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Comparative molecular developmental aspects
of the mammalian- and the avian lungs,
and the insectan tracheal system by
branching morphogenesis: recent
advances and future directions
John N Maina*
Abstract

Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex
process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell
interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times
and particular places in the developing organ. Coordinated expression of growth-instructing factors determines
sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which
branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops
agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating
molecular factors determine the ultimate phenotype. From the primeval time when the transformation of
unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually
conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly
employed within and across species, tissues, and stages of development. While much still remain to be elucidated
and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has
in recent times been made in understanding the mechanism of BM. By identifying and characterizing the
morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been
more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic
interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the
molecular factors which are involved in the development of the lung (and other branched organs) is a classic
example of nature’s astuteness in economically utilizing finite resources. Once purposefully formed, well-tested
and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes.
The material and time costs of developing utterly new instruments and routines with every drastic biological
change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and
therefore functions, ensuring survival and evolutionary success.
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Figure 1 The lung bud and subsequently the lung inaugurates
by evagination (out-pocketing = diverticulation) of committed
endodermal cells of the primitive foregut. Its growth and
development is regulated by various molecular morphogenetic
factors that are expressed at different times and places in the
epithelial, mesenchymal, and mesothelial compartments.
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Introduction

‘Specifically, convergence provides a way to tell
features that have important functional significance
from features that do not.’ Vogel [1].

The development of the vertebrate lung was a decisive
preparatory event for adaptation to air-breathing and
successful transition from water to land, momentous
occasions in the evolution and diversification of animal
life (e.g. [2-4]). Cost-effective acquisition of molecular
oxygen (O2) allowed accomplishment of more energetic
lifestyles like flight (e.g. [5-7]) which lead to marked
adaptive radiation and speciation (e.g. [8,9]). Motley of
conserved genes and molecular factors orchestrated
proper transformations from simple to complex body
forms by programmed organization and arrangement of
cells and tissue components (e.g. [10-18]). Physiological
processes (e.g. metabolic-, respiratory-, and ionic exchange)
occur across two-dimensional (2D) surfaces which are
increased by the three-dimensional (3D) assemblage of
organs, tissues, and cells. Branched structures are com-
mon in nature and biology in particular. In the later, they
include the conductive nervous tissue (e.g. axons and their
arborisation), vascular system, vertebrate lungs, secretory
glands, tubules of the kidney, and the insectan tracheal
system (e.g. [19-24]). Mainly formed to secrete and/or
transport materials/fluids or conduct/transfer ions and
effects like electric activity, e.g., actions potentials in ner-
vous tissue, branched systems comprise of distinctively
hierarchically arranged structural parts (segments =
domains) which interconnect in a coherent manner. The
overall morphology granted by the frequency and the
geometry of bifurcation. In tubular branched systems, de-
pending on the type of organ, endothelial- (in the vascular
system) or epithelial cells (in all the other organs) line the
internal space (cavity/lumen). The similarities amongst
the various branched biological structures underscore
existence of shared programmed regulatory mechan-
isms which involve signaling molecules, transcription
factors, and other growth instructing molecular
agents which instruct the growth and bifurcation pat-
terns (e.g. [15,16,21,23]). Identification and characterization
of the morphogenetic drivers which prompt budding
and bifurcation from pre-existent domains is pivotal to
determining the control and the regulation of the
process of branching morphogenesis (BM). The con-
trolling mechanism of BM involves dualities of morpho-
genetic factors: an agonist is regulated by an inhibitor
and vice versa (e.g. [16,21,25-29]). There is mounting evi-
dence that combinatorial action of various signaling mole-
cules, transcription factor families, and other molecular
factors is vital to cell specification, differentiation, and tis-
sue development. For example, interactions between
fibroblast growth factor (FGF) signaling and Wnt/β-cate-
nin signaling in the lung mesenchyme positively
reinforce each other (e.g. [17]), BMP-4 counteracts the
effects of FGF-10 [30]; De Langhe et al. [31,32], mesen-
chymal FGF signaling is needed for the expression of
Wnt-2a and mesenchymal Wnt/β-catenin signalling
[33,34], and mesenchymal Wnt/β-catenin signaling is
required to sustain expression of FGFR-1 and FGFR-2
and GATA-6 and Nkx2.1 operate in a synergistic way to
instruct pulmonary epithelial differentiation and develop-
ment [35]. Well-coordinated spatiotemporal expressions
and repressions of the morphogenetic factors initiate,
hone, and optimize the ultimate phenotypes (e.g. [36-38]).
For the murine lung, comprehensive gene expression pro-
filing using oligonucleotide-based microarrays showed
that� 11,000 genes are expressed throughout the develop-
mental stages of the lung [36].
The embryonic development of the vertebrate lung

inaugurates with a ventral out-pocketing (evagination)
of dedicated (committed) cells from the formative primi-
tive foregut endoderm into the splanchnic mesenchyme
(Figure 1) (e.g. [39-42]) and interactions between cells
originating from two germ layers - endoderm and meso-
derm (e.g. [42-45]). The lung buds elongate and branch
to form the trachea and the main bronchi followed by
stereotypic branching and budding which produces
the conducting airways, leading to the alveolar region of
the peripheral lung. Among others, these changes pre-
pare the lung for air-breathing in the postnatal life. The
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distinctive structural features of lungs are large surface
area, intense vascularization (which generates large
capillary blood volume), and thin blood-gas barrier
(e.g. [46,47]). Large respiratory surface area emanates from
intense internal subdivision of the lung, a phenotype fash-
ioned by different morphogenetic cues that are expressed
in form of growth factors (GFs) and cytokines, molecular
instruments which act as paracrine signals that control
cell division and differentiation (e.g. [21,39,48]).
In evolutionary terms, many developmental pathways

are conserved in the animal kingdom (e.g. [13,49-55]):
the common origin of these processes is strongly implied
in the biological past. In the developing lung bud, epi-
thelial cells of the airways and endothelial ones of the
vasculature multiply rapidly while the formative struc-
tures undergo reiterative branching, producing a highly
ordered arrangement (e.g. [45,56]). While a lot still
remains to be resolved, the signals and the manner in
which they are regulated during BM are becoming
clearer (e.g. [16,21,23,40,57]). Detailed insights into the
mechanisms of BM will not only increase our under-
standing of the development of the lung but will further
advance techniques of lung engineering and regenera-
tive medicine (e.g. [58,59]), design of artificial organs to
replace failed/failing ones (e.g. [60]), and therapeutic
interventions, especially during early stages of lung de-
velopment (e.g. [61-65]). More importantly, insight into
the process of BM of one kind of branched organ should
permit meaningful understanding of others. For an area
that is receiving intense scientific interest and scientific
accounts (publications) are appearing prodigiously, oc-
casional critical reviews of the subject matter are neces-
sary to identify what is certain, what is speculative and
therefore ambiguous, and where gaps in knowledge
exist. Heuristic collation and reconciliation of available
information should help highlight areas for further re-
search, helping avert improvident and costly duplication
of effort by investigators. Presently, much of the investi-
gative activity of the genetic- and molecular aspects of
the development of gas exchangers in particular and
branched structures in general is on the mammalian lung
(particularly on those of laboratory animals - mainly the
mouse and rat) and the tracheal system of insects (espe-
cially of Drosophila). Relatively little information exists on
the morphogenetic aspects of the development of the
avian lung and hardly any is available on the amphibian-
and reptilian ones. Holistic understanding of the mechan-
isms involved in the process of BM of the gas exchangers
will only be accomplished once these gaps are closed.
Moreover, although instructive in their own right, the
shortcomings that are inherent in in vitro studies and
those involving genetically manipulated (engineered) ani-
mals should be appreciated. A first in comparatively inte-
grating the available data, this account succinctly outlines
the process of BM and that of the development of the
mammalian- (bronchioalveolar) and avian (parabronchial)
lungs as well as that of the insectan tracheal system, the
only taxa where meaningful data are presently available.

Branching Morphogenesis (BM)
Branched structures are ubiquitous in nature. They
occur at every scale and form of development in both the
plant- (e.g. [66,67]) and the animal kingdoms (e.g. [52,67]).
The design of branched forms has constantly fascinated
biologists, mathematicians, and physicists (e.g. [67-72]). A
prototypical developmental process, BM is mechanistically
fabricated by few simple iterative genetic subroutines
through which complex well-ordered, functionally effi-
cient architecture is engineered [73]. An assemblage
described as ‘growth and branching of epithelial buds’ by
Saxena and Sariola [74] and ‘creation of branched struc-
tures’ by Davies [67], in animal tissues and organs, BM
occurs in the lung (e.g. [20,21,25,53,75-79]), glandular
organs like the mammary gland, the salivary gland, and the
pancreas (e.g. [28,80-83]), the kidney (e.g. [22,84-86]), the
tooth [87], the tracheal system of insects (e.g. [23,88,89]),
and the vasculature (e.g. [19]). In most cases, the func-
tional units (e.g. secretory or gas exchange units) display
distinctive 3D architecture (e.g. [30,79]). Organs that
form by BM provide good models for studying and
understanding application of the mode of development
in animal patterning, cell differentiation, and organ and
tissue organization (e.g. [15,45,90,91]). Branched struc-
tures form by coordinated spatiotemporal expression of
specified morphogenetic cues [25,92].
Normal lung development culminates in formation of

airways and blood vessels which branch (Figure 2), pat-
tern, and closely relate to each other (Figures 3, 4, 5):
this increases the respiratory surface area and reduces
the diffusion distance for molecular oxygen (O2) be-
tween inhaled air and capillary blood. Also, proper
geometries and sizes of the airways and the blood vessels
grant optimal (cost-effective) flows of the respiratory
fluid media, saving on energy required to transport them
through the conduits (e.g. [93]). While the iterating
process involved in BM may appear deceptively simple
to genetically program, the instructions and the mo-
lecular factors that drive it are profoundly intricate
(e.g. [20,21,23,94,95]). BM is driven by an assortment of
genes and intercellular signaling molecules that in-
clude transcriptional factors, soluble peptide growth
factors, and insoluble extracellular matrix molecules
that are expressed in the right quantities, time, place,
and sequence. This determines the points where new
branches form, the lengthening of the intervening
duct/trunk/stalk before downstream branching occurs,
and where groups of cells detach from the epithelium
of the main duct to form side branches (secondary



