
Delattre et al. Frontiers in Zoology 2012, 9:38
http://www.frontiersinzoology.com/content/9/1/38
RESEARCH Open Access
Do host species evolve a specific response to
slave-making ants?
Olivier Delattre1*, Rumsaïs Blatrix2, Nicolas Châline1,3, Stéphane Chameron1, Anne Fédou1, Chloé Leroy1

and Pierre Jaisson1
Abstract

Background: Social parasitism is an important selective pressure for social insect species. It is particularly the case
for the hosts of dulotic (so called slave-making) ants, which pillage the brood of host colonies to increase the
worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms
race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this
study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi) within an ant
community correlated with a specific behavioral defense strategy of local host or non-host populations of
Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between
non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites
from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates
from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that
the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular
hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds.
We scaled the behavioral results according to the quantitative chemical distance between host and parasite
colonies to test this hypothesis.

Results: Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly
higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was
scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of
the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections)
towards parasite than toward non-parasite intruders.

Conclusions: We used two different analyses of our behavioral data (standardized with the chemical distance
between colonies or not) to test our hypothesis. Standardized data show behavioral differences which could
indicate qualitative and specific parasite recognition. We finally stress the importance of considering the whole set
of potentially interacting species to understand the coevolution between social parasites and their hosts.
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Introduction
Parasitism is an interspecific interaction where the host
species suffers from the exploitation of its resources by
the parasite. Any defense strategy minimizing the impact
of the parasite on host fitness is therefore likely to be
selected for. In this case, escalation of reciprocal
counter-adaptations between the parasite and its host is
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likely to lead to an "arms race" [1]. This coevolutionary
process is considered an important factor that shapes
species life history and plays a key role in the geographic
mosaic of coevolution through local adaptations [2,3].
Thus, elucidating patterns of local host-parasite interac-
tions helps understanding prominent factors in the
evolution of life history traits.
Social parasitism is a complex parasite-host interaction

since it not only involves individuals but societies.
Mainly found in social bees, wasps and ants, social para-
sites use the worker force of another social species to
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rear their own brood [4]. In the case of dulotic species
(so called slave-makers), the parasite workers are specia-
lized for conducting raids in a two-step process [5]. First,
scouts individually search for potential host nests. When
successful, the scout returns to its nest and recruits nest-
mates to initiate the raid, during which slave-maker ants
seize brood and bring it back home. Later, host workers
emerging in the parasite nest will be imprinted on and
integrated into the mixed colony where they rear the
parasite brood, feed and groom the parasite workers, de-
fend the nest against aliens, and even participate in raids.
Raids can jeopardize host colony survival [6-8], therefore
exerting a strong selection pressure upon the hosts. Re-
ciprocally, there is some evidence that hosts also exert a
selection pressure on their parasites in return [9], since
resistance by host colonies might prevent enslavement
[10]. Coevolutionary processes between dulotic ant spe-
cies and their hosts then can escalate to an evolutionary
arms race [11,12].
In ants, social recognition is based on cuticular hydro-

carbon profiles which display qualitative differences be-
tween distinct species and quantitative ones between
homospecific colonies [13-15]. Since each species is
characterized by a qualitatively unique blend of cuticular
hydrocarbons [14], an innate mechanism to detect some
chemical cues from the parasite could have evolved in
host species. In addition, we know that ants can learn to
recognize aliens and modify their subsequent behavior
in a variety of social contexts [16-18] and social parasites
have been proven to modify host behavior in some spe-
cies [12,19,20].
Myrmoxenus ravouxi is a dulotic social parasite

with a wide distribution in Europe ranging from
France to Greece [21]. It is known to parasitize sev-
eral species of the diversified genus Temnothorax
[21-23]. Some Temnothorax species are potential
hosts for several social parasites [5], while others are
never parasitized. Interestingly, the distribution range
of the hosts often exceeds the parasite’s, leaving
some host populations parasite-free. This ant genus
thus allows for comparative analysis of defense strat-
egy both between species (host and non-host) and
within species (populations with and without para-
sites). In this study we tested whether the presence
of a social parasite within an ant community
correlated with a specific behavioral defense strategy
of local host or non-host populations. Behavioral
responses of colonies to the introduction of parasite
(M. ravouxi), homospecific and heterospecific workers
were compared between hosts (Temnothorax unifasciatus
and T. rabaudi) and non-host (T. nylanderi) species from
two sites, one with and one without the parasite. We
expected the behavioral response of host species’
colonies in the parasitized population to be more
aggressive toward parasite intruders than toward other
non-parasite intruders.
It is usually assumed that agonistic interactions be-

