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ocean acidification and warming of Polar
cod (Boreogadus saida) and Atlantic cod
(Gadus morhua)
Elettra Leo1,2, Kristina L. Kunz1,2,3, Matthias Schmidt1,2, Daniela Storch1, Hans-O. Pörtner1,2 and Felix C. Mark1*

Abstract

Background: Ocean acidification and warming are happening fast in the Arctic but little is known about the effects
of ocean acidification and warming on the physiological performance and survival of Arctic fish.

Results: In this study we investigated the metabolic background of performance through analyses of cardiac
mitochondrial function in response to control and elevated water temperatures and PCO2 of two gadoid fish
species, Polar cod (Boreogadus saida), an endemic Arctic species, and Atlantic cod (Gadus morhua), which is a
temperate to cold eurytherm and currently expanding into Arctic waters in the wake of ocean warming. We
studied their responses to the above-mentioned drivers and their acclimation potential through analysing the
cardiac mitochondrial function in permeabilised cardiac muscle fibres after 4 months of incubation at different
temperatures (Polar cod: 0, 3, 6, 8 °C and Atlantic cod: 3, 8, 12, 16 °C), combined with exposure to present
(400μatm) and year 2100 (1170μatm) levels of CO2.
OXPHOS, proton leak and ATP production efficiency in Polar cod were similar in the groups acclimated at
400μatm and 1170μatm of CO2, while incubation at 8 °C evoked increased proton leak resulting in decreased
ATP production efficiency and decreased Complex IV capacity. In contrast, OXPHOS of Atlantic cod increased
with temperature without compromising the ATP production efficiency, whereas the combination of high
temperature and high PCO2 depressed OXPHOS and ATP production efficiency.

Conclusions: Polar cod mitochondrial efficiency decreased at 8 °C while Atlantic cod mitochondria were more resilient
to elevated temperature; however, this resilience was constrained by high PCO2. In line with its lower habitat temperature
and higher degree of stenothermy, Polar cod has a lower acclimation potential to warming than Atlantic cod.
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Background
Ocean warming driven by anthropogenic CO2 emis-
sions influences the distribution of marine animals
causing significant impacts on biodiversity and ecosys-
tem structure [1, 2], such as local extinctions [3] and
poleward migrations [4–6]. Fish (and other ectotherms)
are particularly sensitive to fluctuations in temperature
since their body temperature is in equilibrium with their

environmental temperature [7]. Fish species distribution,
in fact, is confined to a specific temperature window, due
to the temperature dependency of physiological processes
and to sustain maximal energy efficiency ([8] for review).
The increased CO2 concentration in the atmosphere is

one of the major causes for the global greenhouse effect
and also causes a decrease in ocean pH, a phenomenon
commonly known as ocean acidification [9]. High CO2

partial pressure (PCO2) is known to affect biological and
physiological processes of marine organisms (e.g. [10–14])
and tolerances towards other stressors [15–17]. Moreover,
high PCO2 could provoke a narrowing of the thermal
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tolerance window of ectotherms, so that limits of its ther-
mal acclimation capacity are met earlier [2, 18–21].
At the cellular level, exposure to high temperature can

cause changes in the three dimensional structures of
proteins, including the assembly states of multiprotein
complexes and eventually protein denaturation and loss
of activity [7]. Moreover, increasing temperatures can
alter the cellular membranes packing order, which can
cause changes in membrane-associated processes until a
potential complete loss of function [22]. Furthermore,
since cellular oxygen demand increases with increasing
temperature, the production of mitochondrial reactive
oxygen species (ROS) is likely to increase which can
damage biological molecules, including lipids, proteins
and DNA [23, 24]. Therefore, towards the upper limit of
the thermal window, the cellular energetic costs for
maintenance rise, increasing baseline energy turnover
and allowing only for time-limited periods of passive tol-
erance. If high temperature persists over this period of
passive tolerance, the costs of maintenance can only be
covered at the expense of other functions such as growth
and reproduction, decreasing the overall animal fitness
[17]. Therefore, in light of ongoing ocean acidification
and warming it is important to understand how fish re-
spond to increasing habitat temperatures, their ability to
adjust their thermal sensitivity and the role that high
PCO2 plays in thermal acclimation [2, 25].
The fish heart is highly aerobic and sensitive to

