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Abstract

Ants and termites are the most abundant animals on earth. Their ecological success is attributed
to their social life. They live in colonies consisting of few reproducing individuals, while the large
majority of colony members (workers/soldiers) forego reproduction at least temporarilly. Despite
their apparent resemblance in social organisation, both groups evolved social life independently.
Termites are basically social cockroaches, while ants evolved from predatory wasps. In this review,
I will concentrate on termites with an ancestral life type, the wood-dwelling termites, to compare
them with ants. Their different ancestries provided both groups with different life history pre-
adaptations for social evolution. Like their closest relatives, the woodroaches, wood-dwelling
termites live inside their food, a piece of wood. Thus, intensive costly food provisioning of their
young is not necessary, especially as young instars are rather independent due to their
hemimetabolous development. In contrast, ants are progressive food provisioners which have to
care intensively for their helpless brood. Corresponding to the precocial — altricial analogy, helping
by workers is selected in ants, while new evidence suggests that wood-dwelling termite workers
are less engaged in brood care. Rather they seem to stay in the nest because there is generally low
selection for dispersal. The nest presents a safe haven with no local resource competition as long
as food is abundant (which is generally the case), while founding a new colony is very risky. Despite
these differences between ants and termites, their common dwelling life style resulted in
convergent evolution, especially winglessness, that probably accounts for the striking similarity
between both groups. In ants, all workers are wingless and winglessness in sexuals evolved in
several taxa as a derived trait. In wood-dwelling termites, workers are by default wingless as they
are immatures. These immatures can develop into winged sexuals that disperse and found a new
nest or into neotenic replacement reproductives that inherit the natal colony. Depending on the
worker instar from which the latter develop, the neotenic reproductives are either apterous or
brachypterous, but never winged. | propose that this wing polyphenism might present a basis for
the evolution of social life in termites.

Introduction within a colony reproduce (in termites: usually a king and
Termites (Isoptera) and social Hymenoptera (ants and  a queen; in social Hymenoptera: one or few queens) while
some bees and wasps) are the classical social insects. They  the large majority of a colony forgoes own reproduction,
live in complex societies and are characterized by repro-  at least temporarilly. How such altruistic behaviour can
ductive division of labour where only few individuals  evolve under competition-driven Darwinian selection was
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one of the most intriguing problems in evolutionary biol-
ogy. The answer central to this question is kin selection
theory, i.e. the propagation of gene-coded traits via close
relatives [1,2]. According to Hamilton's rule, altruism will
be favored when b > ¢, where r is the relatedness between
the altruist and the recipient and b and c¢ are the benefit
and cost of the action to the altruist and recipient respec-
tively [1].

Termites have often been compared with ants (for a recent
comprehensive review see [3]). The termites' resemblance
to ants, which is so striking that they are commonly
referred to as 'white ants', lead to the assumption of con-
vergent evolution driven by the same common factors.
Indeed, more than 75% of all termite species (all higher
termites, Termitidae) are characterized by altruistic castes
(workers and soldiers) that help in raising offspring and
have a greatly reduced capability to reproduce [4-6]. How-
ever, the Termitidae are a highly derived group and cannot
be used to assess how eusociality may have first evolved
within the termites. In fact, recent quantitative studies of
species from families with a wood-dwelling life type that
is thought to be ancestral in termite's evolution suggest
that this does not apply to them (for recent discussions of
termite phylogeny see [7,8]). Direct benefits of inheriting
the natal nest rather than altruistic helping seem to be
main selective forces for the occurrence of a defensive
reproductive morph in dampwood termites [9] and for
'workers' in drywood termites [10] (see also [11]). This
contrasts sharply with social Hymenoptera where altruis-
tic helping was the major driving force (probably with the
exception of some wasps) for the evolution of complex
societies [12-14]. It is generally difficult to deduce the
ancient evolutionary history from studies on extant spe-
cies. Yet, the results for wood-dwelling termites may allow
important conclusions because the wood-dwelling life
type has idiosyncratic properties (e.g. poor nutritive qual-
ity of the food, bonanza type food resource) which per se
set the selective environment for the evolution of cooper-
ation and altruism in termites [15] (see also below).
Therefore it seems reasonable to extrapolate the recent
results to the evolutionary history and conclude that in
termites costly altruistic helping by food provisioning
probably only evolved after living in extended family
groups [7,10] and that the initial step in termites' social
evolution was characterized by immature offspring stay-
ing at home without intensive brood care of siblings [16].

