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Abstract

Background: Here we present an application of advanced registration and atlas building framework DRAMMS to
the automated annotation of mouse mandibles through a series of tests using single and multi-atlas segmentation
paradigms and compare the outcomes to the current gold standard, manual annotation.

Results: Our results showed multi-atlas annotation procedure yields landmark precisions within the human observer
error range. The mean shape estimates from gold standard and multi-atlas annotation procedure were statistically
indistinguishable for both Euclidean Distance Matrix Analysis (mean form matrix) and Generalized Procrustes Analysis
(Goodall F-test). Further research needs to be done to validate the consistency of variance-covariance matrix estimates
from both methods with larger sample sizes.

Conclusion: Multi-atlas annotation procedure shows promise as a framework to facilitate truly high-throughput
phenomic analyses by channeling investigators efforts to annotate only a small portion of their datasets.
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Background
The growing use of high resolution three-dimensional im-
aging, such as micro-computed tomography (microCT),
along with advances in visualization and analytic software
have provided researchers with the opportunity to study
the morphology of organisms in more detail. More and
more researchers are turning to morphometric measure-
ments obtained on 3D scans to quantitatively assess mor-
phological differences in their experimental studies which
might focus on effects of teratogens or mutations on
craniofacial (CF) development, or simply study the normal
CF development and variation [1–9]. In this context,
geometric morphometric methods (GMM) are a suite of

analytic techniques aimed at studying shape variation
through annotation of landmarks corresponding to
anatomical structures of interest, traditionally done by
an expert [10, 11].
Thanks to the increasing accessibility of microCT

scanning in general and, tissue staining protocols for
microCT in particular, it is now possible to image
dozens of adult mouse skulls or mandibles, or possibly
hundreds of mice embryos in a single day. Yet, manual
annotation of 3D datasets remains a labor-intensive
process, requiring investigators to be trained on the ac-
curate and consistent identification of anatomical land-
marks. Manual annotation of the specimens imaged in a
single work day can take much longer, perhaps as much
as a few weeks. Furthermore, manual landmarking can
introduce inter and intra-investigator error that can sig-
nificantly impede the detection of subtle, yet biologically
significant differences [8]. These differences are typically
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dealt with by obtaining multiple sets of annotations from
the same specimen, possibly by multiple investigators,
further delaying the process. Yet, the real power of
quantitative morphometrics, and specifically geometric
morphometrics, is its potential to detect slight shape
changes so that researcher can study subtle within popu-
lation variations or small-effect genetic variations. This,
however, requires large sample sizes, and also more of
the investigators efforts to be spent on data collection.
The multivariate nature of GM analyses integrates very
well with breeding experiments that manipulate the
phenotype and help us identify genomic locus that are
responsible for these complex phenotypes [4, 12–15].
These mapping studies have shown that the shape of a
complex trait (such as a skull or mandible) is a highly
polygenic trait, and the identification of the variants usu-
ally requires a large sample size. Thus, there is a strong
need for high-throughput automated annotation of ana-
tomical landmarks that will match the high-throughput
imaging available.
There has been progress to speed up the annotation

process, especially for 3D surface meshes that are acquired
from surface scanners. Computer vision methods have been
applied to automatically discriminate or, classify certain
syndromes with various success [16–18]. These methods,
typically based on machine learning algorithms, are better
suited to classification problems and generally do not pro-
vide the shape variation information in an interpretable
form. Other automatic approaches use mathematical and
geometric criteria to define the landmarks [19, 20]. The
benefit of fully automated landmarking using geometric cri-
teria is its compatibility with the existing GMM analytic
procedures. But, perhaps more significant is its promise of
total elimination of any kind of observer variation as the
algorithms are deterministic. Unfortunately, this require
making series of assumptions in geometric arrangements
of the anatomical features of interest, which may not be
easily generalized to new annotation tasks, especially when
different taxa or anatomical systems are considered. There
are also landmark free approaches to quantify the shape
variation [21, 22] in 3D. However, the statistical frame-
work to analyze these kinds of data needs to be further
developed and validated. With all its caveats regarding

the speed and potential for various kinds of observer
error, when executed carefully manual annotation of land-
marks still remains as a robust and flexible procedure than
can be extended to any anatomical system from any
species with well-defined anatomical structures.
In this study our goal is to explore a methodology that