tween ants depend on the dissimilarity between cuticular
hydrocarbon profiles [14,24,25], with aggressiveness
escalating when dissimilarity increases [26,27]. A new
theoretical model recently emerged based on empirical
data [28], which suggests that ants may discriminate
aliens using the presence of undesirable chemical com-
pounds absent from their nestmates’ chemical signature
[25], therefore focusing on qualitative differences rather
than on global dissimilarity. To separate out quantitative
and qualitative components of the chemical recognition,
we assessed the chemical quantitative dissimilarity be-
tween colonies by calculating the Euclidean distance
using chromatogram peaks areas [29-31] for compo-
nents that were found in all groups, leaving out compo-
nents that occurred only in some groups and were
therefore responsible for qualitative differences between
cuticular profiles (see supplementary data). Such meth-
odology amounts to calculating the distance between
colonies in a n-dimensional space where all peaks have
the same weight (1/n). This simple calculation is not
intended to mirror the actual sensory and cognitive
treatment used by ants in social decision-making pro-
cesses, but it provides us with a way to quantitatively
assess chemical distance without referring to any special
role for particular compounds. If host species have
evolved a specific recognition mechanism toward their
parasite, the behavioral response to M. ravouxi should
not be fully explained simply by overall cuticular profile
dissimilarity, but also involve qualitative detection of
some specific compounds. The agonistic response of
Temnothorax host species, or populations, to the social
parasite should therefore fulfill two criterions to be con-
sidered specific: a) it should be different from the
response to other non-parasite species, and b) it should
be at least partially independent of the global dissimilar-
ity between chemical profiles.

Results
Cuticular hydrocarbon profiles
The principal coordinate analysis (PCO, Figure 1) clearly
sorts out our different populations (cf. Additional file 1).
Cuticular hydrocarbon profiles of the colonies of the dif-
ferent populations were significantly different overall
(PERMANOVA, pseudo-F = 42.931 P < 0.001), and in
all pairwise comparisons (PERMANOVA, Pair-wise
tests, all P < 0.006). A canonical analysis (data not
shown) shows that more than 99.2% (117/118) of our
samples were correctly assigned to their respective
populations, the only exception being a T. unifasciatus
colony from Fontainebleau assigned to the Anduze
population of the same species. As expected, M. ravouxi



Figure 1 Principal coordinate analysis. Principal coordinate analysis (PCO) based on the resemblance matrix calculated from Euclidean
distances between every pair of samples for the 41 peaks present in all populations of M. ravouxi, T. unifasciatus, T. nylanderi and T. rabaudi from
Anduze (myr_an, uni_an, nyl_an and rab_an respectively), and of T. unifasciatus and T. nylanderi from Fontainebleau (uni_f and nyl_f respectively).
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profiles were close to those of T. rabaudi slaves (see
mean chemical distances in Additional file 1), but still
different, which is consistent with both theoretical and
empirical data on mixed species colonies [27,32-34].

Agonistic response of the recipient colonies
Bites
For each population, colonies were more aggressive to-
ward parasites than toward homospecifics (Figure 2;
paired permutation tests, P’ < 0.001).
Figure 2 Box-and-whisker plots for bite rates inflicted in
recipient colonies. Introductions were carried out in colonies from
populations of M. ravouxi, T. unifasciatus, T. nylanderi and T. rabaudi
from Anduze (myr_an, uni_an, nyl_an and rab_an respectively), and
of T. unifasciatus and T. nylanderi from Fontainebleau (uni_f and
nyl_f respectively). Box plots show the median and 25-75%
percentiles. Whiskers show all data excluding outliers outside the
10th and 90th percentiles (circles). Figures under bars indicate
number of tests. *** P < 0.001.
The Kruskal-Wallis analysis showed a significant effect
of the “population” factor on the response to introduced
homospecific workers (Figure 2; H = 17.69, P = 0.0014).
The non-host species (T. nylanderi) was more aggressive
in Fontainebleau than in Anduze (permutation test, P’ =
0.034), while other pairwise comparisons were not signifi-
cant (permutation tests, all P’ > 0.089).
The “population” factor proved also significant for the