For the reminder of this review, I will concentrate on
wood-dwelling termites with an ancestral life type to com-
pare them with social Hymenoptera, and especially ants.
Occasional notes on other termite species will be given,
wherever appropriate. As recent evidence indicates that
the workers of the wood-dwelling termite species do not
seem to considerably invest in brood care, I will refer to
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them as 'false workers' hereafter [7]. This slightly out-fash-
ioned term sets them apart from 'true workers' of non-
wood-dwelling species (i.e. all other termites), which for-
age outside the nest and take intensive care for the young
of their colony (foraging termites hereafter) [7]. The false
workers have sometimes also been called pseudergates,
but as this latter term has originally a more restrictive def-
inition [5,17], it should be avoided [7]. False and true
workers not only differ in their function but, probably not
coincidentally, also in their developmental options. True
workers have a reduced developmental flexibility as they
cannot become winged sexuals (e.g. [5]) and caste deter-
mination might even have a genetic component [18].
False workers, on the contrary, are ontogenetically totipo-
tent immatures that can develop into (i) sterile soldiers,
(ii) winged dispersing sexuals that found a new colony, or
(iii) apterous or brachypterous neotenic reproductives
that inherit the natal breeding position without dispersal

(e.g. [5,19]).

In this comparative review, I will address selected topics
that are emerging from recent results on wood-dwelling
termites. For more general comparisons between social
Hymenoptera and termites, I refer to [3,20-22]. First, [ will
outline why termites are not just hemimetabolous dip-
loid, white ants. Their different ancestries provided ter-
mites and ants/social Hymenoptera with different life
history pre-adaptations for social evolution. They explain
why wood-dwelling termites - unlike ants but probably
like the termites' ancestors — apparently seem to invest lit-
tle in raising offspring, and how the ancestors' life histo-
ries facilitated termites' social evolution. I propose the
idea that wing polyphenism, present in hemimetabolous
insects in general [23,24] and cockroaches in particular
[25], builds the molecular ground plan for termites'
sociality. Despite their different ancestry, termites and
ants also share selective regimes and these might have
resulted in convergent evolution of winglessness and
social organisation found especially in higher termites.

Different ancestors — different prerequistes for social life
Termites are the oldest social insects with their complex
societies dating back at least to the early Cretaceous (140
Mio) when they had dinosaurs as their contempories [26].
They are basically social cockroaches [27-29]. Although
their position was somewhat debated [30,31], the weight
of evidence from molecular markers and morphological
traits now strongly suggests that the termites form a
monophyletic clade within the Blattodea, most likely
being the sister group of the Cryptocercidae
(woodroaches) [27,28]. Similar to wood-dwelling ter-
mites, representatives of the appropriately named, mono-
generic woodroaches, live as family units inside logs
where they are able to digest wood with the help of sym-
biotic gut symbionts [25,32,33].
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By contrast the eusocial Hymenoptera evolved complex
societies at least 11 times independently from different
ancestors within the Hymenoptera [12,22,34]. Although
morphological, molecular, paleontological studies have
presented conflicting views on ants early evolution
[12,35,36], they certainly evolved from predatory wasps
[12].

Need to help: A precocial — altricial analogy and its implications
The wood-dwelling termites are very unusual among
social insects in that there are low incentives to help as
their young are rather precocial. As hemimetabolous
insects the young instars are quite independent. They can
move around and do not rely on intensive brood care
[10]. Especially, as the colony lives inside its food, there is
no necessity for costly foraging and food is easily accessi-
ble to all individuals [16]. Thus, individuals only need to
be infested with gut symbionts to exploit the common
wood resource and these reciprocal infestations are less
costly. As a consequence, the older offspring have few
opportunities to reduce the work load of reproductives
and hence can hardly gain indirect benefits by raising sib-
lings [15,16]. Correspondingly, the annual growth rates of
wood-dwelling termite colonies are quintessentially like
those of solitary insects. Only 20 to 100 offspring per year
are produced [21].