temperature [26, 27]. Its capacity limits have been
hypothesized to shape the warming-induced onset of
sublethal thermal constraints in fishes [2, 28–31]. Recent
studies have shown that high temperature leads to heart
failure in various fish species like New Zealand triplefins
and temperate and tropical wrasses [28, 29, 32, 33]. It
was suggested that progressive impairment of several
components of the mitochondrial function measured in
permeabilised heart muscle fibres, such as oxidative
phosphorylation (OXPHOS, respiratory state III), ATP
production efficiency and the capacity of single
complexes of the Electron Transport System (ETS)
shape the temperature of heart failure (THF). High
temperature changes the fluidity of mitochondrial mem-
branes, which can entail increased proton leak through
the inner membrane ([19] for review), resulting in de-
creased coupling ratios and causing decreased mem-
brane potential [34, 35] and, as a consequence, inhibit
the electrogenic transport of substrates, i. e. the trans-
port of charged substrates like glutamate and malate that
leads to the translocation of net charge across the mem-
brane [36]. This indicates that mitochondrial metabolism is
involved in functional constraints and thermal limitation of
this tissue [28, 29, 32, 33]. Therefore, alterations in cardiac
mitochondrial metabolism might lead to impaired cardiac
energy turnover and, as a consequence, constraints in

cardiac performance and ultimately affect the fishes’ ther-
mal sensitivity.
Although an extensive literature has been produced on

the effects of temperature on fish cellular metabolism and
mitochondrial function (e.g. [8, 33, 37] and the literature
therein), only few studies have addressed the effects of
moderately elevated PCO2 on them [30, 38–41]. More-
over, as ocean warming and ocean acidification caused by
high PCO2 are two sides of the same coin, they must be
considered in combination in order to draw ecologically
realistic conclusions [17, 42, 43].
Ocean acidification and warming trends are projected to

exert particularly strong effects in the Arctic. As one of the
consequences, temperate species may become established
in Arctic habitats (by poleward migration), potentially dis-
placing resident taxa [1, 4, 6]. For example, in the past dec-
ade the Northeast Arctic population of Atlantic cod (Gadus
morhua, NEAC) has expanded its range into the Barents
Sea [44, 45], on the North-east Greenland shelf [46] and in
the coastal waters around Svalbard, which are inhabited by
native Polar cod (Boreogadus saida), a key species in this
region [1, 47].
Polar cod is a permanently cold adapted Arctic fish

(thermal habitat around Svalbard ranging from −2 to
+7 °C [48, 49]) while NEAC is a cold acclimated sub-
Arctic population of temperate Atlantic cod expanding
into the Arctic (habitat thermal range around Svalbard:
0–8 °C [1, 50]). Cold-acclimated and -adapted fish are
known to have elevated mitochondrial densities. Among
cold adapted species, extreme stenotherms such as high
Antarctic fish, have high densities but low mitochondrial
capacities and low proton leak in aerobic tissues [37,
51–53]. This may result in the low maintenance costs
derived by proton leak and narrow thermal windows
of these species and, as a consequence, cause high
sensitivity to ocean warming [53, 54]. On the other
hand, eurythermal cold adaptation ensures mitochon-
drial function over a wider range of temperatures at
lower mitochondrial densities and maximized capaci-
ties [53, 55]. As a permanently cold adapted fish,
Polar cod may therefore not be able to adjust mito-
chondrial capacities during warming to a similar extent
as NEAC, which apparently has a higher capacity to
adjust to higher temperatures by decreasing mitochon-
drial densities and capacities and thereby developing the
metabolic plasticity necessary to acclimate to new condi-
tions [56]. The differences in thermal response and, in
particular, the ability to acclimate to higher temperatures
will play a central role for their interaction in a changing
ecosystem.
Hence, the aim of this study was to investigate the

acclimation potential of Polar cod Boreogadus saida
and Northeast Arctic cod (NEAC) Gadus morhua ex-
posed to water temperatures and PCO2 projected for
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the year 2100 in the Arctic i.e. 8 °C and 1170μatm
PCO2 (RCP 8.5 [57]). For a deeper understanding of
the impact of ocean acidification and warming on the
bioenergetics of the two species in relation to thermal
tolerance, we further investigated mitochondrial func-
tion in the cardiac muscle of animals incubated for 4
months at four different temperatures (Polar cod: 0,
3, 6, 8 °C and Atlantic cod: 3, 8, 12, 16 °C), and two
PCO2 (400μatm and 1170μatm) in a cross factorial
design. We used permeabilised cardiac muscle fibres
to investigate a system resembling the living state as
closely as possible [58–60], facilitating the extrapola-
tion from measurements of cardiac mitochondrial
capacities to their potential effects on the heart and
eventually drawing conclusions on the effects of high
temperature and high PCO2 on the whole organism.
Moreover, by analysing the mitochondrial function at
the respective incubation temperature we could inves-
tigate the acclimation potential of the two species.
We hypothesized that NEAC had higher thermal
limits and a larger acclimation capacity than Polar
cod and found accordingly that mitochondrial func-
tions are constrained at lower temperatures in Polar
cod than in NEAC. We discuss our results in light of
the findings reported by Kunz et al. [61], who showed
wider thermal windows for growth and standard meta-
bolic rate (SMR) in NEAC than in Polar cod from the
same acclimation experiment.