colony responses to introduced parasite workers (Figure 2;
Kruskal-Wallis, H = 55.77, P < 0.001). The non-host
species was significantly more aggressive than the other
species at both sites (permutation tests, in Anduze,
compared with T. unifasciatus: P’ < 0.001; T. rabaudi: P’ <
0.001; in Fontainebleau, T. unifasciatus: P’ = 0.007). T.
nylanderi colonies from Anduze were more aggressive to-
ward parasite workers than T. nylanderi colonies from
Fontainebleau (permutation test, P’ = 0.0056).
Introduction of a non-parasite heterospecific worker

was performed in colonies of T. nylanderi and T. rabaudi
from the parasitized site (Anduze) in order to test whether
ants were able to discriminate the parasite from another
heterospecific worker. For both species, the respon-
ses toward parasites, homospecifics and heterospecifics
were significantly different (Figure 3; Kruskal-Wallis,
T. nylanderi: H = 44, P < 0.001; T. rabaudi: H = 19.02,
P < 0.001). For both species the agonistic response was
lowest toward homospecific intruders (Figure 3; permuta-
tion tests, P’ < 0.001) but was not significantly different
toward parasites or heterospecific non-parasites (permuta-
tion tests, P’ = 0.108 and P’ = 0.577, respectively).

Bites (scaled by chemical distance)
For each population except T. rabaudi from Anduze and
T. nylanderi from Fontainebleau (Figure 3; paired



Figure 3 Box-and-whisker plots for bite rates inflicted in
recipient colonies scaled by chemical distance. We scaled the
mean bite rates by chemical distance between the intruders and the
recipient colonies from populations of M. ravouxi, T. unifasciatus, T.
nylanderi and T. rabaudi from Anduze (myr_an, uni_an, nyl_an and
rab_an respectively), and of T. unifasciatus and T. nylanderi from
Fontainebleau (uni_f and nyl_f respectively). Box plots show the
median and 25-75% percentiles. Whiskers show all data excluding
outliers outliers outside the 10th and 90th percentiles (circles).
Figures under bars indicate number of tests. * P < 0.05, ** P < 0.01,
*** P < 0.001.

Figure 4 Proportion of trials with intruder ejection. Proportion
of trials with intruder ejection when they did not escape the nest
(figures under bars indicate number of tests without escape, N
indicate total number of tests) for populations of M. ravouxi, T.
unifasciatus, T. nylanderi and T. rabaudi from Anduze (myr_an,
uni_an, nyl_an and rab_an respectively), and of T. unifasciatus and T.
nylanderi from Fontainebleau (uni_f and nyl_f respectively).
* P’ < 0.05.
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permutation tests, P’ = 0.342 and P = 0.15), colonies
were significantly more aggressive toward parasites than
toward homospecifics (Figure 3; paired permutation
tests, all P < 0.011).
Colony responses to introduced homospecific workers

significantly differed between populations (Figure 3;
Kruskal-Wallis, H = 17.88, P = 0.0013). The non-host
species (T. nylanderi) was more aggressive than T.
unifasciatus in Anduze (Permutation test, P’ = 0.028)
but not in Fontainebleau (P’ = 0.317). We found no dif-
ferences between sites for either T. unifasciatus or T.
nylanderi (P’ = 1 and P’ = 1, respectively).
Colony responses to introduced parasite workers also

differed significantly between populations (Figure 3;
Kruskal-Wallis, H = 35.5, P < 0.001). The non-host spe-
cies was significantly more aggressive than the other
species in both sites (permutation tests, in Anduze,
compared with T. unifasciatus: P’ < 0.001; T. rabaudi:
P’ = 0.0016; in Fontainebleau, T. unifasciatus: P’ =
0.022). The response of non-host against parasites was
not significantly different between sites (permutation
test, P’ = 1.1268).
Introduction of a non-parasite heterospecific worker