Figure 2 A generic diagram of branched tubular system. By specifying where signaling molecules, transcription factors, and other molecular
factors are localized or expressed, the lengths, the diameters, and the sites where branches form and the angles of bifurcation are specified.
Dashed arrows show the lengths of the constituent segments; D1-D3, axial diameters (small dashed arrows) at various points of the length of a
part; the arcs show the angles of bifurcation. Figures 3, 4, 5: Latex cast preparations of the airway (Figure 3), the venous (Figure 4), and the
arterial- (Figure 5) systems of a mature lung of the pig (Sus scrofa). Product of complex branching process, the systems match to optimize gas
exchange between air and blood. Tr, trachea. Scale bars: 1 cm. From Maina and van Gils [115].
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budding) (e.g. [16,18,21,25,39,40,79,96-98]). In com-
puter lexicon, a highly specific genomic information
flow engine initiates and regulates spatiotemporal expres-
sion and transcription of appropriate morphogenetic cues
which produce a protocol-based pulmonary architecture
by programming and reprogramming branching period-
icity and bifurcation angles. Additionally, physicochemical
and environmental cues and factors like intraluminal
hydraulic pressure (e.g. [21,99,100]), relative hypoxia
(e.g. [101]), and calcium concentration (e.g. [102,103])
play important roles in BM. ‘Cross-talk’, i.e., cell-to-cell
signaling, especially between the mesenchymal- and the
epithelial cells (e.g. [85,91]), is necessary to correctly educe
cell-specific developmental pathways that lead to proper
lung development and differentiation of various epithe-
lial cell lineages (e.g. [104-106]). In the adult human
lung, e.g., after 20–23 bifurcations, a highly ordered sys-
tem of airways with ~25,000 bronchioles (e.g. [45,107])
gives rise to ~300 to ~600 million alveoli (e.g. [108-110]):
a respiratory surface area of� 140 m2 exists [111]. More
than 40 different types of cells (pneumocytes) exist in the
lung (e.g. [109,112-114]).
Evolution causes selection pressure to conserve

functionally important coding and regulatory path-
ways (e.g. [120]). The genes that are involved in BM are
conserved across animal species (e.g. [23,25,52,67,79]). In
computational jargon, these elements are ‘hard-wired’.
The genetic instructions that lead to analogous designs
have been continued over long evolutionary time scales.
By among others Wagner [121,122], Wallace [123], and
Mojica et al. [124], such constant and ubiquitous forms,
structures, and systems have been termed ‘Bauplans’
(= ‘builder’s plans’ = ‘blue-prints’ = ‘frozen an excellent ex-
ample of such conserved construct. The transformation of
the unicellular organisms (protozoa) to multicellular
organisms (Metazoa), which occurred in the Ediacaran
era, ~500 to 700 million years ago (mya), is the original
branching morphogenetic process (e.g. [125-128]). The
genes involved in BM can be traced back to a common
origin - a set dedicated to regulating pattern formation



Figure 3 Figure 6A-C. Sites where key signaling molecular factors, transcription factors, and other molecular agents are expressed
and/or localized to regulate the development and growth of the lung. In the mesenchyme, the areas of expression are not exact.
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[129]. Much of the genomic reconfiguration occurred dur-
ing the Cambrian Explosion, ~530 million years ago, when
massive increase in animal body plans occurred and phe-
nomenal speciation happened (e.g. [9,130]). The genes
that encode for BM appear to have developed gradually:
Pavlova et al. [75], e.g., showed them to correlate with the
expression of different, but interrelating, genomic sub-
groups, signifying differences in morphogenetic mechan-
isms at the various stages in evolution of branching
tubules. In signaling biology, which entails transduction
and transcriptional controls, few canonical developmental
programs are exploited more frequently across species,
tissues, and stages of elaboration (e.g. [52]). Based on the
notion that important regulatory pathways are commonly
genetically conserved among species, comparative genomics
approach has been used to identify well-conserved control-
ling factors (e.g. [120,131]). For the development of the
lung, among others, the best known genes, molecular fac-
tors, and regulatory pathways are the Bone Morphogenetic
Proteins (BMPs), the Fibroblast Growth Factors (FGFs),
Sonic Hedgehog (Shh), Wnt genes/proteins (Wnts), Trans-
formation Growth Factors (TGFs), Retinoic Acid (RA),
Vascular Endothelial Growth Factor (VEGF), and
Extracellular Matrix (ECM) component proteins. Most of
these instruments have been shown to be involved in the
formation of the insectan tracheal system. The morpho-
genetic factors are succinctly outlined below. The sites of
localization and expression of signaling molecules, tran-
scription factors, and other morphogenetic molecular
cues, which regulate the development of the lung bud, are
shown in Figure 6 and the mechanisms by which they
achieve it are outlined in Figures 7 and 8. Table 1 sum-
marizes the areas of expression of some of the lung’s signal-
ing molecules, transcription factors, and other molecular
factors and the phenotypes specified by genetic mutations,
targeted inhibition, abrogation, blockage or under expres-
sion of certain genes and their products (proteins).

Molecular aspects of the development of the
Mammalian lung
Bone Morphogenetic Proteins (BMPs) and Transforming
Growth Factors (TGFs)
Out of the more than 20 family members, some BMPs
have been shown to be directly involved in various de-
velopmental processes (e.g. [183]). Some like BMP-4, -5,
and −7 occur in developing lung (e.g. [184]) where they



Figure 4 Ways and means by which prominent signaling molecules and transcription factors control lung development. The middle
(small) diagram shows the different parts (germ layers) of a lung bud (proximal and distal). Figure 7A: Location of signalling molecules and the
pathways by which they control growth, budding, and differentiation of the airway epithelium and surrounding mesenchyme. The shading
shows the proximal-distal extent of the lung bud epithelium. Figure 7B: Signaling programs in the distal lung bud bring about mesenchymal-
and epithelial cell proliferation as well as airway branching. Details to these processes can be obtained from the text and particularly from the
following comprehensive reviews: Metzger and Krasnow [25], Perl and Whitsett [11], Roth-Kleiner and Post [116], Cardoso and Lü [40], Lu and
Werb [53], De Langhe and Reynolds [117], Affolter et al. [77], Warburton et al. [21], [15,16,18,29,98]. Modified after Ornitz and Yin [18].
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control cell differentiation and proliferation in the epi-
thelial lung buds. BMP-2 and −4 expressions are induced
by FGF signaling [141,185]. Although the actual source
of BMP-4 is controversial (e.g. [17,142]), it regulates epi-
thelial proliferation through signaling to BMPR-1a
(ALK-3) [171,185]. A recent study by Jang et al. [143],
however, indicates that BMP-4 may only be expressed in
the lung epithelium. It (BMP-4) has been shown to be
involved in proliferation and survival of distal lung epi-
thelial cells and in specifying development of smooth
muscle cell precursors (e.g. [30,185-187]) and lung vas-
culogenesis and angiogenesis (e.g. [141,153,188,189]).
BMP-5 is expressed across the embryonic lung mesen-
chyme and BMP-7 in the lung endoderm [190]. BMP-4
is similarly expressed by the proximate mesenchymal
cells but its actual role there is unclear [77]: BMP-4 is
an antagonist of FGF-10 [30]. Its expression decreases
after the branching process has finished. This suggests
that BMP-4 has negligible effect on the branching of the
airways [141]. Null mutants of BMP-1 and −7 show no
pulmonary defects. Unlike other BMPs, BMP-1 isn’t a
member of the TGF-β Superfamily: it has a structure
unique from the other BMPs and may be involved in ac-
tivation of other BMPs [191,192].
Transforming growth factor-beta (TGF-β) family is a

group of growth factors (GFs) (cytokines) which instruct
lung development and play a pivotal role in instigation
and pathogenesis of lung diseases [193-197]. The TGF-β
family is part of a superfamily of proteins known as the
TGF-β superfamily, which includes inhibins, activin,
anti-müllerian hormone, BMP, decapentaplegic, and VG-
1 [198,199]. Three isoforms of TGF-β, namely TGF-β1,
TGF-β2, and TGF-β3, which utilize two receptors
(TGFR-β1 and −2) have been reported in the mouse
lung, with TGFR-β-2 being expressed only in the distal
airway epithelium at early gestation (E11.5) and in both
airway epithelium and mesenchyme from mid-gestation
(E14.5) to postnatal day 14 [196]. Lack of TGF-β signal-
ing causes abnormalities in BM and alveolization of the
lung [194-196,200-202] while interestingly, excessive
amounts of it causes serious hypoplasia in immature
lung and fibrosis in the adult one [153]. This may occur



Figure 5 Figure 8: Feed-forward signaling in which FGF-9
controls Wnt-2a expression and mesenchymal Wnt/β-catenin
signaling, and in which mesenchymal Wnt/β-catenin signaling
is requisite for mesenchymal FGFR expression and
mesenchymal responsiveness to FGF-9. In absence of either FGF-
9 or canonical Wnt ligands, the mesenchymal FGF-9-Wnt/β-catenin
feed-forward network breaks up, occasioning loss of mesenchymal
FGFR expression and FGF responsiveness. Wnt/β-catenin signaling
has to be preserved in order to induce or maintain FGFR expression,
FGF-9 responsiveness, and continuance of FGF-Wnt/β-catenin feed-
forward signaling. Loss of mesenchymal FGF-Wnt/β-catenin
signaling increases Noggin expression in both the subepithelial and
submesothelial mesenchyme. Lack of either pathway decreases
mesenchymal proliferation. The change in the density of the
shading of the epithelium shows the proximal-distal extent of the
lung bud. Details can be acquired from Yin et al. [33], Rajagopal
et al. [118], Yi et al. [119] De Langhe et al. [32], and Ornitz and Yin
[18]. Modified after Ornitz and Yin [18].
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from disruption of other peptide GFs which are involved
in BM [203]. Chen et al. [196] noted that TGFR-β2 med-
iates TGF-β signaling and performs different roles in the
lung epithelium and mesenchyme by differently control-
ling specific stages of lung development [196].