All this changes with a transition to a life style where indi-
viduals forage outside the nest, i.e. with the transition to
foraging termites. Although many of these species still
nest in dead wood, they all forage outside for additional
food. In foraging termites, young depend on brood care
by food provisioning [37]. This can be handed over from
parents to older offspring (which become true workers)
and the latter can further reduce the work load of repro-
ductives by providing them with food as well [38,39]. So
reproductives can concentrate and specialize on reproduc-
tion and annual colony growth rates increase reaching
extreme values in fungus-growing termites with queens
laying up to 40,000 eggs daily [37,40]. Accompanying
specialization on reproduction, true physogastry (i.e., the
enlargement of the abdomen through an increase in the
number of functional ovarioles and fat bodies) evolved in
queens of foraging termites [41]. On the other side, true
termite workers evolved morphological adaptations to
foraging and food provisioning [39]. For instance, sclero-
tization of the cuticle, which is largely absent in false
workers, protects true workers against their hostile forag-
ing environment. However, this comes with a cost as it
hinders subsequent molts and thus prevents further devel-
opment [5].

Wood-dwelling termites can also be further distinguished.
They can inhabit two distinct nesting environments which
might exert somewhat different selective pressures on
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social evolution: drywood termites (Kalotermitidae) gen-
erally nest in sound wood, while soft wood nesters (most
dampwood termites, Termopsidae) occupy nests that are
at least partially decayed by fungus [5]. In the former, the
nest is a solid rather parasite- and pathogen-free environ-
ment, while the nests of dampwood termites are afflicted
by high microbial loads [42]. Although data are scare so
far and data for more species need to be collected, availa-
ble evidence indicates that this might have consequences
for brood care. In the drywood termites Cryptotermes
secundus, Cryptotermes cynocephalus and Cryptotermes
domesticus false workers do not care for eggs and young at
all [10] (unpubl. data). From the second instar larvae
onward individuals were seen to feed themselves. Eggs
and first instar larvae are not cared for, they are not carried
around, piled up or licked; but also they do not grow obvi-
ously until the next molt, which might suggest that they
utilize body reserves. Similar data for the dampwood ter-
mite Zootermopsis angusticollis indicate that the brood is
allogroomed (although other brood care like feeding is
also absent) [43]. Further studies are clearly needed to
illucidate whether this difference in grooming behaviour
and pathogen load between damp- and drywood termites
proves to be consistent. Based on the more basal phyloge-
netic position of the dampwood termites [4,8,29] and the
fact that the termites' sister taxon, the woodroaches,
inhabit damp wood [25,27], allogrooming to remove
pathogen might have been the first and only component
of brood care in the early evolution of termite's sociality
that was already present in the termite's ancestors.

In contrast to the termites, social Hymenoptera are
holometabolous insects. Their young are altricial, grub-
like larvae which strongly depend on brood care, espe-
cially as social Hymenoptera always evolved from species
with progressive food provisioning of the progeny
[13,14,44]. This provides ample opportunities for allopa-
rental care. Most modern ants (and many predatory
wasps) have adults subsisting mostly on floral nectar or
hemiptera exudates while hunting prey (or carrion) for
the young [12]. As progressive food provisioners the adult
female offspring can considerable reduce the work load of
their mothers by foraging to feed their younger siblings
(and their mother) so that mothers can concentrate on
egg-production. Thus, ant workers can gain important
indirect fitness benefits by specializing in the most costly
investment in altricial young: food provisioning.

Possibility to stay: The importance of the food source

Another idiosyncratic property of wood-dwelling termites
(and their ancestors) that largely distinguishes them from
social Hymenoptera is their bonanza type food resource.
Similarly, soil fed by soil feeding termites seems to consti-
tute a bonanza food source but in contrast to wood it is
too nutrient poor to live in it and grow to maturity. The
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nest of wood-dwelling termites, however, constitutes a
resource that generally largely outlasts the lifetime of the
founding primary reproductives. Hence offspring can stay
with their parents as there is no local resource competi-
tion which normally selects for offspring dispersal [45].
Only when the wood block becomes exploited, resource
competition shifts from a global (competition between
colonies) to a local scale (competition among colony
members) [46,47] and in line with this under limited
food conditions, false workers develop into winged sexu-
als that leave the nest during the annual nuptial flight to
found new colonies [48-52]. This is possible because the
termites can sense food availability via vibrations gener-
ated during gnawing that act as reliable indicators of
wood size [53]. During the developmental period from
false worker via several nymphal instars (instars with wing
buds) to winged sexual, which lasts several months [19],
individuals of the drywood termite Cryptotermes secundus
behave increasingly competitive. The degree of reciprocal
proctodeal trophallaxis (= anal feeding) among false
workers declines and each individual spends more time
feeding wood [54]. Additionally, when proctodeal
trophallaxis occurs it is preferentially directed at closer kin
showing conditional nepotism in this species [55].