was performed in colonies of T. nylanderi and T.
rabaudi from the parasitized site (Anduze). For both
species, the responses toward parasites, homospecifics
and heterospecifics were significantly different (Figure 3;
Kruskal-Wallis, T. nylanderi: H = 18.71, P < 0.001; T.
rabaudi: H = 9.082, P = 0.011). T. nylanderi colonies
were marginally more aggressive toward parasites than to-
ward heterospecific non-parasites (Figure 3; permutation
test, P’ = 0.086). No statistical difference could be
observed for the agonistic response of T. rabaudi between
homospecific heterocolonial intruders and heterospecific
ones, be they parasites or not (all P’ > 0.342). However,
T. rabaudi were significantly more aggressive toward para-
sites than toward heterospecific non-parasite intruders
(permutation test, P’ = 0.018).

Ejections
Ejection rates of homospecific intruders were not signifi-
cantly different between populations (Figure 4, Fisher-
Freeman-Halton test, P’ = 0.095). On the contrary,
ejection rates of parasites were significantly different be-
tween populations (Figure 4, Fisher-Freeman-Halton
test, P’ = 0.002): the non-host species (T. nylanderi)
from the parasitized site (Anduze) tended to display this
behavior more often than other populations (Fisher tests,
comparison with T. unifasciatus from Anduze: P’ =
0.052; T. rabaudi from Anduze: P’ = 0.094; T. nylanderi
from Fontainebleau: P’ = 0.057) but it was not significant
when compared to T. unifasciatus from Fontainebleau
(P’ = 0.381). More importantly, T. nylanderi from
Anduze was the only population in which parasites were
ejected significantly more often than homospecific intru-
ders (ejection rates respectively 0.72 and 0.26, Fisher
test, P’ = 0.011); it also ejected parasite workers signifi-
cantly more frequently than heterospecifics (ejection
rates respectively 0.72 and 0.24, Fisher test, P’ = 0.012),
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whose ejection rate did not differ from homospecifics’
(Fisher test, P’ = 1).

Discussion
In Anduze, all four species could be discriminated using
their cuticular hydrocarbon profiles. Profiles of M. ravouxi
were very close to those of the main host, T. rabaudi, sug-
gesting integration of host components into the chemical
profile of the parasite. This mechanism has already been
shown in dulotic ants [35-40]. However, in our study, the
profiles of the parasite and its main host were distinct
(cf. Additional file 1). GC-MS analyses also showed some
qualitative differences between the parasite and its host
(cf. Additional file 2). Chemical analyses thus prove the
potentiality for hosts to recognize the parasite and there-
fore to display a specific defense behavior, even if the
chemical closeness of the social parasite might also make
recognition more difficult.
With the raw data, all studied populations reacted

more aggressively to allospecific intruders (be they para-
sites or not) than to homospecific heterocolonial ones.
The non-host species T. nylanderi, both from the parasi-
tized (Anduze) and non-parasitized site (Fontainebleau),
was more aggressive toward parasite intruders than the
other species.
Neither T. rabaudi nor T. nylanderi from Anduze

reacted more aggressively to the parasite than to a non-
parasite heterospecific intruder. Response of T. unifasciatus
to the parasite was not significantly different between
Anduze and Fontainebleau (the parasite-free site). Thus, we
could not detect any clear-cut effect of the presence of the
parasite in the ant community on the defense strategy of
the two host species.
This pattern could be explained by the fact that, in this

host-parasite local interaction, the parasite species is
leading the arms race and offsets any specific defense
through mimetic odor [35,41] or propaganda allomone
[42]. Moreover, as opportunist M. ravouxi slave-making
ants can use more than five host species [23,43], it may
shift from one host species to another in the same site,
for example as a consequence of any counter adaptations
from its host species. An alternative hypothesis would
be that the cost of being parasitized is lower than the
cost of a specific defense which could increase nestmate
recognition errors [44] and decrease colony fitness.
The raw results show that host and non-host species

