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Abstract
Background: The two sympatric species of Tunisian desert ants, Cataglyphis bicolor and C.
mauritanica, do not exhibit any differences in their foraging ecology, e.g. in food preferences and in
their spatial and temporal activity patterns. Here we show that instead the two species markedly
differ in their life histories.

Results: We analysed mtDNA of specimens that were collected along a 250-km transect. C. bicolor
exhibited a genetically unstructured population (with the genetic and geographic distances among
colonies not being correlated). On the contrary the populations of the polygynous C. mauritanica
were clearly structured, i.e. exhibited a strong correlation between genetic and geographic
distances. This difference is in accordance with large queen dispersal distances due to far-reaching
mating flights in C. bicolor and small queen dispersal distances due to colony foundation by budding
in C. mauritanica. Furthermore, wherever we found populations of both species to coexist within
the same habitat, the habitat was used agriculturally. Mapping nest positions over periods of several
years showed that plowing dramatically decreased the nest densities of either species.

Conclusion: We conclude that owing to its greater queen dispersal potential C. bicolor might be
more successful in quickly re-colonizing disturbed areas, while the slowly dispersing C. mauritanica
could later out-compete C. bicolor by adopting its effective nest-budding strategy. According to this
scenario the observed sympatry of the two species might be an intermediate stage in which faster
colonization by one species and more powerful exploitation of space by the other species have
somehow balanced each other out. In conclusion, C. bicolor and C. mauritanica represent an example
where environmental disturbances in combination with different life histories might beget sympatry
in congeneric species with overlapping niches.

Background
In the highland steppes of Tunisia the two large desert
ants, Cataglyphis bicolor and Cataglyphis mauritanica, occur
sympatrically. A recent ecological comparison revealed
that the two coexisting species do not show any differ-
ences in the use of the three resource characteristics habi-

tat, time and food [1], i.e. in the main factors for which
organisms compete [2]. In order to explain the starting
point of the study described here, let us briefly conclude
the main results of the ecological comparison. Both spe-
cies have equally sized monomorphic workers (e.g. head
width, C. bicolor 1.7 mm, S.D.: 0.4 mm (n = 500), C. mau-
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ritanica: 1.6 mm, S.D.: 0.5 mm (n = 500)). Being ther-
mophilic scavengers searching for arthropod corpses, C.
bicolor and C. mauritanica rely on the same food sources
without any differences either in the type, size, or dry
weight of the collected food items. The workers of both
species employ the same individual foraging strategies, i.e.
depart from the nest for the same distances, do not occupy
food territories, and do not avoid the vicinity of conspe-
cific or allospecific Cataglyphis nests. We never observed
any kind of conspecific or allospecific interference compe-
tition for food. C. bicolor and C. mauritanica inhabit the
same microhabitat, as far as physical ground structure and
vegetation is concerned, and they exhibit the same daily
activity patterns (for a full description of the ecological
analyses see [1]).

The 'Competitive Exclusion Principle' [3,4] based on the
classical mathematical model of Volterra [5] states that n
species cannot coexist on less than n resources. Even
though this principle has been shown to be violated by
numerous studies, it has also been shown that stable coex-
istences usually require either mechanisms that increase
the number of resources present (e.g. feeding on different
parts of one plant species, [2,6]), or different impacts on
the resource population by coexisting populations [7], or
spatially structured habitats [8,9], or interference compe-
tition for food [10,11], or different feeding strategies [12],
or different life histories of the coexisting populations
[13], or instable habitats [14,15], or any combination of
these preconditions. Most of these factors do not seem to
be responsible for the coexistence of C. bicolor and C. mau-
ritanica [1]. However, the temporal stability of the habitat
and the life histories of the two species in question might
well be.

Contrary to the 'Competitive Exclusion Principle' the
'Unified Neutral Theory' [16] explains complexity of eco-
logical communities with ecological equivalence. Hence,
following this model niche differentiation is not a prereq-
uisite of the coexistence of species. The "niche" perspec-
tive and the "neutral" perspective have now been
discussed not to negate each other, but to present the end-
points of a continuum [17]. The aim of the present
account is not to test for one of these alternative theories,
but rather to identify factors that might explain the coex-
istence of C. bicolor and C. mauritanica following the
"niche" perspective. If no such factors are found, the "neu-
tral" perspective – of course – has to be revisited.