leverages advanced image registration methods, which
are commonly used in neuroimaging, into a flexible
framework that channels investigators efforts into creat-
ing well-annotated, repeatedly verified set of ‘templates’
of landmarks that will serve as references to landmark a
much larger study population. Our approach is conceptu-
ally similar to some previous attempts such as the atlas
based classification of dysmorphologies in Fgfr2C342Y
mutation [23] or the more recently published TINA tool-
kit [24]. In this context atlas (or template) is a dataset that
serves as a reference to process the new (target) samples.
Depending on the application atlas can be a single well
characterized sample, or it can be constructed from a
population (e.g. averaging all samples). In this study, we
first look at the sensitivity of the atlas construction
process (i.e. whether there is any bias in the outcome
depending on from which sample the process initiated
from), then compare single vs multi-atlas based auto-
matic landmarking processes and evaluate them against
manual annotation, which we refer to as ‘Gold Stand-
ard’ (GS). Lastly, we evaluate these findings in context
of typical geometric morphometric analyses in which
we compare the estimates of mean shape and shape
variance and their implications.

Results
Atlas sensitivity to initial sample
To measure whether the initializing sample causes any
bias in the outcome of the final atlas constructed, we
tested for different outcomes by choosing unique initiat-
ing samples. The dice statistic and the correlation coeffi-
cient were used to evaluate the similarity of the atlases.
For this study population, DRAMMS performs well
and the outcome of the atlas was not dependent on the
initializing sample (Table 1). This has been documented
in other study populations such as neonatal and pediatric
atlas construction [25].

Table 1 Dice (upper triangle) similarity scores and correlation coefficients (lower triangle) between atlases build from different
initializing samples

Sample 1 Sample 2 Sample 3 Sample 4

Sample 1 0.997 0.997 0.997

Sample 2 0.999 0.998 0.997

Sample 3 0.999 0.999 0.997

Sample 4 0.999 0.999 0.999

DICE similarity is calculated as the ratio of twice the intersection of two images divided by sum the two images, with score of 1 representing two identical images.
Four samples randomly chosen from the study population to initiate the atlas building process
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Surface selection to annotate single atlas
Because our atlas is a constructed dataset, grayscale values
of the voxels do not necessarily correspond to the density
of the mandibular bone. Thus, a simple grayscale thresh-
old may not consistently represent bone or tissue values
as it does in a single microCT image. Therefore, we pre-
ferred to use a probability-based approach to choose our
surface. Each sample was converted to a binary image and
a probabilistic atlas was created such that the value of a
voxel represented the frequency of that voxel being
present in the population. We tested how the 90 % prob-
ability (p90) surface compared to two other probability
surfaces (p70 and p50) and two other atlases based on dif-
ferent threshold settings and calculated the root mean
square error between those and the p90. As shown in
Fig. 1, the difference in most cases was minimal (less than
one voxel), and we proceeded to landmarking using only
the p90 surface.

Comparison of automated landmarking results
Difference between estimated landmarks versus the GS
for all three methods in Euclidean distance is given in
Fig. 2. Summary statistics on the observed landmark
annotation errors are provided in Table 2. Single atlas
annotation performed poorly. Using multiple samples
to estimate landmark locations on the atlas did improve
the mean errors, but multi-atlas method outperformed
both. This is clearly demonstrated by a paired Mann–
Whitney U test to assess the statistical significance
(Table 2). We compared the linear distance between
both sets of manual landmarks to the distance between
the averaged landmarks (GS) and the automated method
in question. For multi-atlas annotation method (MAAP)

method, only two LMs out of the 16 had errors that
exceeded that of GS (Table 2), whereas single and im-
proved atlas had six.
Since the goal of the landmarks is to create the data

points for downstream geometric morphometric methods,
we tested the consistency of some of the typical GMM
statistical parameters (size and mean shapes) across
methods. As shown in Table 3, single atlas based annota-
tions performed poorly in all estimated parameters.
Improved single atlas showed some progress, but still
remained significantly different from GS in all parameters
at α < 0.1. The multi-atlas method was statistically indis-
tinguishable from the GS when estimating the mean shape
both for Euclidean Distance Matrix Analysis (EDMA) and
Generalized Procrustes Analysis (GPA). Visualizations of
GPA mean shape estimates for all three comparisons were
provided in online supporting documents. Centroid size,
the typical size measure used in GMM, was significantly
different from the GS for all methods, although the ab-
solute difference is very small, about 0.2 % of the GS
centroid size for all methods, to be biologically relevant.