Fibroblast Growth Factors (FGFs)
FGFs are multifunctional proteins with a broad variety
of mitogenic, regulatory, morphological, and endocrine
effects (e.g. [144,204]). Termed ‘pluripotent GFs’ and
‘promiscuous GFs’ (e.g. [205]) due to their multiple
actions on many cell types, FGFs are involved in
proliferation and differentiation of cells and tissues
(e.g. [39,144,206]). They consist of a family of� 23 gene
encoding low molecular weight polypeptides with different
developmental roles which include further cell growth and
migration together with tissue repair, inflammation, angio-
genesis, and tumour growth (e.g. [207-210]). They are
heparin binding proteins and their interactions with cell-
surface associated heparan sulfate proteoglycans have
been shown to be required for FGF signal transduction.
First isolated in pituitary extracts by Armelin [211], FGFs
are the first angiogenetic factors to be sequenced [212].
Six members, namely FGF-1, -2, -7, -9, -10, and −18, are
expressed in the lung (e.g. [140,213-216]). FGFs bind and
signal via FGF tyrosine kinase receptors (FGFR1-5) which
are expressed in the lung (e.g. [140,217,218]). They are
mostly expressed in the pulmonary mesenchyme while
their receptors are located in the lung epithelium. The
exceptions are FGF-1 and -2 [(the acidic FGF (aFGF,
FGF-1) and the basic FGF (bFGF, FGF-2, FGF-β)]
which are expressed both in the fetal pulmonary epi-
thelium and the mesenchyme [219,220]. FGF signal-
ing, and specifically FGFR-3 and −4, are involved in
the regulation of the basement membrane formation
in the lung [36,221]. Interestingly, mutation of these
two genes occasions failure of terminal lung develop-
ment [36].
FGF-1 (aFGF) which instructs surfactant protein SP-B

mRNA production stimulates epithelial cell proliferation
which leads to formation, branching, and cell differenti-
ation in the developing lung [204]. FGF-2 is a highly
conserved GF which is generally involved in growth and
development of different organs and tissues and induc-
tion of the mesoderm (e.g. [222-224]). It is a potent
mitogen of the type-II pneumocytes [225] and has been
associated with compensatory lung growth after damage
from exposure to 95% O2 [226]. FGF-2 is, however, an
idiosyncratic GF: while it is produced in many cell types
as well as in endothelial cells and cardiac myocytes and
has been localized in cytoplasm, nucleus, and extracellu-
lar membrane (e.g. [227,228]), the actual mechanism by
which it is secreted under normal physiological condi-
tions is uncertain: it must have a consensus N-terminal
signal sequence for its secretion [229].
Albeit the fact they possess some vascular and

hematological defects, FGF-2 knockout mice are mor-
phologically normal [230]. The disseminated expression
of FGF-2 in the rat fetal lung, i.e., its localization both in
the airway epithelial cells and the extracellular mem-
brane (ECM) [219], resemble the pattern it presents in
the avian lung [231]. One of the first genes which are
upregulated in response to FGF-2 is Sprouty (Spry-2)
[232,233]. Spry-2 negatively regulates FGF signal trans-
duction by limiting or moderating the mitogen-activated
protein kinase (MAPK) pathway (e.g. [232,234]): it
(FGF-2) determines the site of production and hence the
number of branches that develop in a certain domain
[79]. FGF-1 and −7 produce different airway arrange-
ments during pulmonary growth and development [204].
While FGF-7 is expressed very early in the mesenchymal
cells of the developing lung (at sites where active
branching occurs), its receptor (FGFR-2), is expressed
only on epithelial cells [235]: it promotes mesenchymal-



Figure 6 Developing chicken lung. Figure 9: Radical transformation of mesenchymal cells into characteristically stellate angioblasts (arrows)
with conspicuous filopodia (circles) (which allow them to move) and into hemopoietic cells, i.e., red blood cells (star), at the fourth day of
embryonic lung development. Toluidine stained section. Figure 10: Angioblasts (arrows) moving to surround a red blood cell (star) on the fifth
day of embryonic lung’s development to form a blood vessel. Circles, filopodia. Toluidine stained section. Figure 11: Angioblasts (arrows)
surrounding red blood cells (stars) in the developing lung on the sixth day of embryonic life forming a blood vessel. Circles, filopodia connecting
angioblasts to form the vessel lumen. Figure 12: A blood vessel with a well-defined lumen in the lung of a seven day old embryo. Arrows,
angioblasts forming the wall; asterisks, endothelial cells; star, red blood cell; dashed cylindrical shape, orientation of the blood vessel. These
changes occur under the influence of VEGF. Figures 11 and 12 are transmission electron micrographs. Scale bars: Figure 11, 10 μm; Figure 12,
15 μm.
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epithelial cell interactions [236]. According to Tichelaar
et al. [237], during the development of the mammalian
lung, FGF-7 is a more potent morphogen than FGF-10.
In presence of other soluble factors, it (FGF-7) causes
the trachea to transdifferentiate into distal lung, a trans-
formation that FGF-10 doesn’t cause [90]: this shows
that the developments of trachea and lung are regulated
differently. In vitro, BM is disrupted by addition of ex-
ogenous FGF-7, antisense oligonucleotides, and neutral-
izing antibodies (e.g. [236,238]). In the mouse, the
epithelial receptor for FGF-7 is the FGFR-2 IIIb isoform
[144]: there is a lung phenotype when this isoform (but
not another) is deleted. At day 10.5 of gestation, in the
mouse lung, FGF-9 is abundantly expressed in the meso-
thelial cell layer and the epithelium [215]. It disperses to
the mesenchyme to activate FGFR-1 signaling [239], os-
tensibly controlling the expression of mesenchymal
genes, including FGF-10 [240]. FGF-9 performs func-
tions of reciprocal epithelial-to-mesenchymal signaling
and BM in the lung [17,215,241]. While many distal air
spaces form and alveolar epithelial cell differentiation
occur, FGF-9 null mice (FGF-9−/−) have severe lung
hypoplasia and succumb in the prenatal stage [136,241].
Mouse embryos lacking FGF-9 show mesenchymal
hypoplasia, diminished BM, and at the end of gestation,
hypoplastic lungs that cannot support life [17]. Signaling
concurrently, FGF-9 and Shh control growth and pat-
terning of the pulmonary capillary plexes by regulating
the expression of VEGF-A [242]. Together with β-cate-
nin-mediated Wnt signalling, mesenchymal FGF-9 sig-
naling acts in a feed-forward loop which sustains
mesenchymal FGF receptivity and mesenchymal Wnt/β-
catenin signaling [17]. FGF-9 largely signals to mesen-
chymal FGF receptors FGFR- 1 and −2 but also has the
unique capacity of activating epithelial FGFR signaling
[17,33,241,243].
Amongst all the FGFs expressed in the lung, only

FGF-10 has been shown to be absolutely necessary to
lung development (e.g. [184]). Through an intricate
regulatory loop, it (FGF-10) regulates expression of



Figure 7 Early development of the chicken lung (Figures 13–17) and expression of basic FGF (bFGF-2) at different stages of
development (Figures 18–21). Figures 13 and 14: Lung buds (arrows) on the third- (Figure 13) and fourth days (Figure 14) of embryonic life:
initially, the bud comprises of a rather homogenous group of cells (Figure 13) while a little later the epithelial cells (EC) and the mesenchymal
cells (MC) reorganize into separate areas (dashed lines). Toluidine blue stained preparations. Scale bars: Figure 13, 100 μm; Figure 14, 50 μm.
Figures 15–17: Matrigel cultured lung buds. On the fourth day of embryonic life (Figure 15), a secondary bronchus (dashed circle) can be seen
sprouting from a primary bronchus (PB) and at the fifth day of life (Figure 16), extrapulmonary primary bronchi (PB) can be seen continuing into
the developing lung and giving rise to secondary bronchi (SB). Tr, trachea; GIT, developing part of the gastrointestinal system. MC, mesenchymal
cells. Figure 17: Close-up of developing airways at the sixth day of embryonic life. The epithelium lining the primary bronchus (PB) and the
secondary bronchi (SB) can be seen (arrows). Figures 16 and 17 are colour adapted images of black and white microscopic originals. Scale bars:
Figure 15, 200 μm; Figure 16, 200 μm; Figure 17, 0.2 mm. Figures 18 and 19: Transverse- (Figure 18) and longitudinal (Figure 19) sections of
developing chicken lungs at the sixth day of development showing expression of basic fibroblast growth factor-2 (bFGF-2) in the mesenchymal
cells (MC) and in the epithelial cells lining the airways (arrows). SB, secondary bronchi. Scale bar: Figure 19, 100 μm. Figures 20 and 21: Expression
of bFGF-2 in the parabronchial epithelial cells (EC) (Figure 20) and in the mesenchymal cells (MC) (Figure 21) of the lung of a seven day old
embryo. bFGF is overexpressed in the apical parts of the epithelial cells (arrows) (Figure 20) and in the mesenchymal cells (Figures 20 and 21). PL,
parabronchial lumen; stars, basement membrane of epithelial cells; circle, developing blood vessel; EC, endothelial cell. Figure 13 is from Maina
[132]; Figure 13 is from Maina [133]; other figures-unpublished.
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BMP-4 at the growing (terminal) epithelial bud (e.g.
[30,184,187]) while in response, BMP-4 [141], TGF-β1
[244], and Shh [245,246] (molecular factors expressed by
the lung epithelial cells) limit FGF-10 production in the
mesenchyme [39,91,247]. Up regulation of these factors
in the very highly proliferative regions of the lung may
stop or delay growth, induce quiescence, or promote
lung bud maturation. Park et al. [235] attributed the
formation of the airways largely to FGF-7 and FGF-
10 and very little of it to FGF-2. During early lung
development (branching period), FGF-10 is expressed
in the mesenchyme at the distal tip of the new lung



Figure 8 Expression of Wnt signaling molecules in developing chicken embryo (Figure 22) and in the lung at different times of
embryonic life (Figures 23–30). Wnt-5a is expressed on the ventral aspect of the body trunk at day two of life (Figures 22). Arrow,
developing fore limb bud; asterisk, optic placode; dashed circle, prospective site of the development of the lung and the heart. Scale bar, 1 mm.
Figures 23: Diffuse expression of Wnt-5a (asterisks) in the developing lung on day three of life. Scale bar, 1 mm. Figure 24: Expression of Wnt-5a in
developing lung on day five of life. Wnt-5a is predominantly localized in the developing airways (arrows) and relatively little of it in the
mesenchyme and the air sacs (asterisks). Scale bar, 1 mm. Figures 25–28: Expression of Wnts in developing lungs at different embryonic days of
life (areas marked by dashed circles). Figures 25, 26, and 28 show lateral aspects of the lung while Figure 27 is that of a medial one. The Wnts are
poorly expressed in the developing air sacs (arrows). PB, primary bronchus; Pr, parabronchi; SB, secondary bronchi. Scale bars, 1 mm. Figure 29:
Transverse section of a developing lung at the eleventh day of life showing Wnt-6 expression in the epithelium lining the airways (arrows) and
the mesenchyme (MC). An airway like the one enclosed in the dashed square is shown enlarged in Figure 30. Figure 30: Cross-section of a
parabronchus showing the expression of Wnt-5a at the 20th day of development. Wnt-5a is highly expressed in the epithelial cells (arrows), the
mesenchymal cells (MC), and in the basement membrane of the epithelial cells (stars). Figures 22–28 are from Maina [132]; Figure 30 is from
Maina [134]; Figure 29 is from unpublished work of RG Macharia and JN Maina.
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buds (e.g. [39,235,248,249]). From there, it spreads to acti-
vate FGFR-2b in adjacent epithelium, instructing a regular
bifurcation pattern [116,187,246,250]. Appropriate spatio-
temporal expression of FGF-10 is essential to correct
organization of the lung epithelial tubules. Disruption of
FGF-10-FGFR-2b signaling as well as overexpression of a
dominant negative FGFR-2 in the mouse lung is lethal at
birth. It causes multiple organ defects, including agenesis
of the lung and termination of the trachea in a blind sac
(e.g. [144,249,251]). FGF-10 plays a vital role in
maintaining epithelial progenitor cell proliferation as well
as co-ordination of alveolar smooth muscle cell formation
and vascular development [147,187,251]. Furthermore, it
(FGF-10) induces Shh, BMP-4, and Wnt-2 signaling, all of
which are necessary for lung development (e.g. [30,146]).
In the mouse, removal of FGF-18 gene has no specific
effect on lung development [252,253]. However, FGF-18
knockout mice have decreased cell proliferation and al-
veolar spaces while overexpression causes asymmetric
expansion of the conducting airways [135,254]. FGF-18