All this contrasts with most social Hymenoptera/ants
which do not inhabit a bonanza type food resource. Social
Hymenoptera seem to overcome local resource competi-
tion within a colony - and thus selection for dispersal -
by increasing food intake through increased numbers of
foragers [44]. 'Pay to stay' theory predicts that when stay-
ing of individuals poses costs to the dominant breeder
rent payment can be selected [56,57]. Subordinate indi-
viduals (offspring, workers) might have to pay, for exam-
ple in the form of foraging, in order to be allowed to stay
in the colony [56,57]. Thus, helping to raise offspring
might to some degree in some social Hymenoptera be a
rent payment. This might especially apply to wasps or ple-
ometropic foundress associations [58] where adult
females face a threat of eviction but gain from staying in a
group and where subordinates/helpers are not/less related
to raised offspring.

Although there is no local resource competition in wood-
dwelling termites when food is abundant, offspring com-
petition can arise over reproductive inheritance, when the
colonies' reproductives become unhealthy or die [59-62].
Then false workers which can develop into neotenic
replacement reproductives compete for inheritance of the
breeding position. In drywood termites such competition
comes about in two manifestations [49,59]: (a) several
false workers become neotenic replacement reproductives
and they fight each other until one pair of reproductives is
left; (b) only one replacement reproductive develops that
immediately seems to inhibit the development of other
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false workers into replacement reproductives. Which indi-
vidual will become the heir is apparently determined in a
'fair' process that is stable against cheating: During the
intermolt period (note, false workers are larvae) there
seems to be a very short phase of competence during
which false workers are sensitive to the absence of repro-
ductives [63,64]. As all false workers pass through this
period, but only one or a few individuals (depending on
colony size) are competent at any given time, each indi-
vidual has a fair chance to inherit the breeding position.

This situation of local competition over inheritance might
also counterselect altruistic helping and thus might fur-
ther explain why false workers do not help in raising sib-
lings. Taylor [46] and West and co-workers [65] have
shown that under conditions of intense local competition
(local competition = 1, global competition = 0) between
relatives, as it occurs during the inheritance process, the
benefits of altruism and the costs of competition cancel
out each other so that altruistic helping will not be
selected. Thus even though sharing resources with rela-
tives is not costly because food is abundant, individuals
should not invest in raising their strongest future compet-
itors over the breeding position. The competition model
further predicts that if intense local competition occurs
among non-relatives spiteful behaviour might even be
selected. Interestingly, in Cryptotermes interactions
among non-relatives occur when two unrelated colonies
that were independently founded in the same tree fuse
during colony expansion [66]. It will be interesting to test
whether non-relatives behave spitefully under such condi-
tions.

The mode of sex determination and its consequences

Due to their different ancestry, termites and social
Hymenoptera have different modes of sex determination.
Social Hymenoptera are haplodiploid. Males develop
from unfertilized eggs and are haploid, while females
develop from fertilized diploid eggs. In contrast, termites
are diploid with both sexes developing from fertilized dip-
loid eggs. This results in symmetrical relatedness associa-
tions within monogamous termite colonies where the
relatedness among fullsiblings and between parents and
their offspring are identical (always r = 0.5). By contrast,
in Hymenoptera fullsisters are more closely related to
each other (r = 0.75) than parents are to their offspring (r
= 0.5) or sisters are to their brothers (r = 0.25). This has
important consequences: First, the unusually high related-
ness between fullsisters in social Hymenoptera was ini-
tially thought to explain the multiple origins of
eusociality in this order and the female preponderance in
these colonies ([1,67]; for more recent discussions:
[22,34,68]). However this haplodiploidy hypothesis
faded as it became clear that haplodiploidy will only pro-
mote altruism relative to diploidy under rather restricted

Page 4 of 9

(page number not for citation purposes)