Discussion
We chose DRAMMS as our registration and atlas building
platform due to its documented performance in wide var-
iety of imaging datasets and its extensive documentation
[26–28]. By no means, it is the only platform to execute
atlas based landmark annotation. Investigators have a
large variety of tools to choose from; NeuroInformatics
Tools and Resources website (https://www.nitrc.org)
currently lists 40 such atlas building frameworks. However,
careful attention has to be paid on how the algorithms are

Fig. 1 Visualization of the distances between the atlas surface that was landmarked (p90) and four other surfaces constructed. a 50 % Probability
surface (p50); b 70 % Probability surface (p70); c Surface thresholded at grayscale value of 35. d Surface thresholded at grayscale value of 55.
RMS: Root mean square error
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implemented and the biases that might be associated with
each of them.
Based on our tests, MAAP outperforms single atlas

methods and performs as well as our GS. Even though
the improved single atlas shows promise, we favor the
multi-atlas approach due to its flexibility to capture vari-
ation. We expect the improved single-atlas methods to
perform sufficiently well in datasets like this where there
are no clear outliers in morphology. However, as the
variation in the study population increase (inclusion of
mutants, knock-outs, different strains), performance of
the improved atlas may suffer, because the variation in
the reference templates is reduced to a mean estimate of
landmark location on the atlas. Thus, back projection
of this estimate is solely dependent on how well out-
lier sample registers to the atlas. In MAAP, since each

template is registered against the target and a ‘voting
mechanism’ such as shape-based averaging (SBA) is
used to determine the final location of the landmark,
the variation in the reference templates is still pre-
sented in the outcome. Therefore, we will focus most
of our discussion on MAAP.
Because the similarity between template and target im-

ages determines the landmark accuracy, the choice of
templates may have an impact on the outcome of auto-
mated annotation. In current study, we used the K
means clustering that is available through the MAAP
package to select our samples that served as templates.
K-means clustering requires the investigator to deter-
mine the number of templates to be chosen. We chose
10 samples to serve as templates, because we wanted to
imitate a situation where a small subset of the study

Fig. 2 Comparison of automated landmarking methods to the gold standard. Each point is the digitization error associated with that landmark in
one sample in a given method. Horizontal tick marks are means for each landmark. Gray bars indicate +/−1 SD from the mean

Table 2 Digitization errors associated with each annotation technique.

LMs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Gold Standard 0.04 0.06 0.04 0.07 0.02 0.05 0.14 0.06 0.06 0.18 0.07 0.1 0.05 0.07 0.04 0.11

0.02 0.02 0.02 0.05 0.01 0.05 0.08 0.08 0.03 0.15 0.03 0.08 0.04 0.08 0.02 0.10

Single Atlas 0.07* 0.10* 0.06* 0.08 0.05* 0.06 0.06a 0.08* 0.08* 0.22 0.07 0.15 0.07 0.09 0.06* 0.12

0.02 0.03 0.02 0.04 0.01 0.03 0.03 0.03 0.02 0.13 0.02 0.11 0.04 0.05 0.03 0.07

Improved Atlas 0.06* 0.06 0.07* 0.07 0.04* 0.07* 0.07a 0.05 0.09* 0.19 0.05a 0.16 0.08* 0.08 0.04 0.10

0.02 0.02 0.02 0.03 0.01 0.03 0.03 0.02 0.03 0.1 0.02 0.1 0.02 0.04 0.02 0.06

Multi Atlas 0.04 0.04a 0.05 0.07 0.04* 0.07* 0.06a 0.05 0.06 0.18 0.04a 0.16 0.06 0.07 0.05 0.09

0.02 0.02 0.03 0.04 0.02 0.03 0.03 0.03 0.04 0.12 0.03 0.09 0.03 0.04 0.04 0.06

Mean (upper row) and standard deviations (lower row). Units are millimeters. A Paired Mann-Whitney U test was used to test for differences in digitization errors in each
automated method with respect to gold standard at p=0.01. * indicates errors greater than the GS landmarks, while a denotes less. This is determined by a U statistic
found in the tail. Error distributions indistinguishable from the GS landmark, which means U statistics not found in the tails, are not marked. N = 36 for all groups.
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population is used to annotate the remaining samples. This
choice, in practice, depends on number of factors such as
the variation in the datasets as well as the computational in-
frastructure available at hand. In our study the phenotypic
variation was not extremely large, it is quite possible that
most samples would have served successfully as templates,
so an argument for choosing the templates in random can
be made. However, in larger studies involving knock-outs or
mutants, there will be morphological outliers. If the selected
templates are enriched in number of outliers due to random
sampling, it is possible that less than optimal automated
landmark results can be obtained. Our recommendation is
that the investigator spends some time to do a preliminary
analysis of variation and carefully evaluate the templates.
For consistency we used the same set of 10 templates be-
tween improved single atlas and multi-atlas methods.
Although an increased number of templates means in-