Even though both species do not differ in their foraging
ecology, they do so in their social structure: Whereas C.
bicolor is monogynous, C. mauritanica is truly polygynous
[18], a difference that may directly influence the genetic
population structure of the two species. While monogy-
nous queens usually found their nests independently after

having performed far-reaching mating flights, most of the
polygynous species disperse by budding with queens
establishing new nests close to their mother colony
[19,20]. This distinction leads to strong differences in sin-
gle-generation migration distances and, as a consequence,
to genetically unstructured populations in monogynous
species and structured populations in polygynous species
[20-22]. However, there are exceptions: The monogynous
Cataglyphis cursor, which produces new queens via parthe-
nogenesis [23] exhibits the budding type of nest founda-
tion [24].

Different dispersal strategies of the queens in C. bicolor
and C. mauritanica could lead to a better understanding of
the coexistence of the two species if, in addition, the tem-
poral dynamics of the ants' habitat are considered. The
places, at which C. bicolor and C. mauritanica live sympat-
rically, are areas used for farming. Due to the nutritional
low productivity of the North African highland steppe
regions, wheat is produced only every 5–7 years, while
during the rest of the time the land is used for sheep farm-
ing. As we never were able to find Cataglyphis colonies on
freshly plowed areas, plowing most likely destroys pre-
existing Cataglyphis colonies.

We now hypothesize that the coexistence of C. bicolor and
C. mauritanica is due to the ephemerality of the habitat
shared by the two species. Under the assumption that C.
bicolor is a typically fast dispersing monogynous ant, it
could act as a pioneer species on freshly ploughed and
hence Cataglyphis-free areas. If, on the other hand, C. mau-
ritanica is a typically slow dispersing polygynous species,
it would need a longer time to reach the ploughed fields.
However, once C. mauritanica queens accompanied by a
group of workers have reached such fields, they could out-
compete single C. bicolor queens at the available nesting
sites. It is well known that dependent nest-founding strat-
egies have higher competition efficiencies than independ-
ent ones. When digging the nest, queens of polygynous
species are assisted by nestmates and, therefore, face a
smaller risk of getting killed by predators or ants of estab-
lished colonies nearby [20]. Furthermore, polygynous col-
onies are able to increase colony longevity by queen
replenishment [25,26]. In this case, the local sympatry of
C. bicolor and C. mauritanica could be seen as a temporary
rather than permanent condition, which would result in
pure C. mauritanica populations, whenever human agri-
cultural interference should cease to occur.

To substantiate this claim, we shall focus on the question
of whether C. bicolor and C. mauritanica disperse as pre-
dicted for monogynous and polygynous species of ants
and hence exhibit unstructured and structured population
characteristics, respectively. In order to obtain phylogeo-
graphic information, we collected ants of both species
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along large-scale transects and created intraspecific haplo-
type networks using mitochondrial sequences of the Cyto-
chrome Oxidase I and II genes. In addition, by
geographically mapping the haplotypes of both species on
6 small-scale focus areas (about 1.6 – 12.3 × 105 m2 each)
within a 3-year period, we inquire about whether the hab-
itat and thereby the coexisting populations of either spe-
cies are rather stable.

Results
In order to test whether the C. mauritanica population is
genetically structured, we sequenced mtDNA of ants that
had been collected along a large-scale transect covering a
total length of 250 km.

Genetic population structure of C. mauritanica
Along the 250-km transect we found 23 different haplo-
types in 28 C. mauritanica nests (see Table 1). This large
number comes along with a remarkable variability
between these haplotypes. 185 of 1301 bp were variable.
We found a maximum of more than 5% substitutions
between pairs of haplotypes. According to Templeton et
al. [27] we constructed a 1-step cladogram (not shown).
However the resulting haplotype network revealed 162
haplotype states that would have been necessary interme-
diates, but non of them was present in the sample of 23
haplotypes mentioned above. Therefore, a nested clade
analysis [27,28] failed. However, if the geographic distri-
bution and the haplotype relatedness are compared [29],
a clear-cut result emerges: haplotypes belonging to the
same clades in the haplotype network occur at small geo-
graphic distances from each other (Fig. 1). The distances
of the individual samples from the Geographic Center of
the Clade (GCC) and from Geographic Center of the Pop-
ulation (GCP) were 11.4 (+/- 18.6) km and 94.9 (+/-
16.6) km respectively (n = 28, Wilcoxon-matched-pairs
test, p < 0.0001). In accord with this result the geographic
distance and the genetic distance, i.e. the number of sub-
stitutions, are correlated (p < 0,05, Mantel-Test [30]).
Hence we conclude that the single-generation migration
distance of C. mauritanica must be rather short.