Table 1 Expression patterns of some lung signaling molecules, transcription factors, and other molecular factors and
the phenotypes specified by their mutations, targeted inhibition, abrogation, blockage or underexpression

Signaling molecule

Gene name Expression site Phenotype References

FGF-18 Fibroblast growth factor-18 Mesenchyme Poor alveolization Usui et al. [135]

FGF-9 Fibroblast growth factor-9 Epithelium;
mesothelium
(future pleura)

Little airway branching; mesenchymal
hypoplasia

Colvin et al. [136]; Yin et al. [17]

PDGF-a Platelet derived growth
factor-a

Epithelium Compromised myoblast and elastin
formation; defective alveolization

Bostrom et al. [137]; Buch et al. [138]

Notch-2/3 Notch gene homologue-2/3 Epithelium Defective alveolization Xu et al. [139]

FGFR-3/4 Fibroblast growth factor
receptor-3/4

Epithelium;
mesenchyme

Deficient production of elastin;
lacking alveolization

Weinstein et al. [140]

BMP-4 Bone morphogenetic
protein-4

Epithelium;
Mesenchyme

poor lung development with cystic
terminal air spaces

Bellusci et al. [141]; Weaver et al. [142];
Jang et al. [143]

FGFR-2b Fibroblast growth factor
receptor-2b

Epithelium Lung agenesis; flawed branching; poor
epithelial cell differentiation

De Moerlooze et al. [144]; Shu et al. [145]

FGF-10 Fibroblast growth factor-10 Mesenchyme Lung agenesis and different abnormalities Sekine et al. [146]; De
Moerlooze et al. [144]; [147]

WNT-5a Wingless-related MMTV
integration site-5A

Mesenchyme;
epithelium

Excessive branching; tracheal deficiency Li et al. [148]

WNT-7b Wingless-related MMTV
integration site-7B

Epithelium Vascular scantiness; reduced
mesenchymal proliferation

Shu et al. [149]; Shi et al. [150];
Mucenski et al. [151]

TGF-3β Transforming growth
factor-β3

Epithelium;
mesothelium

Anomalous airway branching; poor
extent of alveolization

Kaartinen et al. [152]; Shi et al. [153]

Shh Sonic hedgehog Epithelium Poor bronchial branching; hypoplastic
lungs; tracheoesophangeal fistula

Litingtung et al. [154]; Minoo et al. [155]

HIP-1 Hedgehog interacting
protein-1

Mesenchyme Defective branching Chuang and McMahon [156];
Chuang et al. [26]

Catnnb-1 β-catenin Epithelium Impaired airway branching Mucenski et al.[151])

VEGF Vascular endothelial
growth factor

Epithelium;
mesenchyme

VEGF knockout have lethal phenotype;
anormal vasculature

Zeng et al. [157]; Miquerol et al. [158];
Kasahara et al. [159]

Nog Noggin Mesenchyme Lobation deficiencies Weaver et al. [142]

Transcription factors

FOXA-1/2 Forkhead box-A1/A2 Epithelium Hypoplastic lungs; defective branching;
poor smooth muscle formation

Wan et al. [160]

FOX-j1 Forkhead box-J1 Epithelium Deficiency of ciliated cells; left-right
asymmetry

Brody et al. [161]

FOX-F1a Forkhead box-F1a Mesenchyme Defective branching and lobation;
tracheoesophangeal fistula

Lim et al. [162]

HOX-A5 Homeobox-A5 Mesenchyme Tracheal occlusion; poor airway
branching

Aubin et al. [163]; Golpon et al. [164]

GATA-6 GATA-binding protein-6 Epithelium Diminished airway branching;
defective sacculation

Yang et al. [165]

Gli-2/3 GLI-Kruppel family
member GLI-2/3

Mesenchyme Lung agenesis Motoyama et al. [166]; van Tuyl
and Post [167]

Wnt-2/2b Wingless-related MMTV
integration site-2/2b

Mesenchyme Lung agenesis Harris-Johnson et al. [168]

NKX-2.1
(TTF-1)

Nkx homeodomain/
thyroid-specific transcription
factor

Epithelium Lung agenesis Stahlman et al. [169]; Kimura et al. [170]

HOX-a5 Homeobox-A5 Mesenchyme Poor airway branching; thickening
of the alveolar walls

Aubin et al. [163]
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Table 1 Expression patterns of some lung signaling molecules, transcription factors, and other molecular factors and
the phenotypes specified by their mutations, targeted inhibition, abrogation, blockage or underexpression (Continued)

ALK-3 Aurora-like kinase Epithelium Impairment of lung branching;
decreased cell proliferation

Sun et al. [171]

Other molecular factors

Tmem 16a Transmembrane
protein-16a

Epithelium Abnormal tracheal cartilage
development

Rock et al. [172]

RARs Retinoic receptors Epithelium;
mesenchyme;
mesothelium

Lung agenesis and hypolasia; reduction
in alveolar number; tracheoesophangeal
fistula

Mendelsohn et al. [173]; Dickman
et al. [174]; McGowan et al. [175];
Cardoso and Lü [40]

Itga-3 Integrinα-3 Epithelium Defective branching Kreidberg et al. [176];
De Arcangelis et al. [177]

Lama-5 Lamininα-5 Epithelium;
mesothelium

Defective lobation Schuger et al. [178]; Nguyen et al. [179]

Lmnb-1 Laminin-B1 Epithelium;
mesenchyme

Impaired lobation Schuger et al. [180]; Vergnes et al. [181]

PTHlh Parathyroid hormone-
like peptide

Epithelium Impaired branching Rubin et al. [182]
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performs a vital role in lung alveolar development dur-
ing late embryonic lung development but it is not dir-
ectly involved in BM [216]. FGF signaling is mostly
responsible for regulating mesenchymal proliferation
while β-catenin signaling is an obligatory permissive fac-
tor for mesenchymal FGF signaling [17].

Wnt growth factors/genes
The Wnt proteins, which are named in reference to the
Drosophila gene Wingless and its mouse homolog Inte-
grase-1, are a number of 19 family of secreted glycopro-
teins, signaling molecules which exert a broad range of
important developmental processes (e.g. [42,98,255-
257]). They produce morphogenetic effects by binding
to cell surface receptor proteins (Frizzled), triggering a
multi-step signaling cascade within the cell which allows
β-catenin to move into the nucleus where it activates
certain genes (e.g. [118,255,258-262]). By means of the
canonical pathway, Wnt-2 and Wnt-2b signaling per-
form crucial and cooperative roles in determining lung
endoderm progenitors within the anterior foregut, with-
out affecting the specification of other foregut-derived
tissues [42]: embryos lacking Wnt-2/2b expression
present complete lung agenesis and don’t express
Nkx2.1, the first marker of the lung endoderm. Also,
Wnt proteins are profoundly involved in epithelial cell
tubulogenesis in organs like lung, kidney, ear, mammary
gland, gut, and heart (e.g. [261]). They regulate location
and concentration of β-catenin, a protein which com-
plexes with T-cell factor (TCF) in the nucleus: the com-
plex (of β-catenin and TCF) activates the transcription
of over 100 genes which perform various functions
[263,264]. Wnt-β-catenin signaling is decisive to proper
BM [118,265]: it refines the morphogenetic processes
that are instructed by other upstream signaling path-
ways. Mesenchymal Wnt-β-catenin signaling controls
FGFR-1 and FGFR-2 expression and consequently deter-
mines FGF signaling [33]. Wnt-5a and -7b are both
expressed largely in the distal lung bud tip which is the
site of most cell proliferation in embryonic lung
[145,149,266,267]. Moreover, the signaling pathway reg-
ulates local specialization of the epithelium and the mes-
enchyme and the development of progenitor cell groups
(e.g. [33,117]).
During the pseudoglandular stage of lung develop-

ment, Wnt-2a and Wnt-7b are canonical Wnt ligands
that actuate mesenchymal Wnt/β-catenin signaling while
FGF-9 is the only ligand that signals to mesenchymal
FGF receptors (FGFRs) [17]. Wnt-2 is expressed in the
mesenchyme next to the tips of the airway buds
[266,268]. This suggests presence of a relationship be-
tween Wnt expression and Shh signaling (e.g. [245]).
During early lung development, Wnt-5a is expressed in
both mesenchymal- and epithelial parts of the branching
airways while in the pseudoglandular- and canalicular
stages it localizes in the epithelium of the end-bud, with
distinctive proximal-distal gradient [148]. Wnt-5a null
mice evince increased cell proliferation both in the epi-
thelium and the mesenchyme. This leads to growth of
the distal lung, increased branching, and enlargement of
the lung [148]. FGF-10, BMP-4, and Shh, which are all
profoundly involved in BM, are expressed in Wnt-5a
null mice [148]: Wnt-5a therefore acts as an inhibitory
regulator of BM. Like the FGF-9 null mice, the only
other mutant animal to display severe growth defi-
ciencies [136], Wnt-7b null lungs are noticeably hypo-
plastic but show signs of normal patterning and cell
differentiation [118]. Expressed only in the airway
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epithelium, with its highest levels occurring at the tips
of the branching end-buds [266], Wnt-7b signals to ad-
jacent cells to activate both autocrine and paracrine ca-
nonical Wnt signaling cascades. In Wnt-7b null mice,
FGF-9 expression remains normal and both Wnt-7b
and FGF-9 null mutants present reduced FGF-10 ex-
pression in the distal inter-bud region while normal ex-
pression in the proximal part of the lung bud occurs
[118,241]. Concomitantly, these cascades provoke co-
ordinated proliferation of contiguous epithelial- and
mesenchymal cells to promote the growth of the organ,
with limited changes in cell differentiation and morpho-
genetic patterning. Wnt-5a, a noncanonical Wnt, may
disrupt the function of Wnt-7b by instructing and im-
peding lung growth [31,148]. Wnt-7b expression is
regulated by TTF-1 (thyroid transcription factor-1),
GATA-6, and FOXA-2, morphogenetic factors which
are critical to proper lung development [169,266].
Mesothelial- and epithelial-derived FGF-9, mesenchy-
mal Wnt-2a, and epithelial Wnt-7b have unique func-
tions in the development of the mouse lung [17]:
mesothelial FGF-9 and mesenchymal Wnt-2a are mostly
in charge of supporting mesenchymal FGF-Wnt/β-catenin
signaling while epithelial FGF-9 mainly affects epithelial
branching.