creased computational time, DRAMMS and the associated
multi-atlas consensus algorithm and software can be readily
multi-tasked through the use of a grid computing environ-
ment where registration of the templates can be run simul-
taneously. On a single compute node with dual Intel Xeon
E5-2690v2 processors (20 physical cores), on average a sin-
gle MAAP sample took 105 minutes (+/−6 min) when 10
templates were used to landmark targets. For every MAAP
target, all 10 templates contributed to the landmark calcula-
tion. Volumes were approximately 200x600x300 voxels in
size. This execution time corresponds to approximately 27
samples in 24 h, assuming two target jobs can be submitted
simultaneously to utilize all available cores. Using only two
compute nodes, a throughput of more than 50 samples per
day can be achieved for this dataset. Addition of more tem-
plates, or working with larger datasets (such as skulls) will
increase the computation time, but this can be easily offset
by using additional compute nodes in tandem. It should be
noted that about 2/3rd of the computational time was spent
on registering the templates to the target, which is trivially
parallel. The remaining 1/3rd of the computation time
(~37 min) was spent on the label fusion through shape-
based averaging (SBA) to calculate the final location of
landmarks on the target. This is a serial task and cannot be
parallelized. Apart from SBA, there are multiple label fusion

algorithms, such as majority vote (MV) and simultaneous
truth and performance level estimation (STAPLE). MV is
the simplest label fusion algorithm, in which the mode of
the possible values is for the selection. Unfortunately, if
there is not sufficient overlap of the warped label maps, the
algorithm will not yield any result making it a poor choice
for study population with a large degree of vari-
ance. STAPLE is an expectation-maximization algorithm
that iteratively estimates the true segmentation from the
raters’ performance and the raters’ performance (sensitivity
and specificity) from the true segmentation esti-
mate. STAPLE has been shown to outperform MV and
SBA when labels maps are quite dissimilar. Our mandible
dataset contains only a subtle amount of variation. After
deformable registration the average dice image similarity
score is approximately 0.99. Therefore, the warped labels
are very similar and different label fusion methods yield
nearly identical results. This is demonstrated by comparing
STAPLE, SBA and MV label fusion on the same template
set (Additional file 1: Figure S1).
For datasets with natural populations or mutants, inves-

tigators may benefit from more state-of-the-art label fusion
methods such as Spatial STAPLE and COnsensus Level,
Labeler Accuracy, and Truth Estimation (COLLATE).
Spatial STAPLE improves upon STAPLE by adding a vox-
elwise performance level field that is unique to each rater,
improving local sensitivity [29]. COLLATE label fusion fo-
cuses on the notion that some regions, such a boundary,
are more difficult to segment while other regions, near the
center of large label or high contrasts edges, are intrinsic-
ally easy to label [30]. For this particular study either
method is unlikely to appreciably improve the results,
which are already in very good agreement.

Reliability of estimated shape parameters
Although the average linear distance between the corre-
sponding landmark pairs are small in this study (Fig. 2,
Table 2), it is still possible that they may differ in a system-
atic way which can impact the covariation between land-
marks. This in return will impact any analysis that uses the
variance-covariance (VCV) matrix to derive secondary
shape variables (such as principal component scores) that

Table 3 P values from statistical tests of different GM parameter estimates

EDMA FORM GPA SHAPE (one sample) GPA SHAPE (two sample) Centroid Size Centroid size R2