In order to test whether this short migration-distance is
due to nest budding, we determined the mitochondrial
haplotypes of 79 individuals of 79 C. mauritanica nests at
5 focus areas, and found a total of 5 different haplotypes
(see Table 2). When single areas had a sufficient number
of C. mauritanica nests and more than one haplotype, as it
was the case in areas a, c, and d, the haplotypes showed a
clumped distribution (p < 0.05, Mantel-Test [30]). In con-
clusion, the genetically structured populations as inferred
from both the large-scale transect and the small-scale
analyses, clearly point at slow dispersal mechanisms,
most probably by budding in C. mauritanica. Of course,
mt-DNA analyses inform only about the dispersal of the

queens, but as in ants the males do not contribute to nest
founding, in our present case information about male dis-
persal distances is insignificant.

Genetic population structure of C. bicolor
We sequenced mtDNA of C. bicolor ants, collected along
the same 250-km transect and within 4 of the 6 small-
scale focus areas mentioned above for C. mauritanica (2 of
the 6 areas mentioned above contained pure C. mauri-
tanica populations). Along the large-scale transect we
found 16 different haplotypes within a sample of 25 C.
bicolor colonies. Twenty of the 1217 bp were variable with
a maximum of 1.5% substitutions between pairs of hap-
lotypes (see Table 1). Again a nested clade analysis failed
because of the lack of 17 intermediate haplotypes
between the two main clades of the network. We extended
the sample size of the C. bicolor transect to 38 nests by
adding samples we had collected two years before, but of
which we had only CO1 sequences. However, the phylo-
genetic analyses of either the 771 bp of the CO1 genes or
the 1217 bp of the CO1 and the CO2 genes did not lead
to any contradicting result. As in C. mauritanica we tested
for a genetic structuring of the population by calculating
the distances of every individual from the geographic
center of its clade (GCC) and from the geographic center
of the whole population included in the analysis (GCP).
In contrast to C. mauritanica, in C. bicolor there was no dif-
ference between the two geographic distances (Fig. 2a,
mean distance from GCC: 40.2 +/- 32.2 km, mean dis-
tance from GCP = 44.4 +/- 31.9 km, n = 38, Wilcoxon-
matched-pairs test, p = 0.18). Correspondingly, there was
no correlation between geographic distance and genetic
distance of the samples (p = 0.57, Mantel-Test [30]). The
appearance of identical haplotypes in distances of more
than 180 km (Fig. 2b: haplotypes 1 and 10) is striking, but
due to the high frequency of at least one of the two haplo-
types in the whole population, these long distances can-
not be taken as a proof of long single-generation
migration distances. However, the results obtained in the
5 small-scale focus areas lend further support to the
hypothesis of long migration distances in C. bicolor. We
found a total of 7 haplotypes (see Table 3). Again, individ-
uals of most of the nests carried haplotype 1, and hence by
themselves do not reveal any further information. Never-
theless, whenever we found nests belonging to the other 6
haplotypes, the latter did not form large clusters, but
appeared either individually or close to maximally two or
three adjacent nests. These small clusters are most likely
caused by the polydomy of C. bicolor, i.e. by the fact that
colonies usually consist of a queenright mother nest and
a few neighbouring queenless satellite nests [31]. The
absence of large clusters of nests belonging to the same
haplotype speaks against any small-scale dispersal strategy
employed by C. bicolor.
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Habitat longevity
Having shown that C. bicolor and C. mauritanica differ
markedly in the dispersal strategies of their queens, we
next focused on the question, whether the local sympatry
of the ecologically equivalent Cataglyphis species might be
a transitional phenomenon due to the temporal instabil-
ity of the habitat. Therefore we revisited the 6 small-scale
areas three years after our first survey (Fig. 3). We again
recorded the positions of all C. bicolor and C. mauritanica
nests. In total, the number of nests within these areas had
decreased from 193 to 109 (in C. mauritanica from 119 to
63, in C. bicolor from 74 to 46, see Table 2 and 3, respec-