Sonic hedgehog (Shh)
Hedgehog (Hh) is a family of three secreted proteins
termed Sonic hedgehog (Shh), Indian hedgehog (Ihh),
and Desert hedgehog (Dhh) which play important roles
in embryonic development. Amongst the Hh family,
Shh, which is one of the morphogens involved in
early lung development and is the best studied ligand
(e.g. [269]): it (Shh) is expressed in the distal epithelium
of the lung for the period of pseudoglandular stage of de-
velopment. It produces its effects by binding to its recep-
tors, patched-1 (Ptc-1) and Smoothen, transmembrane
proteins that exist in contiguous sub-epithelial mesen-
chyme (e.g. [245,246,270]). Expressed at the tips of the
end-buds, Shh negatively controls the distal mesenchyme
FGF-10 expression, blocking lung bud extension while
upregulating FGF-7 [246,247,271]. The zinc finger Gli
genes are transducers of Shh signaling [272]. During the
development of the lung, the genes are expressed in over-
lapping but well-defined areas of the mesenchyme
[26,272-275]. Gli-2(−1-) and Gli-3(−1-) double mutant mice
die by day 10.5 [166]: the lungs are hypoplastic, the right
and left lobes don’t separate, and the tracheo-
oesophangeal septum is defective, a phenotype which is
similar to that displayed by Shh(−/−) [154] or TTF-1
(Nkx2.1)(−/−) mice [155]. Mice with Gli-3 deficiency are vi-
able but the lung is underdeveloped [273]. In Gli-2 null
mutant mice, the tracheobronchial tube is not separated,
the right and left lungs are connected, and the growth of
the alveolar region is stunted [154,166,273]: the lung
forms as one undersized lobe. Gli-1 double mutant mice
have severe lung defects which are similar to those of the
Shh(−/−) mice, where the lung develops but BM is
repressed [154]. Disruption of the membrane-bound
Hedgehog interacting protein-1 (HIP-1) results in upregu-
lation of Hh signaling, causing neonatal lethality from re-
spiratory failure [156,276,277]: Hip-1 directly binds
mammalian Hh proteins and moderates their signaling.
Null mutation of Shh supresses lung epithelial branching
[154,271]. In the mouse, conditional knockout of Shh in
the lung epithelium generates fewer blood vessels and
reduces VEGF expression [269]. Experimentally induced
overexpression of Shh in the lung epithelium (using SP-
C promoter) intensifies cell proliferation in both the
mesenchyme and the epithelium while branching is not
affected: it leads to development of superfluous mesen-
chyme and dearth of alveoli [246]. While FGF-10
doesn’t effect Shh expression, excessive amounts of
FGF-7 suppress both Shh expression and signaling
[235,247]. Shh- and FGF-9 signals control mesenchymal
proliferation in specific submesothelial and subepithelial
cellular compartments [241].

Retinoic Acid
Vitamin A (retinol) brings about molecular signaling by
the binding of its active metabolite (RA) to a group of
heterodimerized TFs (transcription factors) [RA recep-
tors α, β, and γ (RARα, -β, and -γ)] and retinoic-X
receptors [α, β, and γ (RXR α, -β, and -γ)] (e.g. [278-
280]). After RA binds, the nuclear receptors are activated
and attach to their specific response sites in the promoter
region of their target genes [281]. RA effects transcription
of many genes and development and homeostasis in
various organs, including the lung (e.g. [282]). It is
expressed very early in lung development and continues
throughout the process [283-285]. RAR-β is absent in
the distal epithelium during BM but is expressed in the
epithelial cells of the proximal- and the medium-sized
airways while RAR-γ localizes mostly in the epithelium
of the distal end-buds and demonstrates only weak ex-
pression in the proximal airway epithelium of the fetal-
and adult lungs [282,286]. When RA is lacking during
early stages of lung development (e.g. [282]), formation
of oesophagotracheal septum is inhibited and the pri-
mary lung bud outgrowth doesn’t develop: it leads to
lung agenesis or serious lung hypoplasia. Interestingly,
upregulation of RA impedes BM while suppressing epi-
thelial cell differentiation [282,286]. RA acts on cell
programming and meaningfully instructs their differen-
tiation [287]. Exogenous administration (in vitro) of RA
upregulates FOXA-2 and TGFβ-3, two inhibitors of BM
[287,288]. If RA signaling is blocked by a pan-RAR an-
tagonist, expression of FGF-10, BMP-4, Shh, TTF-1, and
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GATA-6 is altered, prompting excessive airway branch-
ing [287,288]. Among the RA receptors, only signaling
from RAR-β and RAR-γ is implicated in BM [282,286-
288]. While RAR-β seems to impede branching, it is in-
controvertibly involved in formation and stabilization of
the conducting airways [282,286,288]. RA is vital in sub-
division of the lung parenchyma [116,175,289]. Lungs of
mice with obliterations of RAR-γ have less elastin and
fewer alveoli [175] while RAR-α null mutant mice also
have fewer alveoli [290]. Overexpression of dominant
negative RAR-α in the mouse, just before and during
alveolization, causes fewer but larger alveoli to form
[291]. RAR-β signaling in the early postnatal period hin-
ders alveolization [290,292]. Endogenous RA controls
TGF-β activity in the prospective area where the lung
forms, permitting local expression of FGF-10 and induc-
tion of lung buds Chen et al. [41].

Extracellular matrix (ECM) component proteins
The ECM performs various roles in regulating cell func-
tion (e.g. [85]). It separates tissues, providing mechanical
and structural support and/or offering a structure for
cells to attach and or move on. Consisting of a collagen
scaffold to which glycoproteins like tenasin, laminins,
fibronectin, and proteoglycogens attach and intermingle
with fibrinous proteins such as fibrillins and elastin, the
ECM comprises of the basement membrane and the
interstitial matrix (e.g. [293,294]). Signals transduced by
α-3β-1 integrin may be involved in stimulating branch
formation in the developing lung [176]. Matrix metallo-
proteinases perform important roles in remodeling the
ECM (e.g. [295]). Absence or inhibition of interaction
between epithelial cells with the basement membrane
occasions failure of either normal lung development or
lung injury repair [296]. Dearth of elastin decreases sub-
division of the parenchyma in the mouse lung [297].
Elastin is important in alveolarization [298]. Suggestive
of a prospective role in airway branching, tenascin-C
accumulates in areas where new bronchial branches
form [299,300]. Fibronectin expression increases to the
highest level during airway branching [301,302]: it loca-
lizes in the mesenchyme at the epithelial-mesenchymal
interface, commonly at points where airways bifurcate
[302,303]. Inhibition of fibronectin matrix accumulation
reduces BM [304]. The laminins are large multidomain
glycoproteins that include three polypeptide subunits,
namely α, β, and γ. Laminin α-1 is critical to lung BM
and bronchial smooth muscle cell formation while lam-
inin α-5 is necessary for normal lobulation and alveoliza-
tion [180,305,306].

Vascular Endothelial Growth Factor (VEGF)
Vascular development entails highly complex, well-
coordinated processes which include physicochemical
stimulators and inhibitors and various gene regulators
and signaling molecules (e.g. [307-309]). It is necessary
that during lung development, proper juxtaposition
occurs between the alveolar surface and the pulmonary
capillary endothelial system, forming the blood-gas bar-
rier. It is axiomatic that the development of the vascular
system influences the BM of the airways and alveoliza-
tion [157,310]. Among other organs, the lung has the
greatest expression of VEGF (e.g. [311]). Great progress
has been made in identifying the signaling pathways
which control endothelial cell differentiation and their
assembly into a network of cylindrical (tubular) struc-
tures with a lumen (e.g. [48,307,308,312]). Lung mes-
enchyme isn’t uniform in nature. By using histological
benchmarks and molecular markers, it has been
divided into a sub-mesothelial zone (SMZ) and a sub-
epithelial zone (SEZ) [18,241]: Wnt-2a is expressed in
the SMZ while Noggin (Nog) is expressed in the SEZ
(e.g. [33,142]). Pulmonary vasculature apparently forms
between the two mesenchymal compartments [18,241,242].
In vitro, 3-D gel preparations have shown that as many as
1,000 different genes are expressed or upregulated during
endothelial tubulogenesis (e.g. [48,56,307]). With some of
them converting to red blood cells and accumulating
haemoglobin (Figure 9), particular mesenchymal cells
change to blood cell/blood vessel forming cells (angio-
blasts), sense the environment, and move by means of
long filopodia to surround red blood cells (Figure 10).
Progressively, the cells aggregate and demarcating a
lumen [308] (Figures 11, 12). Members of the VEGF
(e.g. [313,314]) and the angiopoetin and the emprin
family (e.g. [315-317]) have been associated with the
formation of pulmonary vasculature. Transformation,
proliferation, and migration of angioblasts is regulated
by the local VEGF-A levels and activation of VEGFR-2
[308].
VEGF is a dimeric, heparin-binding glycoprotein. It is

an endothelial cell-specific mitogen which initiates cell
proliferation and chemotaxis (e.g. [319-322]). By differ-
ential mRNA splicing, the VEGF gene generates at least
five protein isoforms (VEGF-122, -145, -164, -188, and −206)
which have different affinities for heparan sulfate as well
as for the receptors [VEGFR-1, FLT-1 (fetal liver tyrosin-
ase-1), VEGF-2, FLK-1 (fetal liver kinase-1/KDR)], and
neuropilin-1 [323-325]. In different organs, angiogenetic
response to VEGF varies. This is dependent on the genetic
composition of the animal [326]. VEGF-122 doesn’t bind to
heparan sulfate and is freely diffusible; VEGF-188 is
heparin-binding and is mostly associated with the cell sur-
face and the ECM, while; VEGF-164 has transitional prop-
erties (e.g. [327,328]). Presence of various VEGF ligands
and receptors shows specific and redundant regulatory
pathways of vascular development (e.g. [329,330]). Mice
with an inactivated FLK-1 [313] and -II receptors [326] or