GS v Atlas 0.010 <0.001 <0.001 <0.001 0.96

GS v Improved Atlas 0.083 0.076 0.091 <0.001 0.97

GS v MAAP 0.476 0.1399 0.157 <0.001 0.95

For EDMA, we used the Form procedure of the WinEDMA (Cole, 2002), which used a permutation test with 100,000 replicates to establish the significance. For
GPA we used the testmeanshapes function from R shapes package. A permutation test was used for the one sample test (assuming exchangeability between
groups), whereas a bootstrap procedure was used for two-sample test. 50,000 replicates were used in both cases. Because the number of samples were low for a
true multivariate test such as Hotelling T^2, we reported the Goodall F-test metric which uses the sum-of-squared Procrustes distances to measure SS (Goodall,
1991). This test is also known as Procrustes ANOVA. A paired t-test was used to compare centroid size estimates. All comparisons were run as separate statistical
tests. All groups contained the identical set of samples (N = 36 per group). Adjusted R2 results are from linear regressions of centroid size from automated
methods on GS centroid size
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are typically tested against environmental and genetic fac-
tors. This would be particularly troublesome if expert and
automated annotations are mixed in the statistical analysis.
To the best of our knowledge no other study that focused
on the fully automated or semi-automated annotation of
landmarks has investigated the similarity of the VCV matri-
ces or any of the GMM parameters, such as mean shape,
from different methods.
The very small, but highly significant difference in the

centroid size suggests to us that there might be a systematic
bias in this dataset. We used Box M test to test for the
homogeneity of covariance matrices estimated from GS
and MAAP. To make sure that the covariance patterns do
not influence each other due to joint superimposition, we
conducted separate GPA analyses. Because of the low num-
ber of samples (36) versus the number of coordinate vari-
ables (48), we opted to use principal component scores
instead of Procrustes residuals. We chose principle compo-
nents (PCs) that expressed 1 % or more of the variation,
which resulted in selecting the first 15 PCs accounting for
88 % of the shape variation in both datasets. Based on this
dataset, we failed to reject the null hypothesis that the co-
variance matrices for GS and MAAP are equal (Chi-square
= 141.78 df = 120, p-value = 0.08512). Due to high intraob-
server error associated with some of the landmarks (eg. 10),
this may not be a particularly suitable dataset to investigate
the issue. We advise that further investigation should be
conducted for any automated or semi-automated method
for the consistency of parameters estimated from manual
annotations and corresponding methods. Until a clearer un-
derstanding of consistency of VCV estimates from manual
landmarks and any automated method emerges, we advise
against mixing samples that were obtained by different an-
notation techniques. We do not see this as a serious draw-
back, as the proposed MAAP approach is intended for
experiments with large sample sizes where a small portion
of the population can be set aside to serve as templates.

MAAP versus TINA
The MAAP method is comparable to a recently published
semi-automated landmark annotation technique by Bro-
miley et al. [24] as developed for the TINA Geometric
Morphometrics toolkit (TINA). Similar to MAAP, TINA
involves the registration of the template images to the tar-
get image and then transferring the landmarks to the tar-
get images. The main difference between these two
approaches is the choice of registration procedures. TINA
uses a course to fine resolution iterative affine registration
paradigm; where local regions of interest (ROI) of decreas-
ing size are defined around each landmark. MAAP, on the
other hand, uses a global deformable registration. Another
difference is the use of array based voting method based
on the image noise to determine the final landmark loca-
tion from the location of the registered template images in

TINA. However, because of the conceptual similarity be-
tween approaches, we evaluated the performance of
MAAP against TINA. Using the same 10 templates from
MAAP, we constructed a template database in TINA. 36
samples automatically annotated using this database. We
chose LMs 3, 4, 5, and 6 to do the initial global registra-
tion. All other settings were left as default.
Thanks to affine only registration, TINA is extremely

fast. On the same computer hardware, it took only
39 minutes to process 36 samples, averaging 1.1 min/
sample, two orders of magnitudes faster than MAAP.
This, however, came at the expense of landmarking ac-
curacy. Every landmark performed poorly with TINA
compared to MAAP. Mean errors associated with TINA
were 1.3 to 5.5 times larger than MAAP (Fig. 3).
Error detection is an important quality control tool for a

large scale landmarking study. We used a user specified
threshold to evaluate the distance between each landmark
location given by each template and its final location. If any
two distances (out of 10 estimates) exceeds the specified
threshold, the landmark is flagged as potentially problem-
atic. We tested our approach on our data using a five voxel
(0.172 mm) threshold. A total of 120 out of 576 landmarks
were flagged as potentially problematic (Fig. 4). Of the land-
marks whose error from the GS was actually greater than
the preset threshold, only 6.7 % were not identified by the
algorithm. Conversely, our algorithm also selected a large
number, 88 of out 120, landmarks that were flagged as
problematic, yet were below the specified threshold when
compared to the GS. In these cases, averaging the landmark
locations yielded a good result even if there were more than
two outliers in template landmark locations. Obviously, it is
not possible to automatically identify these ‘false hits’ with-
out the GS. In real world application the user still needs to
visualize the LMs and visually confirm. Because there is
only one estimate of landmark location in single atlas based
methods, this kind of outlier detection mechanism cannot
be implemented in that framework.
We also evaluated the performance of our outlier de-