Frontiers in Zoology 2008, 5:15

conditions [68]. Second, haplodiploidy creates related-
ness asymmetries which result in conflicts between
queens and workers over the sex ratio of sexuals and male
production [69]. Similar conflicts are lacking in termites
[61]. Third, Teyssedre and co-workers [70] recently
showed that the spread of altruism in diploids requires a
pleiotropic link between altruism and enhanced produc-
tivity. By contrast, in haplodiploid organisms altruism
within families that even lowers the productivity may
spread, provided daughters sacrifice their own reproduc-
tion to raise full-sisters. A link between altruism and
enhanced colony efficiency is unlikely when a mutant
causing altruism occurs in a solitary organism. However,
if such an altruistic mutant evolves in an already estab-
lished group of coexisting relatives than it could automat-
ically increase group productivity. This might have
actually happened during the evolution of termites' euso-
ciality [16]. As recent results indicate for wood-dwelling
termites, in the termites' ancestors offspring probably
stayed as false workers in the nest that did not invest more
in raising siblings than woodroaches. So, family groups
formed in which only in a second step an altruist mutant,
the soldier caste, evolved. By defending the colony they
considerably increased the group's reproductive success.
Thus, altruism would be linked to enhanced productivity
because large, less altruistic family groups already existed.

Common selective regimes — convergent evolution:
Winglessness

Even though termites are phylogenetically very distant
from ants, they share characters as result of common
selective regimes that explain their striking resemblance.
Both ants and termites have clearly evolved (independ-
ently) from winged solitary or primitively social ancestors
[71], and winglessness is an adaptation to burrowing
activities (Fig. 1). Crozier [12] speculated that dispersing,
mating and settling on the ground predisposed such
insects to form small family groups, leading naturally to a
strong influence of kin selection. This fostered the further
transition to the differentiation between queens and
female workers in ants, and reproductives and soldiers of
both sexes in termites.

Stemming from predatory wasps, ants have reduced the
winged stage to a dispersal phase and adapted to life on or
in the ground by females casting off their wings once they
have mated. Some species went even further. As alterna-
tive reproductive strategies, they evolved wingless queens
and males (i.e. sexual morphs) that reproduce within the
natal nest or disperse by foot [72,73]. Thus, in ants the fol-
lowing castes can be found in different species: winged
male and female sexuals, wingless males and female sexu-
als, and wingless (female) workers (Fig. 1).
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Due to their hemimetabolic mode of development, the
false workers of termites (males and females) are imma-
tures and by default never have completely developed
wings. Depending on the instar, they can have more and
less developed wing buds. In contrast to ants, wings
develop gradually and instars without wing buds are
called larvae, while nymphal instars have wing buds
[5,39,74]. The number of nymphal instars is highly varia-
ble and even species with a single nymphal instar exists
[5,39,75,76]. Among the terminal instars that present an
endpoint in development, soldiers are always wingless,
while the dispersing sexuals are winged. Neotenic replace-
ment reproductives that develop via a single molt from
false workers, can be either apterous or brachypterous
depending on the instar from which they developed (Fig.
1). Thus, the winged sexuals and the neotenic reproduc-
tives can be regarded as two morphs of a wing polyphen-
ism that present two alternative reproductive tactics [77].
Similar (environmental induced) wing polyphenisms or
(genetically based) polymorphisms can be found in other
hemimetabolous insects, such as crickets or aphids (e.g.
[23,24,78,79]) (Fig. 1). Interestingly, the triggers (e.g.
group size/density, food availability, parasite load) induc-
ing wing polyphenism are similar in these groups and the
wood-dwelling termites (e.g. [23,77,78,80]).

As discussed above, direct fitness benefits gained by inher-
iting the natal breeding position as neotenic replacement
reproductive seem to play an important role in wood-
dwelling termites, and probably also during the termites'
social evolution [7,11,16]. This might indicate that the
genetic architecture underlying wing polyphenism in sol-
itary hemimetabolous insects builds the molecular
ground plan from which termites' sociality developed.

Interestingly, wing polymorphism is common in cock-
roaches [25]. Winglessness is an evolutionarily labile trait
that occurs in all taxonomic groups [25,81]. Although
macropterism clearly is the primitive condition, for
instance in the Panesthiinae apterous, brachypterous and
species that loose their wings (macropterous, deciduous)
seem to have evolved several times [25]. Cockroaches that
spend their entire life in burrows, galleries, or crevices,
except for a brief dispersal period, seem most prone to
winglessness. Three characteristics of crevices and burrows
have been proposed to influence wing loss in cockroaches
[25]: First, they are homogeneous microhabitats, in that
they are interchangeable dark, moist, protected quarters.
Second, these are chiefly two-dimensional microhabitats
lacking space for flight. Third, they are temporally stable
habitats where food (e.g. logs, leaf litter or other rotting
vegetable material) is continuously or periodically replen-
ished, and the cockroaches are able to feed within their
shelter where they rely on low quality food. These idiosyn-
cratic characteristics are similar to those found in wood-
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(a) Wood-dwelling termites
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Schematic development of (a) wood-dwelling termites, (b) ants, (c) the wood-roach Cryptocercus, and (d)
other cockroaches, with special emphasis on wing-occurrence. Shown are simplified diagrams of development, single
instars are not shown. In wood-dwelling termites, 'wingless' sexuals are neotenic reproductives that can be either apterous or
brachypterous depending on the instar from which they developed (see text). In ants, there generally is a bifurcation of devel-
opment. At latest at the pupal instar (but often much earlier), individuals are determined to become either workers or winged
sexuals, or in few cases wingless sexuals. In 'other cockroaches' wing dimorphism is often a sexual dimorphism. Note, the lar-
vae of ants and termites are not equivalent. In termite terminology, instars without wing buds are called larvae, while those
with wing buds are termed nymphs. In all other hemimetabolous insects (including the cockroaches) all instars are called