are not specifically more aggressive toward parasite than
non parasite intruders, but the non-host species display
more aggressiveness toward these intruders than the
host species. T. nylanderi populations are sometimes
very dense [45,46] and competition for nest sites may
cause colony fusion. These conflicts and subsequent
intraspecific parasitism may select for a higher level of
aggressiveness in dense populations of this species. In
Fontainebleau, where we found 1–3 colonies per square
meter, T. nylanderi display a higher degree of aggressive-
ness toward homospecific intruders. We thus may
hypothesize that in this site, T. nylanderi colonies lowered
their tolerance threshold in response to intraspecific
competition.
Interestingly, T. nylanderi colonies from the parasi-

tized site of Anduze bit more often parasite intruders
than T. nylanderi colonies from the non-parasitized site
of Fontainebleau. However, the difference between the
medians is very small (0.104 vs. 0.0842), and thus we
cannot conclusively interpret them as a product of local
adaptation processes.
In order to investigate a potential specific response to

the slave-making parasite M. ravouxi parasite, which
could not be fully explained by the global chemical dis-
similarity, we also compared agonistic responses when
scaled according to the quantitative chemical distance
between host and intruder colonies. A slightly different
picture arises from this second analysis. Differences be-
tween homospecific and parasite introductions remain
significant, with the exception of T. rabaudi colonies
from Anduze and T. nylanderi from Fontainebleau,
which are not significantly more aggressive toward para-
site than toward homospecific intruders.
T. rabaudi host colonies from the parasitized popula-

tion (Anduze) were more aggressive toward parasite
than non-parasite heterospecific workers. T. nylanderi
colonies displayed a stronger agonistic response while
biting more often parasite than homospecific intruders
and showing a tendency to be more aggressive toward
parasite than non-parasite heterospecific intruders after
standardization (P’= 0.086). Host species colonies did
not show more aggressiveness toward non-parasite het-
erospecifics than toward homospecifics intruders in our
second analysis. Parasite intruders were extracted from
T. rabaudi parasitized colonies and were thus more
likely to bear some of the specific chemical cues this
host species displays. It could explain why T. rabaudi
colonies did not show a higher aggressiveness toward
the parasite workers when we scaled down the import-
ance of quantitative differences. Still, free-living host col-
onies did show a higher agonistic response to parasite
than to non-parasite heterospecific intruders. We thus
suggest that the more aggressive response to parasite than
to heterocolonial homospecifics or non-parasite hetero-
specifics after standardization indicates that ant aggres-
siveness does not solely increase linearly with global
chemical distance. Pamminger and collaborators [20]
showed that aggressive reaction of Temnothorax longispi-
nosus colonies against non-parasite congeneric workers
transiently rose after the introduction of a dead slave-
making Protomognatus americanus worker, when the
introduction of a dead congeneric worker had no visible
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consequence. They concluded that T. longispinosus specif-
ically reacted to the parasite presence in an adaptive way
by lowering their general tolerance threshold, since
Temnothorax enslaved workers join parasite workers dur-
ing raids and fiercely attack host colonies. Parasite pres-
ence indeed reliably signals a forthcoming raid, which is
not the case for congeneric workers that can belong to
non-parasite colonies. We thus may hypothesize that
Temnothorax ants rely on qualitative analysis of the cu-
ticular profiles to discriminate parasite from non-parasite
species in parasitized populations. This could result from
ants weighting more some compounds (be they specific to
the parasite or not), either because of the cognitive pro-
cesses used to match the perceived cuticular profile and
the internal template [14,44], or because sensory systems
are more sensitive to qualitative differences than quantita-
tive ones (some heterospecific compounds are absent of
the internal template, while homospecific profiles simply
differ in a quantitative way) [26], or both, since these
mechanisms are not mutually exclusive.
In some behavioral tests, recipient workers also ejected