tection against TINA’s outlier detection tool, using the
same five voxel threshold to flag outliers (Fig. 4). TINA
performed quite poorly, with very high rates of missed
LMs (1, 2, 16), as well as false positives (3, 4, 6, and 8).
LMs 10, 12, and 14 were challenging for both methods
due to the high number of missed and incorrectly flagged
LMs. The performance of TINA’s outlier detection tool
was somewhat surprising because of the previously re-
ported false positive rate of 0.5 % (Bromiley et al., 2014).
The outlier detection in TINA was only tested in terms of
detecting points that were in completely the wrong place
(i.e. digitization errors, or LMs out of sequence). It is
based on the spread of predictions in the voting arrays,
and relies on outliers being well-separated from all other
data. The thresholds are typically set around 2.5 sigma of
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the distribution in the array (Bromiley et al. 2014). Our
study population is phenotypically similar in shape, and
less variable than the natural mouse population that
Bromiley et al. (2014) used to test TINA. This causes the
votes to form a single distribution with no distinct outside
peaks. We tried TINA with different sigma values (results
not shown), however, it appears there is no optimal par-
ameter setting that would give a good classification.

It appears that TINA is far faster than MAAP at the
expense of LM accuracy for this particular dataset. The
tradeoff between speed and quality is difficult to quan-
tify, and will likely depend on a number of factors such
as the number of landmarks to be revised, availability
of man-power to do the correction vs the availability of
high-performance computing environment, and likeli-
hood of human error. Given that on average it takes about

Fig. 4 Comparison of the outlier detection performance in MAAP and TINA. For each landmark left column (M) is the result for MAAP and right
column (T) is the result for TINA. Each data point represents the difference of the estimated landmark to the corresponding GS one. Horizontal
line at five voxel mark represent the threshold specified to assess the outliers in both methods. For MAAP, if two or more of the templates (out
of 10) were outside of this threshold range, the software flagged the landmark for manual verification. Green circle indicates landmarks that are
correctly flagged as outliers, red circle indicates landmarks that are in reality outliers but missed by detection software, and blue indicates
landmarks that were incorrectly flagged since they were below threshold

Fig. 3 Comparison of MAAP and TINA results with respect to gold standard. Conventions same as Fig. 2. Because TINA reports values only as
integers, our results from Fig. 2 were also rounded to the closest integer
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a minute to manually annotate a landmark (Bromiley
et al., 204), MAAP is slower than doing the annotations
manually. But it should be noted that the majority of the
computational time was spent on conducting the deform-
able global registration. The number of landmarks to
be annotated has no bearing on speed of the registration
which is solely dependent on the size and similarity of
datasets. As the number of landmarks in the dataset
increases significantly, we expect MAAP to be rather
competitive.
In the future we plan to investigate the metrics associ-

ated with the underlying label fusion algorithms, both
SBA and simultaneous truth and performance level esti-
mation (STAPLE), to develop a more robust outlier detec-
tion tool that will avoid the false hits, thereby reducing the
user intervention time. STAPLE seems particularly prom-
ising, because it considers a collection of segmentations
and calculates a probabilistic estimate of the true segmen-
tation. The estimate of the true segmentation is computed
by estimating the optimal consolidation of the segmen-
tations, weighting each segmentation by an estimated
performance level together with constraints for spatial
homogeneity. Such estimated performance weights from
STAPLE [31], or distance map measures from SBA [32]
could be used in place of a local registration quality meas-
ure. Another possibility is to look at the dispersion of esti-
mated landmarks around the centroid (the best estimate)
and rank them by their eigenvalues or a minimum covari-
ance determinate estimator. Also, more research is needed
to determine the performance of registration algorithms
(affine vs deformable) and their spatial domains (local
versus global) in context of datasets that display wide
morphological variation in all landmarks, such as devel-
opmental datasets.

Conclusions
In summary, the proposed MAAP framework as imple-
mented through DRAMMS for landmarking shows prom-
ise as an effective procedure for accurately annotating large
datasets that are typical of large phenotyping or genetic
mapping studies. Although MAAP is slower compared to
other alternative, TINA, its performance in accuracy is
far better than TINA, both in terms of approximating
the manual landmarking, as well as detecting potentially
erroneous LMs.
With a more robust outlier detection method, MAAP

has the power to facilitate high-throughput analysis of
large datasets through use of high performance comput-
ing environments. It provides a flexible framework
necessitating no mathematical or geometric definition of
anatomical structures. It enables to channel investigators
valuable time to improve the precision of the annotated
templates, thus reduce the potential for human error.