tively). We also mapped the acreages that had been used
for growing wheat during the time period of 2001–2004
(15.2 ha of the total of 37.8 ha of the 6 focus areas revis-
ited in 2004, Fig. 3B). At places that had been farmed, at
least during the preceding year, the number of C. mauri-
tanica nests had decreased dramatically from 64 to 16,
while on the unused areas the decrease was less pro-
nounced (from 55 to 47 nests; χ2 = 14.79, df = 1, p <
0.001). Agricultural activity similarly affected C. bicolor,
for which the number of nests was only slightly reduced,
from 47 to 42 on the unused area, while there was again a

Table 1: List of material examined in present study.

Haplotype GenBank nos.

CytOxidase part 1 CytOxidase part 2

C. bicolor 1 AY642288
2 EF139822
3 AY642290
4 EF139823
5 EF139824
6 EF139825
7 AY642294
8 EF139826
9 EF139827
10 EF139828
11 EF139829
12 EF139830
13 EF139831
14 EF139832
15 EF139833
16 EF139834
17 EF139835

C. mauritanica 1 EF139775 EF139798
2 EF139776 EF139799
3 EF139777 EF139800
4 EF139778 EF139801
5 EF139779 EF139802
6 EF139780 EF139803
7 EF139781 EF139804
8 EF139782 EF139805
9 EF139783 EF139806
10 EF139784 EF139807
11 EF139785 EF139808
12 EF139786 EF139809
13 EF139787 EF139810
14 EF139788 EF139811
15 EF139789 EF139812
16 EF139790 EF139813
17 EF139791 EF139814
18 EF139792 EF139815
19 EF139793 EF139816
20 EF139794 EF139817
21 EF139795 EF139818
22 EF139796 EF139819
23 EF139797 EF139820
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dramatic reduction in the number of nests from 27 to 4 on
the agriculturally used areas (χ2 = 12.71, df = 1, p < 0.001).

The distribution of the mtDNA haplotypes did not vary
significantly between the two years 2001 and 2004. All C.
mauritanica haplotypes present in 2004 had also been
found already in 2001. Furthermore, the distribution of
haplotypes within the focus areas had remained almost
constant (Fig. 4a). The same is true for C. bicolor, but there
is one exception: two haplotypes which in 2004 had dis-
appeared from their 2001 location, were now recorded
more than 400 m apart from it (Fig. 4e).

Discussion
Here we examined, whether the coexistence of the two
ecologically similar [1]Cataglyphis species C. bicolor and C.
mauritanica could be due to differences in their life histo-
ries. The coexistence of ecologically equivalent or at least
similar species of ants is not as uncommon as one might
expect it to be in the light of the competitive exclusion
principle [3]. Nevertheless, the large amount of studies
dealing with the coexistence of such species have focused
on niche differentiations within the foraging realm (tem-
poral avoidance: [32-36]; specialization on differently dis-
tributed food items: Davidson, [37-39]; differences in

Phylogeographic distribution of C. mauritanica haplotypes in TunisiaFigure 1
Phylogeographic distribution of C. mauritanica haplotypes in Tunisia. a. Haplotype network of C. mauritanica inferred 
from mtDNA data. 1044 bp of 1301 bp were constant. The numbers of the bootstrap replicates are 10000. b. Geographic dis-
tribution of the different haplotypes. Each small circle represents a colony collected in 2001 for which the haplotype (indicated 
by the accompanying small numbers) was recorded. Large coloured circles depict the geographic centers of the clades (GCC). 
The black circle indicates the geographic center of the whole population (GCP).
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Table 2: Numbers of C. mauritanica haplotypes occurring within 5 focus areas near Kasserine (Tunisia) in 2001 (2004).