Methods
Animal collection
Juvenile Polar cod were collected by bottom trawl in
combination with a fish lift [62] on January 17th, 2013
from the inner part of Kongsfjorden (Svalbard, 78° 97’ N
12°51’ E) at 120 m depth and a water temperature
between 2 and 3 °C. They were kept at 3.3–3.8 °C in the
facilities of the Tromsø Aquaculture Research Station, in
Kårvik (Norway) until late April 2013 when they were
transported to the aquarium facilities of the Alfred
Wegener Institute (AWI) in Bremerhaven (Germany),
where they were kept at 5 °C, 32 PSU and ambient
PCO2 until the start of the incubation.
Juvenile Northeast Arctic cod (NEAC) were caught in

late August 2013 in several locations off Western
Svalbard during RV Heincke cruise HE408 in Rijpfjorden
(80° 15.42' N 22° 12.89' E), Hinlopenstretet (79° 30.19' N
18° 57.51' E), and Forlandsundet (78° 54.60' N 11° 3.66'
E) at 0–40 m depth and water temperatures between 3.5
and 5.5 °C using a pelagic midwater trawl in combin-
ation with a fish lift [62]. The specimens were trans-
ported to the AWI facilities in Bremerhaven (Germany),
where they were kept at 5 °C, 32 PSU and ambient
PCO2 until the start of the incubation.

Incubation
Polar cod incubation started in June 2013 and of NEAC
in May 2014. After at least 4 weeks of acclimation to la-
boratory conditions (5 °C, 32 PSU and ambient PCO2),
individuals from both species were housed in single
tanks and randomly allocated to the temperature and
PCO2 incubation set-up with a 12 h day/night rhythm.
The respective PCO2 conditions were pre-adjusted in a
header tank containing ~200 l of seawater. Virtually
CO2-free pressurized air and pure CO2 were mixed by
means of mass flow controllers (4 and 6 channel MFC
system, HTK, Hamburg, Germany) to achieve the
desired PCO2. Temperature was adjusted by 1 °C per
day for each group starting from 5 °C. PCO2 in the high
PCO2 group was adjusted within 1 day after the incuba-
tion temperature was reached. The animals were kept
under incubation conditions for 4 months and fed ad
libitum with commercial pellet feed (Amber Neptun,
5 mm, Skretting AS, Norway) every fourth day [61]. The
sampling of Polar cod and NEAC took place after 4 days
of fasting, due to sampling and experimental logistics
three to six individuals of Polar cod and four to eight
individuals of NEAC were sampled in one batch. Because
of a failure in the power supply the group incubated at 3 °C
and high PCO2 died before the mitochondrial capacity
could be investigated.
Average length and weight, as well as the number of

the specimens per treatment at the time of sampling are
given in Table 1.

CO2 and carbonate chemistry
Temperature, salinity, DIC and pH (total scale) were mea-
sured once to twice a week in triplicates in order to moni-
tor the seawater chemistry of the incubation. Temperature
and salinity were measured with a WTW LF 197 multi-
meter (WTW, Weilheim, Germany). pH was measured
with a pH meter (pH 3310, WTW, Weilheim, Germany)
calibrated with thermally equilibrated NBS-buffers
(2-point-calibration). The pH-values were then cor-
rected to pH Total scale using pH-defined Tris-Buf-
fer (Batch 4, Marine Physical Laboratory, University
of California, San Diego, CA, USA).
DIC was measured by a Seal QuAAtro SFA