Methods
Dataset and imaging
The current study population is a subset of our unpub-
lished dataset consisting of mandibles from a mixed popu-
lation of C57BL/6 J mice there were chronically exposed
to different dosages of ethanol solution in-utero. Fifteen
animals were born to mothers (N = 3) that obligatorily
consumed 10 % ethanol/water mixture throughout their
pregnancy. Ten animals were born to mothers (N = 2) that
obligatorily consumed 15 % ethanol/water mixture for the
first eight days of their pregnancy. Thirty animals were
born to mothers (N = 5) that consumed only water. Litters
from all mothers were euthanized at P75 and their heads
were scanned with Skyscan 1076 microCT scanner (Skycan,
Co) using a standardized acquisition settings (0.5 mm Al
filter, 55 kV, 180uA, 80 ms exposure, 0.7° degree rotations).
Three images were obtained and averaged at each rotation.
Grayscale image stacks were reconstructed at 34.42 micron
using identical settings for all samples. All animal proce-
dures used in this study were approved by the Institutional
Animal Care and Use Committee of the Seattle Children’s
Research Institute.

Manual landmarking
Following image reconstruction, a trained technician seg-
mented the left and right hemi-mandibles from the skull
using Ctan (Skyscan Co). Segmented left hemi-mandibles
were imported into 3D-Slicer and visualized using a fixed
rendering and threshold setting. The technician was ini-
tially trained on 16 mandibular landmarks (Fig. 5) com-
piled from literature [19, 33, 34]. The training dataset
consisted of a set of C57BL/6 J mandibles that were of the
identical age, but that were not part of this study to avoid
any ‘learner’s bias’ (i.e. shifting the landmark positions
gradually after getting exposed to more phenotypic vari-
ation, or learning the software better). After the training,
the technician annotated all samples in the study twice
with four weeks separating the first and second attempts.
Only overt digitization errors (such as mislabeled land-
marks) were corrected and no further refinement of the
landmarking process was performed. Median and mean
error in corresponding landmarks between two manual
digitization attempts were 0.048 mm (1.4 voxels) and
0.073 mm (2.1 voxels) respectively. Some landmarks (e.g.
10 and 16) had higher digitization errors associated with
them (Table 2). These are typical of manually annotated
type III landmarks (e.g. deepest point on a curvature). We
averaged these two sets and designate it as our GS for the
purpose of this study.

Atlas building overview
We used the open source DRAMMS deformable regis-
tration software and atlas building pipeline in this study
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[35]. The DRAMMS registration software consists of
two major components, attribute matching and mutual-
saliency weighting. Attribute matching characterizes each
voxel by a high dimensional vector of multi-scale and
multi-orientation Gabor attributes. This method provides
more information than the traditionally used intensity
information [26, 28, 36, 37]. Because the reliability
and accessibly of correspondence varies across ana-
tomical structures, mutual-saliency upweights regions
of the volume where correspondence can be reliably
established between the source and target images. The
preferred use of reliable correspondence reduces the nega-
tive impact of outlier regions on the registration quality
[26, 28, 36, 37].
Atlas construction was performed by using the DRAMMS

deformable registration in a classic unbiased population-
registration framework [38]. The atlas construction frame-
work iteratively finds a virtual space that resides in the
centroid of the study population (centroid meaning that
the deformations needed to transform all subjects into
this virtual space sum up to zero everywhere in this virtual
space). Therefore, the constructed atlas is unbiased to any
subject in the population, and is hence representative of
the mean anatomy/geometry of the population [25, 38].

Single atlas annotation
Atlas based landmarking is the process of transferring
landmarks from an atlas to the individual samples in the

population. As the atlas resides in the center of the
deformation space it minimizes the average deformation
magnitude, thus providing the best population wide reg-
istrations. The annotation process is initiated by building
an atlas using the whole population or a representative
subset of the population, which is later manually anno-
tated with landmarks by an expert. Once created, these
landmarks are first converted to spheres with a small
radius (4 voxels) and then back-projected to the individ-
ual samples by reversing the transformation. However,
unlike the individual samples that constitute it, the sur-
face selection on an atlas is non-trivial. A surface, gener-
ally bone (or other tissue of interest), is typically defined
via a set voxel threshold that is specific to the density of
the structure. However, because the atlas is a con-
structed dataset, grayscale values of the voxels do not
necessarily correspond to density of the tissue of interest
(mandibular bone in this case). Thus, a threshold may
not consistently represent bone or tissue values as it
does in a single microCT image. We explored effects of
using different criteria for selecting the surface to anno-
tate as well as the effect of the initializing sample on the
outcome of the atlas.
The same technician landmarked the final chosen sur-

face from the previous steps in three different attempts.
We used the average of the three landmark sets as the
best estimate of the landmark locations on atlas. A label
map, in which each landmark was represented using a