C. mauritanica haplotype

Area 1 2 3 4 5 unidentified

a 13 (13) 6 (6) 3 (2)
b 14 4 (9)
c 3 (1) 12 (12) 1 1
d 5 21 (8) 31 (5)
e 2 (6) 2 1 (2)

For the locations of areas a-e and of the haplotypes within these areas see Figs. 3A and 3B, respectively.
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worker size: [37,38,40-46]; microhabitat preferences:
[47,48]). As there are no differences between C. bicolor
and C. mauritanica in all these respects [1], we asked
whether differences in the life histories of the two species
might account for the observed coexistence. This is the
more likely as the two species differ in the numbers of
their queens per colony, with C. bicolor and C. mauritanica
being monogynous and polygynous, respectively. The dif-
ference might go hand in hand with different dispersal
strategies. Wide-ranging dispersal due to long-distance
mating flights is typical for monogynous ants [19,49],
whereas in polygynous ants new nests are often founded
by budding [19,20,50-52]. In turn, this difference in
queen dispersal strategies might lead to different ways of
colonizing and occupying temporarily unstable environ-
ments. The areas populated by C. bicolor and C. mauri-
tanica are repeatedly used for growing wheat, where the
plowing together with the possible use of insecticides

could lead to dramatic breakdowns of Cataglyphis popula-
tions. In this case the observed heterospecific populations
could be a short-term phenomenon during the growing
phase of the populations of C. bicolor and C. mauritanica,
when competition for food and/or nest sites is still low. By
studying dispersal strategies of both species of ants and
recording habitat longevity we tested the hypothesis that
the coexistence of the two ecologically similar species of
Cataglyphis ants reflects a transitional phase occurring
within a constantly changing environment.

Dispersal strategies
Due to the high genetic population viscosity of C. mauri-
tanica (Fig. 1 and 4a), the dispersal distances of the queens
of this species must be rather short. Most likely such short
dispersal distances are caused by dependent colony foun-
dation via budding. As in C. bicolor the variability of the
mtDNA genes is rather low, the results obtained along the

Phylogeographic distribution of C. bicolor haplotypes in TunisiaFigure 2
Phylogeographic distribution of C. bicolor haplotypes in Tunisia. a. Haplotype network of C. bicolor inferred from 
mtDNA data. Haplotypes that revealed no changes of basepairs in the network (e.g. haplotypes 1, 3, 5, and 6) differed in the 
non-coding region, but due to the impossibility to align this region it was not used for the calculation of the haplotype network. 
711 bp of 771 bp were constant. b. Geographic distribution of the different haplotypes. Each small square represents a colony 
collected in 2001 for which the haplotype (indicated by the accompanying small numbers) was recorded. The triangles depict 
samples that were collected in 1999 but were included into the phylogeographic analysis. Large coloured squares depict the 
geographic centers of the clades (GCC). The black square indicates the geographic center of the whole population (GCP).
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250-km transect are not as telling in this species as they
have been in C. mauritanica. In C. bicolor most of the col-
onies shared the same haplotype (Haplotype 1 in Fig. 2).
However, a closer look at the distribution of rare haplo-
types as they occurred in most of the focus areas provides
a clearer view: These rare C. bicolor haplotypes were
restricted to 2–4 nests located close to each other (see
Table 3 and Fig. 4e). If colony foundation occurred by
budding, one would have expected that these haplotypes
formed large clusters, as it was observed in C. mauritanica.
We therefore conclude that C. bicolor queens found their
colonies independently. Later these colonies might
become polydomous, but they do not spread over as large
areas as they do in C. mauritanica.

In both C. bicolor and C. mauritanica the distribution of
haplotypes did not change within a 3-year period. It was
only in C. bicolor that two of the 7 haplotypes occurred
more than 400 m away from their former positions (hap-
lotypes 4 and 7, Fig. 4e). Unfortunately, we cannot say
whether the colonies exhibiting these haplotypes have
been new foundations from beyond our test area, or
whether they have moved by 400 m during the 3-year
period.