nymphs.

dwelling termites [82]. Adults in the sistertaxon of the ter-
mites, the Cryptocercus woodroaches are wingless [32].
This might indicate that the molecular basis for wing pol-
ymorphism was most probably already present in the ter-
mites' ancestors with termites exploiting it during the
evolution of two alternative breeding tactics, winged dis-

persing sexuals that found new colonies and wingless neo-
tenic sexuals that become natal reproductives. In contrast,
woodroaches became completely wingless.

Aptery and brachyptery are generally associated with a

developmental syndrome that reduces complexity
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(e.g.[25]). They are the best indicator of paedomorphosis,
defined as the retention of juvenile characters of ancestral
forms in the adults of their descendents. Similarily, the
neotenic reproductives of termites lack so-called 'adults
characters' such as compound eyes or antennal segments,
suggesting that they are a result of paedomorphosis [30]
and thus of a heterochronic shift of gene expression (see
also [83]). As a comparison, in the best studied social
insect, the honeybee Apis mellifera, adult workers assume
the worker role through a shift in expression of maternal
care genes before foraging (e.g. [84-86]). The expression
of genes for maternal care is rerouted to precede foraging,
thus reversing the normal sequence in adult developmen-
tal ground plan of the ancestors.

Altogether, these results suggest that based on wing poly-
morphisms different reproductive tactics exist in both
wood-dwelling termites and ants. However, while wing
polyphenism seems to build the basis in termites' social
evolution and is lost in derived species which only repro-
duce via winged sexuals [77], wing polyphenism as an
alternative reproductive tactic seems to be a derived trait
in ants. Whether the same genes are involved in wing
polyphenism in ants and termites remains to be tested.
Judging from the phylogenetically well-separated flies
(order Diptera) and butterflies (order Lepidoptera), wing
development seems to be directed throughout the winged
insects by an unchanged regulatory gene network and not
only the individual signaling pathway elements, but even
entire gene regulatory networks turned out to be highly
conserved across species, orders and even phyla [87]. The
Drosophila wing formation network has been successfully
employed in a study on the loss of wings in workers of sev-
eral ant species [88].

Conclusion

In contrast to ants where workers gain considerable indi-
rect fitness benefits through provisioning of progeny, the
false workers of wood-dwelling termites seem to be less
altruistic with regard to brood care. In terms of Hamilton's
rule, this can be explained by low benefits to gain through
food provisioning of young as they are hemimetabolous
insects that nest inside their food. At the same time, the
costs of staying at the nest are low for wood-dwelling ter-
mites. Staying does not reduce their direct fitness pros-
pects, but rather increases them: False workers can wait in
a safe haven, protected against hostile environmental con-
ditions, until they have aquired enough resources to dis-
perse or inherit the natal breeding position when the
same sex reproductive of their colony dies. Staying at the
nest also has no negative consequences for relatives (i.e.
no negative indirect fitness consequences) as long as food
is abundant and the current reproductives are healthy. The
prospect of future local competition might even select
against raising siblings which become potential competi-

http://www.frontiersinzoology.com/content/5/1/15

tors. These idiosyncratic properties of a wood-dwelling
life style inherited from a cockroach ancestor, set a com-
pletely different selective regime than that which was
present in the predatory ancestors of ants. Nevertheless,
the social, ground-dwelling life style of ants also selected
for a wingless life which was present in termites before
they become eusocial. This common selective environ-
ment of 'dwelling in the dark' probably accounts for the
striking resemblance between ants and termites and their
social organisation.
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