Figure 9 Figure 31–33: Matrigel cultured preparations of
developing chicken lungs showing effect of FGF-10 soaked in
beads (arrows) on the developing secondary bronchi (asterisks)
between days 6 (Figures 31, 32) and 10 (Figure 33) of
embryonic life: Figure 32 is an enlarged view of the area
enclosed in Figure 31. The secondary bronchi (asterisks) are seen
growing towards and surrounding the bead. PB, primary bronchus;
Pr, parabronchi. Scale bars: Figure 31, 200 μm; Figure 32, 100 μm;
Figure 33, 100 μm. From unpublished work done by JN Maina and B
Kramer.
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VEGF gene die in utero from lack of endothelial cells
while knockout ones lack yolk-sac blood-islands and
organized blood vessels [321,326]. Inactivation of gene
encoding for VEGFR-1 leads to increased number of
endothelial cells which block the vessel lumen while
that of VEGFR-3 produces abnormally organized blood
vessels and causes cardiac failure [326]. Precise control
through VEGFR-3 signaling is needed to correct vascu-
loangiogenesis and hematopoiesis [331]. Gene inactiva-
tion experiments show that VEGFR-1 utilizes a negative
regulatory effect on VEGFR-2, at least during embryo-
genesis [326]. Lethality with deletion of a single allele
shows the importance of VEGF in embryonic vascular
growth [332].
During the development of the lung, airway epithelial

cells express VEGF and direct it into the subendothelial
matrix while the pulmonary endothelial cells synthesize
correct receptors (e.g. [333]). VEGF promotes prolifera-
tion, cell mediator migration, angioblast differentiation
(in the direction of endothelial cell- lineage), and
increases vascular permeability [313,334-336]. The func-
tions are mediated by binding of high-affinity cell recep-
tors and matrix binding sites (e.g. [337,338]). VEGF is
vital in de novo development of new blood vessels (vas-
culogenesis) or growth from pre-existing vessels (angio-
genesis) (e.g. [189,309,322,323,331,339]). Angiogenesis
involves pruning, vessel enlargement, intussusception
(vessel splitting), branch remodeling, and extension to
form trunks and complex network (e.g. [340,341]). Expres-
sion of VEGF gene at the mRNA level is highest in the air-
way epithelial cells of the lung [342,343], especially in the
alveolar type-II epithelial cells [344,345]. Vasculo-
epithelial interactions are critical to proper patterning of
the airway- and vascular systems (e.g. [346,347]). During
the development of the lung, VEGF-A is expressed by the
epithelial cells while its primary receptor, VEGFR-2 or
FLK-1, is localized in endothelial cells (e.g. [348]). VEGFR-
1 and VEGFR-2 expression increases during lung develop-
ment and accumulates in the pulmonary endothelial cells
that lie close to the developing epithelium [116]. HGF
(Hepatocyte Growth Factor), a putative endothelial
derived factor, mediates reciprocal signaling from the vas-
culature to the respiratory epithelium [349].
Inhibition of VEGF signaling influences postnatal alveo-

lization [116]. Disruption of the VEGF gene produces mu-
tant embryos with abnormal pulmonary blood vessel
development [320,332]. Knockouts for VEGF-A and
its two recognized high affinity tyrosine kinase recep-
tors [VEGFR-1 (FLT-1) and VEGFR-2 (KDR/FLK-1)],
which are expressed in the primitive vascular endothe-
lium [335,350], die before the lung’s blood capillary
plexus forms. Mice overexpressing VEGF in distal epi-
thelial cells present abnormal BM, paucity of acinar
buds, impairment of type-I and -II cells, loose mesen-
chymal mass, and premature development of blood ves-
sels [57,157]. Overexpression of VEGF in the respiratory
epithelium leads to excessive vasculogenesis [157,351].
VEGF-188 (which is formed in the pulmonary



Figure 10 Effect of exposure of excessive FGF-10 on matrigel cultured developing chicken lung. Figure 34 shows normal (control)
development of the primary bronchus (PB), the secondary bronchi (SB), and the epithelium lining the airways at day four of embryonic
development (arrows). MC, mesenchymal cells. Figures 35 and 36: When exposed to high concentration of exogenous FGF-10 (dissolved in
matrigel) at day the fourth day of embryonic life, the primary bronchi (PB) and the secondary bronchi (SB) are aberrantly distended (asterisks) and
the epithelium lining the airways is unspecified. Figure 37: A toluidine blue-stained section of a matrigel cultured lung at the fourth day of
development showing an FGF-10 soaked bead (Bd) which was placed close to the developing lung (the matrigel also had high concentration of
dissolved exogenous FGF-10). The secondary bronchi (SB) were bloated (asterisks) but the epithelium which lines the airways (arrows) was well-
defined, particularly that associated with the primary bronchus (PB). MC, mesenchymal cells; asterisks, abnormally swollen distal parts of the
secondary bronchi; dashed circle, mesenchymal cell proliferation in the area between the FGF-10 bead and the airway epithelium. Scale bars:
100 μm. From unpublished work by JN Maina and B Kramer.
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epithelium, especially by the type-II cells) [352] may
mediate the convergence and stabilization of the highly
organized blood vessel networks that come to be located
in the interalveolar wall. VEGF plays different important
roles in the repair and maintenance of blood vessels in
different pathologies of the mature lung (e.g. [311]).
VEGF-A signaling performs an essential part in facilitat-
ing communication between the epithelial, mesenchy-
mal, and endothelial parts of the early mouse embryonic
lung [310]. It regulates the expression of BMP-4,
mSpry-2, mSpry-4, and Sp-c as well as proliferation of
both epithelial and mesenchymal compartments.
Lazarus et al. [353] showed that blood vessels are
requisite for stereotypic 3D epithelial branching and
patterning in the lung. They conjectured that inhibition
of normal branching, which ensued from vascular loss
caused experimentally by ablative methods, could be
partly explained by interruption of spatial expression
pattern of the branching mediator FGF-10 and by mis-
regulated expression of the branching regulators Shh
and Sprouty-2. Del Moral et al. [310] observed that
VEGF pathway is involved in driving epithelial to
endothelial communication in embryonic mouse lung
morphogenesis: VEGF-164 stimulates mouse embryonic
BM in culture and increases the intensity of the index of
proliferation in both epithelium and mesenchyme.
Transcription Factors (TFs) and other Growth Factors
(GFs)
The platelet-derived growth factor (PDGF) is a potent
stimulator of cell motility and growth, especially that of
connective tissue cells such as fibroblasts and smooth
muscle cells (e.g. [138,354,355]). PDGF and its receptor
(PDGFR) are expressed in the lung from the onset of the
pseudoglandular stage of development [219,356]. Lack of
PDGF introduces pulmonary phenotypes that lack alveo-
lar smooth muscle cells and diminished deposition of
elastin fibers [137]: PDGF-A and PDGF-Rα are requisite
for alveolization [357]. PDGF-Rα positive cells are
largely found in the mesenchyme next to the bronchial
end-buds [358]. While no distinct lung branching
defects were described in PDGF-Rα null mice by Bos-
trom et al. [137], secondary subdivision didn’t occur in



Figure 11 Figures 38–41: Scanning electron microscope views of the branching pattern of the insectan trachea system, from the
grasshopper, Chrotogonus senegalensis. Figures 38–40: In some areas, especially close to the spiracles, many branches originate from a parent
segment (dashed circles) (Figures 38, 39) while in other cases, single branches (continuous circles) derive from an original part. TT, transverse
trachea; LT, longitudinal trachea; MT, Malphigian tubules. Figure 41: Terminal trachea (Tr) giving rise to many terminal tracheoles (stars) which
enter the flight muscle (FM). Dashed arch, shows the expansive part of the flight muscle which is supplied with air by a single terminal trachea.
Scale bars: Figure 38, 1.5 mm; Figure 39, 1 mm; Figure 40, 0.5 mm; Figure 41, 0.5 mm. From Maina [318].
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PDGF-A null ones: they exhibited an emphysematous
phenotype [357].
FOX [Foxhead Box (Fox)] TFs, also called hepatocyte

nuclear factor-3β (HNF-3β), are expressed in the lung
[359-362]: they are known to play an important role dur-
ing lung morphogenesis. FOXA-1 and −2 are co-
expressed in the developing lung epithelium while
FOXA-1 is correspondingly expressed in the mesen-
chyme [363]. Silencing FOXA-1 and −2 disrupts BM in
the mouse lung, producing a hypoplastic lung with se-
vere defects in epithelial- and smooth muscle cell differ-
entiation [160]. Overexpression of FOXA-2 impairs
airway branching, epithelial cell differentiation, and
decreases production of surfactant proteins, SP-A, SP-B,
and SP-C [364]. Lungs of transgenic mice overexpressing
FOXA-2 also display reduced vasculogenesis, possibly
from decreased VEGF production by epithelial cells
[364].
The GATA family consists of a group of zinc finger

domain transcription factors which recognize DNA
motif (AT)GATA(A/G) to regulate target gene expres-
sion (e.g. [365-367]): they play important roles in regu-
lating cell differentiation during vertebrate development.
In the developing lung, GATA-5 and −6 transcription
factors are expressed independently [363]: GATA-6
expression is restricted to the respiratory epithelial cells
of the developing lung [166] while that of GATA-5
occurs in the smooth muscle cells of the large airways
[366]. Furthermore, corresponding to that of SP-A
mRNA [165,166,368,369], among the GATA family of
zinc finger domain TFs, GATA-6 is expressed before
GATA-5. GATA-6 has been shown to regulate specifica-
tion, differentiation, and maturation of the pulmonary
epithelium, branching morphogenesis, and late epithelial
cell differentiation [165,252,368,370,371]. Type-II epithe-
lial cells isolated from adult mice and immortalized
MLE-15 cells express TTF-1, GATA-6, and various sur-
factant protein mRNAs [360]. In vivo, GATA-6 and
Nkx2.1 act in synergistic manner, directing pulmonary
epithelial differentiation and development [35]. Inhib-
ition of GATA-6 at E6.0 impeded alveolar maturation
and also reduced expression of surfactant proteins which
are vital to normal pulmonary function. GATA-6 may
play a role in lung development essentially because it
regulates expression of TTF-1, which is crucial to lung
formation [360,372]. During postnatal alveolization,
GATA-6 is not expressed in the developing lung [367].
GATA-6 null mice succumb shortly after implantation, i.
e., ~5.5 days after conception [373] and chimeric GATA-
6 null ones display a pulmonary phenotype with reduced



Figure 12 Figures 42–45: Scanning electron microscope views of the branching pattern and anastomoses of the airways in the mature
lung of the domestic fowl, Gallus gallus variant domesticus. Figure 42: Medial view of latex cast of the lung showing the different sizes,
orientations and anastomoses of the tertiary bronchi (parabronchi). Dashed square, paleopulmonic parabronchi which are long and lie parallel to
each other; dashed circles, neopulmonic parabronchi which are short and anastomose profusely; PB, primary bronchus; SB secondary bronchi.
Figure 43: Close-up of a stack of cast of paleopulmonic parabronchi (Pr) showing areas which they anastomose (arrows). Figure 44: Close-up of
cast of a parabronchus showing atria (At) which give rise to infundibula (If) which anastomose (arrows). AC, air capillaries; dashed lines, interatrial
septa. Figure 45: Close-up of cast of air capillaries (AC), the terminal gas exchange units, which profusely anastomose (arrows). Scale bars: Figure
42, 1 cm; Figure 43, 1 mm; Figure 44, 0.5 mm; Figure 45, 8 μm.