Analyzer (800 TM, Seal Analytical, Mequon, United
States of America). Calculations of the carbonate sys-
tem were conducted using CO2sys [63], applying the
K1, K2 constants after Mehrbach et al. [64], refitted
after Dickson and Millero [65] and using KHSO4 dis-
sociation constants after Dickson [66] assuming a
pressure of 10 dbar.
Complete summaries of the seawater parameters and

raw data for both species are available from the Open
Access library PANGAEA [67, 68].
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Preparation of permeabilised cardiac fibres
Fish were anaesthetized with 0.2 g l−1 tricaine methane
sulphonate (MS222) and killed by a spinal cut behind
the head plate. Hearts were rapidly excised and washed
with ice-cold modified relaxing buffer BIOPS (2.77 mM
CaK2EGTA, 7.23 mM K2EGTA, 5.77 mM Na2ATP,
6.56 mM MgCl2, 20 mM taurine, 15 mM Na2-phospho-
creatine, 20 mM imidazole, 0.5 mM dithiothreitol, 50 mM
MES, 220 mM sucrose, pH 7.4, 380 mOsmol l−1; modified
after [69]). Hearts were then separated in fibres and placed
in 2 ml ice-cold BIOPS containing 50 μg ml−1 saponin and
gently shaken on ice for 20 min. Fibres were then washed
three times for 10 min in 2 ml ice-cold modified mitochon-
drial respiration medium MIR05 (0.5 mM EGTA, 3 mM
MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM
KH2PO4, 20 mM HEPES, 160 mM sucrose, 1 g l−1 bovine
albumine serum, pH 7.4, 380 mOsmol l−1) [29, 69].
Directly before experimentation, a subsample of about

10 mg fibres was blotted dry, weighed and introduced
into the oxygraph sample chambers.

Mitochondrial respiration
Mitochondrial respiration was recorded using Oroboros
Oxygraph-2 k™ respirometers (Oroboros Instruments,
Innsbruck, Austria) and measured as weight-specific
oxygen flux [pmol O2 (mg fresh weight sec)−1] calculated
in real time using Oroboros DatLab Software 5.2.1.51
(Oroboros Instruments, Innsbruck, Austria).
All analyses were performed at the respective incubation

temperatures, with cO2 in a range from ~370 nmol ml−1

(100% air saturation) to 100 nmol ml−1 and PCO2 at
atmospheric levels.

A substrate-uncoupler-inhibitor titration (SUIT) protocol
was used on the permeabilised cardiac fibres to investigate
the partial contributions of the single components of the
phosphorylation system [69]). NADH - Coenzyme Q oxi-
doreductase (Complex I, CI) and Succinate dehydrogenase
(Complex II, CII) substrates (10 mM glutamate, 2 mM
malate, 10 mM pyruvate and 10 mM succinate) were
added. Saturating ADP (3 mM) was added to stimulate
oxidative phosphorylation (OXPHOS). Cytochrome c
(10 μM) was added to test the integrity of the outer mem-
brane. Respiration state IV+ was measured by addition of
atractyloside (0.75 mM) or oligomycin (6 μM) (for Polar
cod and NEAC respectively) and step-wise (1 μM each) ti-
tration of carbonyl cyanide p-(trifluoromethoxy) phenyl-
hydrazone (FCCP) was used to uncouple mitochondria
(ETS). Complex I, Complex II and Coenzyme Q – cyto-
chrome c reductase (Complex III, CIII) were inhibited by
the addition of rotenone (0.5 μM), malonate (5 mM) and
antimycin a (2.5 μM), respectively. Lastly the activity of
the Cytochrome c oxidase (Complex IV, CIV) was
measured by the addition of the electron donor couple
ascorbate (2 mM) and N,N,N1,N1-tetramethyl-p-phenyl-
enediamine (TMPD, 0.5 mM).
All chemicals were obtained from Sigma-Aldrich

(Germany).

Data analysis
Mitochondrial respiration rates are expressed per mg fresh
weight of cardiac fibres and the values are given as
means ± S.E.M. OXPHOS coupling efficiency was cal-
culated as [(OXPHOS-State IV+) OXPHOS−1] after
Gnaiger [70].