Fig. 5 Landmarks used in the study. Further information on landmarks definitions were provided as an online supporting document
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spherical label with a radius of two voxels centered on
the landmark, was created. This label map was projected
back to the original samples by reversing the transform
and final coordinates of the landmarks were estimates.

Improved single atlas annotation
Due to the arbitrariness of selecting the surface on atlas,
we explored the option of using a subset of manual
annotations to estimate the positions of the landmarks
on atlas. Landmarks from these samples were warped
onto the atlas, and averaged to provide an estimate of
landmarked atlas. Finally, this set of averaged LMs was
projected back to the remaining samples, similar to the
single atlas annotation.

Multi-atlas annotation procedure (MAAP)
In this approach, a subset of the expert annotations was
used to annotate the remaining samples also. However,
unlike the improved atlas method, they were not reduced
to a single best estimate, but all of them contribute to the
final estimate to varying degrees. The multi-atlas frame-
work consists of three main modules; template selection,
registration, and averaging. The annotation process is
based on the multi-atlas segmentation program (hereafter
referred as MAAP) that is built upon the DRAMMS regis-
tration library [39]. We used K-means clustering on the
study population and identified ten samples to be used as
templates. Template selection through clustering seeks to
find a template set representative of the variation within
the sample population. This decrease landmarking bias by
minimizing the amount of phenotypic correlation within
the template population. Clustering was performed on the
vectors of image voxel values, and sought to minimize the
within cluster Euclidean distance between members and
the mean. The sample closest to the mean of each cluster
was selected as a template.
Similar to the single atlas methods each landmark was

represented by spherical labels centered on the landmark.
One distinct label map was created for each template. It
might be beneficial to vary the spherical radius across land-
marks based on the observed variation, but this option was
not explored. A spatially adaptive label fusion algorithm,
shape based averaging (SBA), was used to ensure smooth
landmark labels [32]. Templates were automatically se-
lected for label fusion based on the correlation coefficient
between registered and target images to mitigate the effect
of outliers and poor registrations. Once the warped land-
mark maps have been averaged, the centroid of each label
was taken as the final landmark location.
Since last two methods removed 10 samples from the

study population, they were also removed from the single
atlas method for the sake of consistency. Four samples
were cut in the mandibular symphysis during the initial
scan, which affected the registrations. We removed those

samples as well. The final sample size used in all figures
and statistical tests were 36.

Comparisons and statistical analysis
We evaluated the performance of each procedure by
calculating the linear distance between the correspond-
ing landmarks in automated method versus our GS. In
return, this difference was compared to the observed
human variation in that landmark between the two at-
tempts of manual digitization.
We tested the accuracy of the mean shape estimates of

automated methods against the GS both using Generalized
Procrustes Analysis (GPA) and Euclidean Distance Matrix
Analysis (EDMA), the two most commonly used geometric
morphometric methods [10, 11]. Configurations of land-
marks are first superimposed on their respective centroids,
scaled to unit size, and rotated until the difference between
the landmark configurations are minimized through least-
squares optimization [10]. In EDMA, all possible paired
landmark distances are calculated from the landmark coor-
dinates and converted into a Form Matrix which is
expressed as a ratio of two populations, in this case GS and
MAAP results [40]. A bootstrap resampling method estab-
lishes the confidence intervals associated with each paired
landmark distance [40]. We used the Goodall F-test (Pro-
crustes Anova) to assess the difference between mean shape
estimates in GPA [41]. All statistical analyses for GPA
were conducted in R 3.1.2 [42] using the relevant geo-
metric morphometric packages, shapes and Morpho
[43, 44]. We used winEDMA (Cole, 2002) to test for
EDMA mean shape differences using its form procedure.
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The data sets supporting the results of this article and
its additional files are included within the article.
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where there are no distinctmorphological outliers, majority vote (MV)
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