Maina Frontiers in Zoology 2012, 9:16 Page 18 of 31
http://www.frontiersinzoology.com/content/9/1/16
airway branching [370]. GATA-6 overexpression impairs
alveolization [367].
Numbered 1–4, the Notch family consists of four pro-

teins which interact with five ligands (Jagged-1 and −2,
and Delta-1, 3, -4) which are expressed on the surface of
a neighbouring cell [374]. The greatly conserved Notch/
Notch-ligand signaling pathway significantly regulates
the development of the lung [48,375].
TTF-1, a member of the Nkx-2 family, is involved in

lung development [372,376,377]. TTF-1 promoter activity
is directed by combinatorial or cooperative actions of
HNF-3 [hepatocyte nuclear factor-3; also known as FOXA
(forkhead box A)], Sp (specificity protein)-1, Sp-3, GATA-
6, and HOXB-3 (homeobox B-3) TFs [372]. At first
expressed in the epithelial cells of dividing lungs, with ad-
vancing gestation, TTF-1 expression is considerably
reduced and restricted to the type-II cells [169]. In the
lung, TTF-1 controls the expression of surfactant proteins
that are required for lung stability and lung host defence
[372]. Lungs of transgenic mice with increased TTF-1 ex-
pression display modest alveolization and type-II cell
hyperplasia [378]. Indicating a high degree of conserva-
tion, the amino acid sequences of TTF-1 from human, rat,
mouse, and other species are very similar [372]. TTF-1
null mice exhibit severe deficiencies of the lung’s BM
[155,170]: the bronchial tree is undeveloped while the dis-
tal parenchyma is lacking. TTF-1 expression can be acti-
vated by other TFs such as FOXA-2 (e.g. [378]).
A number of distinct HOX (homeodomain) TFs are

expressed in the developing lung as the mouse embryo
gets the end of gestation (e.g. [163,164,379,380]). The
HOXB-3 and −4 genes are expressed in the mesenchyme
of the trachea, bronchi, and distal lung while HOXA-2
and HOXB-5 are confined to the distal lung mesen-
chyme, specifying their possible role(s) in BM. The
HOXA-5 null mice present defective tracheal structure
and defective BM, diminished surfactant production,
and thickened alveolar walls [163]. GATA-5 and −6 TFs
exhibit non-overlapping spatial expression in the devel-
oping lung [365]: GATA-6 expression is restricted to the
bronchiolar epithelial cells while GATA-5 is expressed in
the smooth muscle cells of the large airways [366].
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In humans, Homeobox protein Six1 is a protein which
is encoded by the Six-1gene (e.g. [381]). It is a member
of the six homeodomain family of TFs [382]. Six-1(−1-)

lungs are particularly hypoplastic with considerably
reduced epithelial branching and augmented mesenchy-
mal cell density [383]: expressed at the distal epithelial
tips of the branching airways and also in the proximate
distal mesenchyme, Six-1 coordinates Shh-FGF-10 sig-
naling in embryonic lung to ensure correct levels of pro-
liferation and differentiation of epithelial, mesenchymal,
and endothelial cells.

Summary of molecular regulatory processes in
lung development
FGF-10: Signals through FGFR-2b. Through instructing
Sp-C expression and downregulating expression of
BMP-4, FGF-10 regulates differentiation of epithelial
cells. Regulatory molecules like other FGFs, Shhs, β-
catenin (Catnb), and TGF-βs cross-talk with FGF-10-
FGFR-2b to tweak lung development: positive regulators
of FGF-10 include FOXf-1, Tbx-4, and Tbx-5. Shh inhi-
bits FGF-10 expression but via Gli-3 also controls FOXf-
1 availability (Figure 7). By upregulating BMP-4, FGF-10
may influence parabronchial smooth muscle cell devel-
opment. FGF-7: Expressed in the mesenchyme during
late stages of lung development and its receptor (FGFR-
2) only in the epithelium. Lungs of FGF-7−/− mutant
mice are normal. This suggests its redundancy in lung
development. FGF-7 activation of FGFR-2b has been
shown to regulate interferon-mediated gene expression
in adult airway epithelial cell cultures. FGF-9: Signals
through FGFR-1 and −2. Signaling from the epithelium
to the subepithelial mesenchyme, FGF-9 sustains Shh
signaling. In a feed-forward loop which maintains mes-
enchymal FGF sensitivity and mesenchymal Wnt/β-cate-
nin signaling, mesenchymal FGF-9 signaling interacts
with β-catenin mediated Wnt-signaling (Figure 8). FGF-
9 (and probably Wnt-7) are two known ligands that can
specifically signal from mesothelial (FGF-9) and epithe-
lial cells (FGF-9 and Wnt-7b) to lung mesenchymal
FGFRs to control lung development. Regulating mesen-
chymal proliferation and Wnt-2a expression, mesothelial
FGF-9 signals mesenchymal FGFR-1c and FGFR-2c
while epithelial FGF-9 predominantly instructs epithelial
branching. Overexpression of FGF-9 promptly stops
branching morphogenesis (BM). In the submesothelial
region, i.e., distal to the source of Shh, FGF-9 induces
FGF-10 expression which may promote lengthening of
the airways. FGFR-2c: Wnt/ β-catenin signaling is
requisite to activate and sustain expression of FGFR-2c.
Sprouty family of genes is one of the key inducible nega-
tive regulators of FGFR-2c: FGFR-2b signaling induces
expression of Spry-2, a RTK modulator which negatively
controls FGF signaling, i.e., it inhibits morphogenesis.
The positive feedback loop between FGFR-1, FGFR-2,
Wnt-2a, and β-catenin (in the mesenchymal cell com-
partment) countenances input from FGF- and Wnt sig-
naling systems to modulate the output of the whole
system, thus coordinating mesenchymal- and epithelial
growths. TGFβ: Controls lung development through two
receptors, TGFRβ-1 and -II, which work in series. TGFβ
ligands bind to their associated receptors on the cell sur-
face and activate downstream Smad proteins which
translocate into the nucleus and modulate target gene
expression. β-integrin and thrombospondin are involved
in regulating release of TGFβ mature peptide. BMP:
Bind to heteromeric complexes of BMP serine/threonine
kinase types-1 and -II receptors to activate intracellular
signaling pathway. BMP-4 signals to BMPR-1A (ALK 3).
Mesenchymal Pod-1 (Tcf-21) and epithelial Wnt signal-
ing regulate BMP-4 which is a well-known target for
FGF-10. BMP-4 is believed to control (i.e., to be an an-
tagonist) of FGF-mediated lung bud growth. It probably
inhibits distal lung budding through autocrine signaling
from the epithelium and can also promote budding in a
paracrine manner through unclear mesenchymal signal-
ing. Expression of BMP-4 is controlled by TTF-1. Shh:
Binds to patched (Ptc), a transmembrane protein, and
releases its inhibitory effect on downstream smoothened
(Smo), a G-protein coupled transmembrane bridging re-
ceptor, leading to activation of cubitus interruptus (Ci).
Shh induces Gli gene (Gli-1 and −3) expression which
encode transcription factors (TFs) which work down-
stream of Shh, suppressing FGF-10 expression (Figure 7).
Mesenchymal Ptc, Gli-2, and Gli-3 are downregulated in
Shh knockdown lung. By directing Hip expression, Shh
inhibits FGF-10 expression. Gli: Gli-1, -2, and −3, the
three vertebrate Ci gene orthologues, are zinc-finger
transcription effectors of the Shh signaling pathway.
GATA: GATA-6 binds to and activates transcription of
TTF-1 (Nkx2.1) gene. It also activates expression of dif-
ferent genes involved in respiratory epithelial cell differ-
entiation, including SP-A and SP-C. Hip-1: Binds to
hedgehog (HH) proteins, moderating HH signaling.
Conforming to the expression domains of Ptc-1, Hip-1
is transcriptionally activated in response to HH signal-
ing. Hip-1 and Ptch-1 have redundant roles of instruct-
ing airway branching. Wnt: Wnt signals are transduced
through seven transmembrane-type Wnt receptors
encoded by frizzled (Fzd) genes to activate the canonical
β-catenin-TCF-, the JNK- or the intracellular Ca2+-re-
leasing noncanonical pathways. Wnt-2a and Wnt-7b are
the canonical Wnt-ligands that activate mesenchymal
Wnt/β-catenin signaling. Mesenchymal FGF signaling is
required for expression of Wnt-2a and for mesenchymal
Wnt/β-catenin signaling which is vital to sustaining the
expression of FGFR-1 and FGFR-2. Wnt-7b- and FGF-9
null mutants exhibit diminished FGF-10 expression.
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Wnt-5a may antagonize Wnt-7b function of inhibiting
lung growth (Figure 7). Receptor internalization-
dependent and -independent mechanisms are regulated
by Wnt-5a though distinctive pathways. TTF-1, GATA-
6, and FOXA-2 TFs, which are critical to lung morpho-
genesis, regulate Wnt-7b expression (Figure 7). TGF: A
tyrosine kinase receptor which transfers epidermal
growth factor (EGF), TGF signals into the cell. Through
EGFR, EGFs positively modulate early lung BM and
cytodifferentiation. VEGF: VEGF-A, -B, -C, -D, and pla-
cental growth factor (PGF) are the VEGF family mem-
bers. They signal through the cognate receptors - Fetal
Liver Kinase-1 [Flk-1/KDR (VEGFR-2), Fetal Liver
Tyrosinase-1 [Flt-1 (VEGFR-1)], and Flt-4 (VEGFR-3).
Flk-1 positively regulates the VEGF-A signals while Flt-1
negatively regulates the signals. Binding of VEGF-C to
VEGFR-3 controls VEGFR-2 signaling. Spatiotemporal
expression of Flk-1 and Flt-1 regulates the vascular
endothelial cell proliferation and differentiation, indu-
cing vasculogenesis and angiogenesis. VEGF signaling
through VEGFR-C occurs synergistically with VEGF-A.
VEGF-A induces upregulation of BMP-4 and Sp-C ex-
pression. Transcription of VEGF is regulated by
hypoxia-inducible TF-1 (HIF-1α) and -2α. RA: Its signals
are mediated by its nuclear receptors of the steroid hor-
mone receptor superfamily namely retinoic acid receptors
(RARs) which include -α, -β, -γ, and δ (i.e., RARα, -β, γ,
and δ) and retinoic X receptors α, -β, and -γ (i.e., RXRα,
-β, and -γ) which translocate to the nucleus, where they
effect gene transcription in target cells. Airway bifur-
cation is only influenced by the RARα and the RARγ
receptors. Together with Tbx genes (in chicks), RA
impedes expression and alters distribution of FGF-10
and BMP-4, which must be downregulated in order for
BM to happen. Exogenous administration of RA upre-
gulates FOXA-2 and TGFβ-3, two inhibitors of BM.
Details are given in the text and can be found mostly in
the following detailed reviews: Metzger and Krasnow
[25], Perl and Whitsett [11], Roth-Kleiner and Post
[116], Cardoso and Lü [40], Lu and Werb [53], De
Langhe and Reynolds [117], Affolter et al. [77], Warbur-
ton et al. [21], [15,16,18,29,98].