the intruder. Such a behavior is probably not very effi-
cient in preventing raids in host colonies, because
parasite workers could easily return to the raided nest.
However, it could have been selected as a ritualized
fighting behavior [47-49] in non-host species since it
allows conflict resolution without casualties (the intruder
usually put up little resistance). The ejection strategy
could thus have been selected to prevent fights in cases
where a social parasite scout enters a colony from the
non-host colony. M. ravouxi scouts also have no interest
in engaging in fights in non-host species colonies. Slave-
making ants may discriminate host from non-host
species colonies, using for example a recognition tem-
plate based on innate or experience-induced preferences
[50,51]. They could then also actively avoid conflicts
with non-host workers by inducing ejection behaviors.
Nonetheless, in order to limit the interaction effect on
ejections by recipient colonies, we use proportion of
ejections only where the intruders did not escape. More-
over, T. nylanderi from the parasitized site of Anduze
showed a higher rate of ejection of parasite intruders
than of non-parasite heterospecifics or heterocolonial
homospecifics, while ejection rates displayed by T.
nylanderi in the parasite-free site (Fontainebleau) were
not different between parasite and homospecific intru-
ders. Besides, T. nylanderi ejected the parasite more
often in Anduze than in Fontainebleau. Taken together,
these results show that T. nylanderi from the parasitized
site displayed a specific response to the social parasite,
even though it is not used as a host. The specific re-
sponse consisted in a higher rate of a ritualized behavior
and marginally more agonistic interactions (respectively
ejections and bites). T. nylanderi has never been
observed as host, but our results suggest potential inter-
actions between the two species. This is obviously diffi-
cult to verify because raids are rarely observed in the
field. Thus, we cannot know if the specific behavior has
been locally selected per se, or if it results from the
learning of parasite odor through experience prior to
colony collection. To tell apart the respective roles of
local selection and learning capacities, similar experi-
ments should be conducted with T. nylanderi colonies
reared in the lab from founding queens from Anduze.

Conclusions
Our results did not show unequivocal evidence of a host
behavioral defense that would be specific to the social
parasite M. ravouxi. Nonetheless, standardization of ag-
onistic behaviors by chemical distance between intruder
and receiver colonial signatures shows a higher aggres-
siveness toward the parasite than toward a non-parasite
heterospecific intruder for the host species, which could
result from a coevolutionary arms race [7,8,10,11,37].
We do not know how ants’ decision rules are implemen-
ted, i.e. following qualitative or quantitative dissimilarity
of chemical cues. Ants certainly may adjust their behav-
ior according to the absence/presence of some particular
chemical cues when facing conspecifics [51,52]. So, we
think that standardization of behavioral results by chem-
ical distance between colonies in social insects may
bring new insights on the discrimination mechanisms
towards sympatric species of social parasites. In this as-
pect, our methodology shows a pattern of host resist-
ance. Moreover, we show for the first time that a species
never recorded as host (T. nylanderi) can also display a
specific behavioral defense to a slave-making ant. The
specific defense included higher rates of bites and ritua-
lized ejections of parasite workers. It remains to be tested
whether M. ravouxi attempts raids on T. nylanderi in the
field. Our results lead us to stress the importance of con-
sidering the whole set of potentially interacting species to
fully understand the geographic mosaic of host-parasite
interactions [53,54].

Materials and methods
Study species
The parasite species M. ravouxi was collected in Anduze
(N44°3’ E3°59’). T. unifasciatus and T. rabaudi are com-
mon hosts of M. ravouxi. T. unifasciatus colonies were
collected both in the Anduze site and in Fontainebleau
(N48°24’ E2°42’), which is outside the distribution area
of M. ravouxi. T. rabaudi could only be found in
Anduze, where it is the most frequent host for M.
ravouxi (some parasite colonies where found with T.
unifasciatus slave workers). Last, we collected T. nylan-
deri colonies in both the Anduze and Fontainebleau
sites. To the best of our knowledge, T. nylanderi has
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never been recorded as a host for any social parasite
(the records of Bernard [55,56] could not be confirmed
by Buschinger et al. [57]); however, it could be found in
Anduze in sympatry with the slave-making M. ravouxi.
In Fontainebleau, T. nylanderi was very frequent, with
densities of almost 2 or 3 colonies per square meter.
This could limit the number of available nest sites and
cause intraspecific colony fusions and parasitism in this
species [58].
Throughout the rest of this manuscript refer to "popula-