Far-ranging mating flights in C. bicolor males have already
been observed from colonies located 60 km south of our
Kasserine test area (area of the Oued Kebir, R. Wehner and
S. Wehner, unpublished data). In the present account we
could observe for the first time, budding in C. mauritanica.
About 20 workers left a nest and dug a new nest about 30
m apart from the former one. As the excavation of the new
nest occurred, 4 dealated queens were waiting at the old
nest entrance. After about 4 hours of digging, one of the
queens was carried by a worker to the new nest, while the
remaining 3 queens stayed in the old nest. Hence, while
C. bicolor performs mating flights, C. mauritanica at least
can disperse by budding. These behavioural observations
are directly supported by our genetic data. As expected for
long migration distances due to mating flights with inde-
pendent colony foundation, the population of C. bicolor is
genetically unstructured (Fig. 2), and C. bicolor nests
belonging to the same haplotype do not form large clus-

ters (Fig. 4e). As expected for short migration distances
due to dependent nest founding by budding, the popula-
tion of C. mauritanica is genetically structured (Fig. 1), and
C. mauritanica nests belonging to the same haplotype
form large clusters (Fig. 4a). In conclusion, whereas C.
bicolor and C. mauritanica do not exhibit differences in
their foraging characteristics, they markedly differ in their
life histories, in colony structure, and the dispersal strate-
gies of their queens.

Habitat longevity
Do these differences explain the coexistence of the two
species? In independent colony founding interspecific
and intraspecific competition can cause habitat saturation
due to high dispersal risk and low nest founding success
rates. Models developed by Nonacs [53] and Pamilo [54]
assume high dispersal risks as a key factor leading to
polygyny. This assumption was supported by Seppä et al.
[55], who reported that in boreal ants, which exhibit fac-
ultative polygyny, habitat age is correlated with nest site
limitations and the number of queens per nest. In at least
4 out of 5 ant species the number of queens per nest
increased with the age of the habitat. Usually, due to the
low risk of dependent colony founding ants dispersing by
budding such as the pest species Linepithema humilis and
Solenopsis invicta are known to out-compete other species
efficiently [19]. All these arguments should let one
assume that the monogynous C. bicolor is driven to extinc-
tion whenever it has to compete with the polygynous C.
mauritanica. Nevertheless, coexisting populations of both
species are not rare, but wherever we found both species
inhabiting the same areas, these areas were used for agri-
culture. Human interference has been shown to increase
the densities of populations of two coexisting species of
paper wasps, as manmade structures provide the wasps
with additional nesting sites [56]. However, in the present
account the agriculture could destroy pre-existing Cat-
aglyphis nests and by that could cause habitat instability.
We therefore propose the hypothesis that the coexistence
of C. bicolor and C. mauritanica does not reflect a stable sit-
uation but that it is rather a transitional state during an
ongoing re-colonization process occurring within unsta-
ble habitats.

Table 3: Numbers of C. bicolor haplotypes occurring within 4 focus areas in 2001 (2004).

C. bicolor haplotype

Area 1 2 3 4 7 8 9 unidentified

c 2 4 (1)
d 12 (1) 1 1 (2) 9 (1)
e 19 (10) 1 (2) 1 (1) 1 (1) 3 (1) 2 (9)
f 17 1 (17)

For the locations of areas c-f and of the haplotypes within these areas see Figs. 3A and 3B, respectively.
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In order to test this hypothesis, i.e. to check whether
human plowing disequilibrates the habitats in which
both Cataglyphis species occur sympatrically, we mapped
the nests of either species within the very same areas in the
years 2001 and 2004. During this 3-year period, 40.2 per
cent of the 37.8-ha area under observation had been used
agriculturally. The number of nests of both species
decreased slightly in those areas that had not been used
for agriculture in-between. This slight decrease might be
due to either habitat saturation or to the exceptionally hot
summer of 2003. However, on those areas that had been
used for growing wheat the number of nests decreased
dramatically (Fig. 3).

The instability of the habitat occupied by C. bicolor and C.
mauritanica as well as the different life histories, especially
the different dispersal strategies, of the two species make
the following scenario most likely:

After having been used for farming, the highland steppe
regions of central Tunisia are almost free of Cataglyphis
ants. Afterwards the areas formerly used for human agri-
cultural activity are re-colonized by C. bicolor and/or C.
mauritanica. Due to the restricted sizes of the areas used
for agriculture, our data cannot tell, whether C. bicolor is
the faster a colonizer, the larger the empty habitats are.
However, whenever the area is large, its center might first
be colonized by C. bicolor queens because of their longer
dispersal distances. The colonization of the outer parts of
the area (or the total area, when it is small) depends on
the species composition of the surrounding populations.
During the one observed budding process in C. mauri-
tanica the new nest was founded 30 m away from the
mother nest. Hence, whenever C. mauritanica colonies are
close by, they should be able to expand into the area by
budding. As long as the total nest density is low, single C.
bicolor queens should also be able to colonize these outer
areas. As time proceeds, and if the habitat is not yet used
agriculturally again, competition should increase while
the populations are growing. In those places in which
both species occur sympatrically, the budding polygynous
colonies of C. mauritanica should then out-compete the
monogynous C. bicolor. This could happen by competi-
tion for food, so that established colonies were displaced,
or by competition for nest places, so that new colonies
could no longer be established. Due to the long life cycle
of ant queens, the latter scenario would lead to an exten-
sion of the time frame within which both species could
coexist, but nevertheless would finally result in pure C.
mauritanica populations. However, even if we assume that
C. mauritanica is the better local competitor, and C. bicolor
is the faster disperser, a competition-dispersal trade-off
alone should be unable to stabilize the coexistence of the
two species. It rather seems to be the disturbance via farm-
ing that stabilizes the observed sympatry of C. bicolor and

Effect of human agricultural interferences on the nest distri-butions in C. mauritanica and C. bicolorFigure 3
Effect of human agricultural interferences on the 
nest distributions in C. mauritanica and C. bicolor. a. 
Map of the locations of the 6 small-scale focus areas (dark 
grey, a-f). For geographic position of the entire area see Fig. 
1b. b. Nest distributions of C. mauritanica (red circles) and C. 
bicolor (blue squares) in the years 2001 (open symbols) and 
2004 (filled symbols). Areas that had been used agriculturally 
during the 3-year test period are shown in light grey.
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C. mauritanica: As the areas are repeatedly used for grow-
ing wheat every 5–8 years (information provided by the
local farmers), i.e. before the colonization process has
reached a crucial competition stage, the majority of the
colonies becomes extinct during the next farming period,
and the colonization process can start again. Hence, our
final conclusion is that the sympatry of the two Cataglyphis
species is just a transitional phase during an ongoing col-
onization process.

Methods
Transect
Ants were collected along a 250-km transect, which
started close to the Tunisian capital Tunis in the north-
eastern part of Tunisia (36.50N 10.13E) and ended south
of Kasserine in the south-western part of the country close
to the Algerian border (35.13N 8.43E, Fig. 1 and 2). Along

the 250-km transect we stopped at every promising area
along the road and searched for Cataglyphis nests for at
least 20 min. Collected ants were stored in absolute etha-
nol for DNA analysis. We collected C. mauritanica workers
from 28 nests and C. bicolor workers from 35 nests. In
addition 109 ants of different C. mauritanica nests and 84
ants of different C. bicolor nests were collected along
small-scale transects at 6 focus areas (each with a size 1.6
– 12.3 × 105 m2). The focus areas were located along the
route from Kasserine to Feriana over a distance of about
10 km (Fig. 3a). In order to map the nest positions system-
atically we scoured the areas along strait parallel lines with
a distance of 4 m between the lines. Geographic coordi-
nates were recorded by GPS at all nests from which ants
were collected. By using these GPS coordinates we were
able to revisit the very same places three years later for
remapping the nest distribution and for checking any agri-
cultural use that had been made of the area during the pre-
vious three years.

DNA analysis
From all samples that had been collected in the years 2001
and 2004 we extracted DNA probes of the alitrunks of sin-
gle ants by using the CTAB method [57] with minor mod-
ifications. Proteinase K (20 mg/ml) was used instead of
mercaptoethanol. For the analysis of mtDNA the 3'end
within the Cytochrome Oxidase 1 gene (CO1) was ampli-
fied using the primer COI-RLR (5'-ttgattttttggtcatccagaagt-
3'[58]). This sequence corresponds to position 2492 in
the complete honeybee mitochondrial genome [59]. For
the 5'end within the Cytochrome Oxidase 2 gene (CO2)
we used the primer Croz-COII (5'-ccacaaatttctgaacattgacc-
3'), which together with COI-RLR amplifies a sequence of
about 1520 bp including the leucine tRNA and an inter-
genic spacer. To enhance the sequence reaction in the
inner part of the region we designed an internal primer
pair

COIF2 (5'-gcyagattcattcattgatttcctc-3', position 2929)

and COIIR1 (C. mauritanica: 5'-taggagaatttgarttttgtagag-
3')

or COIIR1bic (C. bicolor: 5'-tgggagaatttgaattttgaagtg-3')
amplifying 500 of the internal base pairs.