Molecular aspects of the development of the
Avian Lung (Al)
Birds evolved from reptilian stock following mammals
(e.g. [8]). Their respiratory system, the parabronchial lung
and the air sac system, is remarkably different from the bro-
chioalveolar one of mammals (e.g. [107,132,134,384,385]).
Among the air-breathing vertebrates, structurally, the avian
lung is purportedly the most complex (e.g. [134,386]) and
functionally efficient (e.g. [387-390]) gas exchanger. While
the structure of the avian lung has been studied for a long
time, e.g., since Coitier [391], compared to the mammalian
lung, the genetic and the molecular aspects of its devel-
opment have been less well-studied. Some of the studies
are those by Goldin and Opperman [392] who examined
stimulation of DNA synthesis in embryonic chick lung
and that of the trachea by the epidermal growth factor
(EGF); Chen et al. [393] examined expression and distri-
bution of cell-to-cell adhesion molecules (fibronectin
and laminin) on the embryonic chick lung cells; using
lectin probes and cationic dyes, Gallanger [394] studied
the process of BM; Muraoka et al. [395] examined ex-
pression of nuclear factor-kappa-β on epithelial growth
and branching of the airways in embryonic chick lung;
using tissue recombination experiments, Sakiyama et al.
[396] studied the effect of the Tbx-4-FGF-10 system on
the separation of the lung bud from the oesophagus and
showed that the formation of the airways and the air
sacs was caused by region-specific mesenchymal prop-
erties and HOXb genes which were expressed in the
proximity of the ventral-distal tips of the lung; Stabellini
et al. [397] evaluated the roles of polyamines and TGF-
β1 on the branching of the airways; Sakiyama et al.
[398] found region-specific expression of HOXB-5 to 9
genes, BMP-2, BMP-4, Wnt-5a, and Wnt-11 in the devel-
oping respiratory tract of the avian lung; Maina
[133,399,400,441] microscopically studied the develop-
ment of the chicken lung (Figures 13–17) and Maina
et al. [231] (Figures 18–21) showed that FGF-2 is
expressed and remains upregulated in the epithelial- and
mesenchymal cells from very early- to late stages of lung
development. In an unpublished study (RG Macharia and
JN Maina), it has been observed that Wnt proteins are
expressed in the embryo (Figure 22) and at different times
and parts of the developing chicken lung (Figures 23–30):
together with other morphogenetic factors, the Wnts ap-
pear to contribute to the development of the intricate
airway- and vascular systems of the avian lung; Miura
et al. [401] observed that the development of the air sacs
(‘cysts’ as they called them) occurred because of differ-
ences in the diffusion of FGF-10 between the dorsal- and
the ventral parts of the lung: they attributed the higher
dispersal coefficient of the morphogen in the ventral re-
gion to relatively loose tissue/cell arrangement in the
mesenchyme and the lower one in the dorsal region to
greater expression of heparan sulphate proteoglycan
(HSPG) which locks in FGF-10: this observation supports
the assertion made by, e.g., Kutejova et al. [92] that during
lung development, signaling gradient regulates differential
gene expression in a concentration-dependent manner;
Moura et al. [29] showed that in the embryonic chick
lung, expression of FGF-10, FGFR-1 to −4, and Spry-1
was similar to that in the mammalian lung and FGFR in-
hibition (with FGF receptor agonist SU5402) caused im-
pairment of secondary bronchi (SB) and abnormal lung
growth with swollen SB: by in vitro tissue culture study
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(JN Maina and B Kramer, unpublished observations), it
was noted that while FGF-10 influences lung develop-
ment (Figures 31–33), exposure to excessive exogen-
ous level of FGF-10 (dissolved in matrigel and/or
soaked in beads) gives similar phenotype, i.e., abnor-
mal (cystic) SB, at expense of the mesenchymal space
(Figures 34–37).

Molecular aspects of development of the insectan
tracheal system
Best formed in insects, tracheal respiration has evolved
in various animal taxa which include the Onychophora
(Peripatus), Solifugae, Phalangidae, some Acarina, Myr-
iapoda, and Chilopoda. The bodies of the tracheates are
suffused by air-filled tubes, the trachea. The insectan tra-
cheal system is structurally and functionally remarkable
both for its structural design (e.g. [318,402]) and func-
tional efficiency (e.g. [403]). The circulatory- and the re-
spiratory (tracheal) systems are totally disengaged
[404,405]: the former plays no meaningful role in gas ex-
change. Entering through the spiracular openings, oxy-
gen diffuses from the atmosphere to reach the target
tissues and cells (e.g. [318,402,406]). The tracheal system
in Drosophila larvae has afforded a suitable and conveni-
ent model for studying the molecular aspects of the de-
velopment of branched structures [24]. The ‘external
factors’ which drive the development of the tracheal sys-
tem includes the metabolic levels and degrees of hypoxia
in the different parts of the body (e.g. [403,407]). Genetic
screening of Drosophila larvae (e.g. [408-410]) showed
that in excess of 200 patterning and morphogenesis
genes are involved in the formation of the tracheal sys-
tem [23]. Some of the genes are involved in the early
stages of the development of the tracheal network (pri-
mary formation) while others come into effect late to
initiate secondary tracheal development. By means of
distinct ectodermal placodes (consisting of ~80 cells
each) which form on the lateral aspects of the left- and
right sides of the embryo, in D. melanogaster, trachea
start to form at mid-embryogenesis [25,89,408,409,411].
The placodes express the gene (transcription factor) Tra-
chealess [406,411,412] which as per the name, without
it, no trachea form. The gene codes for Helix-Loop-
Helix-Period Arnt Single-Minded (bHLH-PAS) TF
which sequentially regulates transcription of down-
stream genes that mediate tracheal development
[406,411,413]. Each of the placodes invaginates (in-
pockets) into the body and then gradually penetrates
organs and tissues [24,412,414,415]. The tracheal system
develops by BM (e.g. [23,24,89,409,410,416-428]) where
the first two branching levels (primary- and secondary
trachea) display a stereotypical morphology (Figures 38–
40) while the smaller terminal branches (tracheoles), which
are very thin extensions, branch profusely (Figure 41), in
many tissues possibly contacting practically every single
cell in the body.
The repeating pattern of the primary- and the secondary

tracheal branches (e.g. [318,402]) shows that an exacting
morphogenetic program is controls their development
[21,23,25,418]. By means of transcriptional regulation
of ‘Trachealess’, all tracheal cells express a Drosophila
ortholog of the mammalian fibroblast growth factor
receptor (FGFR) ‘Breathless (Btl)’ (e.g. [417,429-432]).
External to the trachea, in the target tissues, the ligand for
this receptor, Branchless (Bnl) (Drosophila ortholog of
FGF) acts as a chemoattractant of the migrating cells (e.g.
[89,418,431]): budding tracheal branches that express Btl
migrate towards masses of cells expressing the ligand Bnl.
When tracheal cells have reached Bnl-positive cluster of
cells, Bnl expression turns-off in that cluster and is in-
stantaneously turned-on a short distance in the path of
the advancing branch [88,89]. Quantitatively spatially
regulated Btl activity directs tracheal cell migration [431].
High concentration of Bnl provokes expression of pointed
(pnt) (a transcription factor) and Sprouty (antagonist of
Btl) at the tip of the branch [433]: pointed causes the tip
of the tracheal branch to split (forming secondary
branches) and Sprouty restricts branching to the tip by
inhibiting branching further along the tracheal branch.
Expression of Bnl is regulated by the prevailing tissue O2-
levels during early larval stages of development [434].
When FGF signaling is extremely upregulated in the entire
tracheal tree (by overexpression of a constitutively active
form of Btl), many ectopic terminal tracheal branches de-
velop [418]. In Drosophila, DWnt-2 gene is involved in
tracheal development while wingless (Wg) influences
both the developing epidermis and the trachea [51].
DWnt-2 is expressed near the tracheal cells in a pattern
different from the Wg one but is also transduced through
the canonical Wnt pathway [51]: when the two genes
(DWnt-2 and Wg) are deleted, the phenotype is identical
or very similar to one observed when the Wnt-pathway is
shut down. Drosophila Frizzled-2 (Dfz-2) has been identi-
fied as a Wg receptor [435]. In Drosophila, tracheas
don’t start functioning until after fluid in them is cleared
at embryonic stage 17 [436].

Concluding remarks
Insects evolved ~350 million years ago (mya) (e.g. [437]),
mammals ~200 mya [8], and birds ~160 mya (e.g. [438]).
While their respiratory systems form essentially by
branching morphogenesis, a process mechanistically
driven by broadly highly conserved genes and molecular
factors, in certain important aspects, structural and
functional differences exist in the respective gas
exchangers, namely the tracheal system, and the bronch-
ioalveolar-, and the parabronchial lungs. For example, in
contrast to the dichotomous pattern of branching of
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particularly the airways in the mammalian lung (e.g.
[93,108,115,439]) (Figures 2, 3, 4, 5), in insects, depend-
ing on the part of the tracheal system, many as well as
single branches stem from original segments (Figures
38–41) and it is even arguable whether the tracheoles,
the terminal air conduits (Figure 41), anastomose (e.g.
[318,402]): in the avian lung, three morphologically dis-
tinctive tiers of airways, namely the primary-, the
secondary- and the tertiary bronchi (parabronchi) exist
[134,386] and at the parabronchial-, the atrial-, the in-
fundibular, and the air capillary levels, anastomoses
occur liberally (Figures 42–45). A fundamental question
is why and how actions of congruently conserved genes
and molecular factors consequence in different morph-
ologies. Ostensibly, the variations may emanate from
spatiotemporal and qualitative and quantitative differ-
ences in the patterns of expression of the morphogenetic
drivers which specify how long parts lengthen before
branching occurs and how branches form. Furthermore,
external signals (e.g. hypoxia) may locally modify the
morphogenetic programs and regulate upstream and
downstream gene expression pathways. Few evolution-
ally conserved signal transduction pathways are reitera-
tively exploited during metazoan development [55]. In
order to allow more robust systems for regulating a
broad spectrum of signaling responses by a limited num-
ber of signalling pathways, signals may be integrated at
specific connections (nodes) of ‘crosstalk’ between path-
ways to permit more integrated operations. In nature,
economy of structural design (e.g. [440]), which allows
systems to perform more by using less, is ubiquitous in-
novative strategy. More studies are required to identify
signaling connections or dedicated protein molecular
complexes which may be involved in the integration of
the signaling pathways into complex cell signaling net-
works. It would explain the operational dynamics of
genes and molecular factors that lead to different pheno-
types. Molecular recursive signalling processes may be
hardwired in developmental programs themselves and
may be used to craft structural refinements within limits
inherent in the conserved systems.
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