tions" for colonies of a given species originating from the
same site: T. unifasciatus from Anduze (uni_an, N = 29),
T. unifasciatus from Fontainebleau (uni_f, N = 11),
T. nylanderi from Anduze (nyl_an, N = 28), T. nylanderi
from Fontainebleau (nyl_f, N = 32), T. rabaudi from
Anduze (rab_an, N = 21), and M. ravouxi from Anduze
(myr_an, N = 13). The latter were only used as a source of
parasite workers to introduce in the free-living tested col-
onies. These parasite workers were thus all extracted
from T. rabaudi parasitized colonies. We also refer to
T. nylanderi as “non-host species”, T. unifasciatus and
T. rabaudi as “host species”, Fontainebleau as “non-
parasitized site” and Anduze as “parasitized site”.
Colonies were all queen-right and reared in the lab in

artificial nests made of two microscope slides superim-
posed and kept 1 mm apart from each other using a thin
piece of linoleum. They were fed with honey and fruit
flies. The experiments took place in the spring, from
April to May, after a three-month wintering period at
8°C. The colonies were collected at the end of the previ-
ous summer. The temperature during the experiments
was around 24°C.

Characterizing dissimilarity between cuticular
hydrocarbons profiles
The cuticular hydrocarbons profile was characterized for
each colony by soaking 10 workers in 50 μl of pentane
for ten minutes. An aliquot of 2 μl was analyzed using
gas-chromatography with flame ionization detection
(GC-FID) on a Varian 3900 instrument equipped with a
split/splitless injector and a DB5 fused silica capillary
column (30 m x 0.32 mm, 0.25 μm film thickness), with
helium as carrier gas at a flow rate of 28.57 cc/sec. The
temperature was maintained at 100°C for 5 min, raised
at 3°C/min to 300°C and held constant for 10 min. Peak
areas were calculated using the Varian system control.
Peaks were later identified using a GC-MS, allowing us
to exclude contaminants from analyses. Analyses were
carried out on a Agilent 5975 C inert XL with chromato-
graph GC system 7890A of Agilent with a split-splitless
injector and a fused-silica capillary column (30 meters
long with a diameter of 250 μm) with a 0.25 μm polydi-
methylsiloxane coating. The carrier gas was helium
(99.99%) and the column temperature program was 100°C
(5 min) and 3°/min to 300°C (10 min). The injection port
temperature was 280°C. Total ion chromatograms and
mass spectra were recorded in the electron impact
ionization mode at 70 eV. The transfer line and the source
temperature were maintained at 230°C. Compound identi-
fications were based on retention times and comparison
with published data [59]. In a first step, peaks displaying
an area above or equal to 1% of the total area in at least 10
samples (66 peaks) were selected. In a second step, we dis-
carded all peaks that were not present in all populations,
to focus on quantitative rather than qualitative differences
between chemical profiles; this lead to a final selection of
41 peaks. Euclidean distances between every pair of sam-
ples were calculated to produce a resemblance matrix. A
principal coordinate analysis (PCO) using this matrix was
then performed to sort out the cuticular hydrocarbon pro-
files of the colonies. We compared the colonial profiles
of our populations with a single factor PERMANOVA
[60,61] using 9999 permutations, first to detect overall
differences and then in one-by-one tests between the
populations. Statistical analyses on the chemical profiles
were carried out with the PERMANOVA+ V1.0.2 add-
on package [62] of PRIMER V6.1.12 [63]. The mean
distance between populations’ centroids was also calcu-
lated to illustrate the calculated quantitative similarity
between them (Additional file 1).

Behavioral observations
The tests consisted in the introduction of an alien
worker inside a colony, slightly removing the upper side
of the nest to obtain a small opening on one side of the
colony and to introduce the intruder directly inside it.
All colonies were tested twice, using a parasite
(M. ravouxi) and a conspecific heterocolonial intruder
(from the same site). M. ravouxi alien workers came
from parasitized colonies of T. rabaudi (N = 13). For T.
rabaudi and T. nylanderi from Anduze, a third test was
performed using a heterospecific, non-parasite intruder
(T. rabaudi for T. nylanderi and vice versa, both from
the same site and from free-living colonies). The se-
quence of introductions (parasite, heterocolonial and
heterospecific non-parasite) was randomized between
colonies to avoid any order effect. We used only local
conspecifics or heterospecifics for introductions, except
for M. ravouxi intruders, as this species could only be
found in the south of France. We did so because coevo-
lutionary processes, which could lead to pattern of spe-
cific resistance, are obviously likely to appear locally [2].
The agonistic response of the recipient colony was