PCR amplifications were carried out in 50 μl reaction vol-
umes containing 1× Buffer A, 0.5 μl DMSO, 0.2 mM each
dNTP, 10 pM each primer, about 50 ng DNA, and 1 unit
Taq (Promega) with a PTC 100 (MJ Research) for 40 cycles
(94°C, 75s, 43°C, 75s, 72°C, 135s) after an initial 180s
denaturation step at 95°C and with final extension at
72°C for 300s. PCR reactions were purified with the
QIAquick PCR Purification Kit (Qiagen) under conditions
specified by the manufacturer. PCR products were

Distributions of haplotypes within two focus areas (a and e, see Figure 3b) in 2001 and 2004Figure 4
Distributions of haplotypes within two focus areas (a 
and e, see Figure 3b) in 2001 and 2004. a. C. mauritanica 
haplotypes in area a in 2001 and 2004 e. C. bicolor haplotypes 
in area e in 2001 and 2004. Only nests with identified haplo-
types are shown.
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sequenced using the ABI-PRISM Dye Terminator Cycle
Sequencing Ready Reaction Kit (ABI-Perkin Elmer) in 10
μl reaction volumes following the manufacturer's instruc-
tions and run on an ABI 3100 DNA sequencer.

Chromatograms were first checked by eye for base call
accuracy and then aligned individually with the opposite
strand from the same individual using the program
Sequencher™, and sequences were examined for sequence
agreement. Finally all sequences were checked for internal
stop codons to exclude possible pseudogenes from analy-
sis. All sequences were submitted to GenBank (see Table
1).

Phylogeography
Sequences alignment and creation of haplotype networks
were performed with ClustalX [60] which uses the Neigh-
bour Joining method of Saitou and Nei [61].

Due to the extensive length polymorphism of the inter-
genic spacer (C. bicolor: 76–106 bp, C. mauritanica: 23–35
bp) we could not find any satisfying alignment. Further-
more the position of the primer COIIR1 very close to the
leucine tRNA gene led to less precise sequencing of this
gene. Hence for calculating the networks the non-coding
region and the neighbouring leucine tRNA were excluded.

Phylogeographic analysis of the large-scale transect was
conducted as described in [27] by calculating the geo-
graphic center of every clade (GCC, Fig. 1) of the haplo-
type tree by averaging the latitude and longitude over all
individuals that belong to this clade. Then by averaging
latitude and longitude of all samples we calculated the
center of the whole studied population (GCP, Fig. 1) and
compared for each individual the distances from the GCC
and from the GCP. Within a genetically structured popu-
lation individuals should reveal shorter distances to the
center of their clades than to the center of the whole pop-
ulation.

As an additional test for spatial differentiation (associa-
tion between genetic and geographic distances) geograph-
ical distances were taken as the minimum linear distance
between sampling sites and the significance of correlation
between genetic and geographical distances was assigned
by a Mantel test (10000 permutations;[30]).

In all cases in which we had sufficient numbers of nests of
different haplotypes per focus area, we checked for
clumped or random distributions of identical haplotypes.
Distances between nests of identical haplotypes and
between nests of different haplotypes were analyzed by
the Mantel (10000 permutations [30]). In order to
account for effects of polydomy, we excluded nests that

were less than 20 m apart from their neighbours from the
analysis.

Haplotype networks computed for the sequence data of
either the CO1 region or the CO2 region did not lead to
any contradicting node. There was no difference in varia-
bility between the CO1-coding and the CO2-coding
regions with a maximum sequence divergence of 1.1%
(CO1) versus 2.2% (CO2) within 25 C. bicolor ants and
5.8% (CO1) versus 4.9% (CO2) within 28 C. mauritanica
ants (partition homogeneity test: p = 0.75). Therefore we
were able to run the analyses for both regions together.
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