
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