assessed by recording bites and ejection of the intruder
by resident ants (see definitions below) until the alien
worker left the nest, and in the few cases this did not
happen within 30 minutes the test was terminated. Test
duration was thus variable, but lower than 30 minutes.
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Bites
We compared the agonistic response of colonies during
the tests using the bite rates (number of bites divided by
test duration).
We also performed a second analysis of our agonistic

response by dividing these rates by the chemical distance
between the intruder and the recipient colony, to test
for a specific recognition on qualitative chemical cues.
The rationale here is that a specific recognition mechan-
ism would lead to higher levels of agonistic interactions
towards the parasite than towards other intruders, even
after getting rid of their global chemical distance with
the recipient colony.
The chemical distance D was defined as the Euclidean

distance between chemical profiles [30-32]:

D x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

xi� yið Þ2
r

where x and y refer to the two colonies, xi and yi to the
relative areas of peak i for colonies x and y respectively.
When the chemical profile of a colony was not available
(for technical reasons), we used the mean chemical
profile of the corresponding population. This was the
case for 5 homospecific tests with T. nylanderi from
Fontainebleau, 11 homospecific tests with T. unifasciatus
from Fontainebleau, 14 homospecific and 7 non-parasite
heterospecific tests with T. rabaudi from Anduze. In our
second analysis, we had to discard two T. rabaudi col-
onies confronted in a test (recipient/intruder) because
we did not know their chemical profile.
Comparisons were performed using Kruskal-Wallis

and permutation tests with general scores for paired
samples [64]. We compared populations from different
species within the same site and populations from the
same species between sites. Other comparisons were
considered irrelevant, i.e. different species from different
sites. In order to use paired permutation tests between the
two (or three) behavioral tests for each population (using
the sequential Bonferroni-Holm correction procedure when
necessary [65]), the few recipient colonies that had
performed only one type of test were discarded from the
analysis (respectively 7 and 2 for T. unifasciatus from
Fontainebleau and Anduze, and 1 for T. nylanderi from
Anduze).
Ejections
Apart from bites we also observed, in some trials, recipient
ants grasping the intruder by an appendage and dragging
it outside of the nest, a behavior we referred to as “ejec-
tion”. Test outcomes could thus be of three types: the in-
truder escaped, it was ejected by residents or it could stay
in the nest for the whole observation period. To assess the
resident propensity to eject intruders, we calculated the
proportion of ejections over the tests where the intruder
did not escape.
All comparisons were done using Fisher or Fisher-

Freeman-Halton tests [66]. We used the sequential
Bonferroni-Holm correction procedure [65] when ne-
cessary, and adjusted p-values are noted P’ (they should
be compared to the standard 0.05 significance thresh-
old) [67].
All statistical tests were performed with StatXact

(Cytel Studio, version 8.0.0, 2007).

Additional files

Additional file 1: Distances between centroids. Distance between
centroids for the chemical profiles of populations of M. ravouxi, T.
nylanderi from Anduze and Fontainebleau, T. rabaudi and T. unifasciatus
from Anduze and Fontainebleau.

Additional file 2: Identified cuticular hydrocarbons of species’
chemical profiles. Mean percentages (±S.D) of the different compounds
in the chemical profiles of M. ravouxi (M. rav), T. unifasciatus from Anduze
(T. uni_And) and Fontainebleau (T. uni_Font), T. rabaudi (T. rab) and T.
nylanderi from Anduze (T. nyl_And) and Fontainebleau (T. nyl_Font).
Compounds were identified using GC-MS. Unidentified hydrocarbons are
marked with *.

Abbreviations
Myr: an stands for Myrmoxenus ravouxi from Anduze; nyl: an for Temnothorax
nylanderi from Anduze site; nyl: f for Temnothorax nylanderi from
Fontainebleau; rab: an for Temnothorax rabaudi from Anduze; uni: an for
Temnothorax unifasciatus from Anduze and uni_f for Temnothorax
unifasciatus from Fontainebleau.
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