Table 1 Total length, body weight and number of fish (n) used for testing cardiac mitochondrial respiration in Polar cod (B. saida)
and NEAC (G. morhua)

Acclimation Species

B. saida G. morhua

Total length (cm) Body weight (g) n Total length (cm) Body weight (g) n

0 °C control 15.28 ± 0.37 22.88 ± 2.05 5 - - -

0 °C high 14.30 ± 0.64 19.22 ± 2.61 6 - - -

3 °C control 15.62 ± 0.98 27.16 ± 6.25 3 20.04 ± 0.92 60.84 ± 9.81 5

3 °C high - - - 21.61 ± 0.46 78.19 ± 6.91 8

6 °C control 15.73 ± 0.21 25.21 ± 1.14 6 - - -

6 °C high 17.52 ± 0.61 32.17 ± 2.90 5 - - -

8 °C control 15.18 ± 0.72 20.52 ± 2.56 6 23.26 ± 1.75 99.04 ± 22.13 5

8 °C high 15.07 ± 0.47 18.76 ± 1.11 4 21.51 ± 0.82 80.51 ± 10.46 8

12 °C control - - - 22.70 ± 0.80 98.70 ± 13.14 6

12 °C high - - - 23.42 ± 0.72 100.75 ± 9.22 8

16 °C control - - - 21.56 ± 0.69 81.48 ± 9.37 4

16 °C high - - - 24.27 ± 1.91 133.13 ± 31.87 6

“control” and “high” indicate control (400μatm) and high (1170μatm) CO2 concentrations. Values are given as means ± S.E.M
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Normal distribution of the data was assessed by
Shapiro-Wilk test and homoscedasticity was evaluated
by F-test or Bartlett test in case of two or more groups,
respectively. Differences between PCO2 treatments
within the same temperature treatment were evaluated
by Student’s t-test (with Welch’s correction in case of
non-homoscedastic data). Differences across tempera-
tures in the same PCO2 treatment were evaluated with
one-way ANOVA followed by Tukey’s test for the com-
parison of means.
The level of statistical significance was set at p <0.05

for all the statistical tests.
All statistical tests were performed using R 3.2.0 and

the “stats” package [71].

Results
The maximal oxidative phosphorylation capacity
(OXPHOS) of permeabilised heart fibres of both species
is shown in Fig. 1. In Polar cod, the groups incubated
under control PCO2 showed significantly lower
OXPHOS flux in the 0 °C acclimated fish than in all fur-
ther incubation groups (3 °C, p = 0.007; 6 °C, p = 0.007;
8 °C, p = 0.001). Mitochondrial respiration was at a
similar level in the groups incubated at 3, 6 and 8 °C
(p >0.05). High PCO2 levels did not affect OXPHOS,
with no differences between the OXPHOS of the
groups incubated at the two PCO2 levels within a
temperature treatment (p >0.05). The groups incubated
under high PCO2 displayed fluxes that were similar at 6
and 8 °C (p >0.05) but significantly higher than in the 0 °C
incubated group (p = 0.04, Fig. 1a).
Temperature had a significant effect on the OXPHOS

of NEAC, with fluxes increasing with incubation
temperature (control PCO2: F = 4.74, p = 0.02; high

PCO2: F = 3.78; p = 0.02, Fig. 1b). Moreover, the 16 °C/
high PCO2 incubated group showed a lower OXPHOS
compared to the 16 °C/control PCO2 group (p = 0.03).
This resulted in a more evident plateauing of OXPHOS
between 12 and 16 °C in the group incubated under high
PCO2. Comparing the two species, Polar cod had signifi-
cantly higher OXPHOS capacities than NEAC at both
3 °C (p = 0.01, Fig. 1 blue box) and 8 °C (control PCO2:
p = 0.04; high PCO2: p = 0.04, Fig. 1 red box).
In both species, state IV+ was sensitive to temperature

(Fig. 2): in Polar cod it remained unchanged in the
groups incubated at 0, 3 and 6 °C (p >0.05) but was sig-
nificantly higher in animals incubated at 8 °C compared
to the other incubation groups (6 to 8 °C/control PCO2:
p = 0.01; 6 to 8 °C/high PCO2: p = 0.04) as shown in
Fig. 2a. Quantifying State IV+ as a percent fraction of
OXPHOS, it was close to 20% and thus lowest in the 3 °C
and 6 °C groups of B. saida, while at 0 and 8 °C the frac-
tion of State IV+ exceeded these values about two-fold as
shown in Fig. 3.
In NEAC, State IV+ increased along with incubation

temperature (control PCO2: F = 5.96; p = 0.02, high
PCO2: F = 12.43; p <0.001) as depicted in Fig. 2b, how-
ever, State IV+ increased under high PCO2 at 8 °C
compared to the group incubated under control PCO2

at the same temperature (p = 0.02). Fractional values of
State IV+ in OXPHOS (Fig. 3) for the groups incubated
under present levels of CO2 revealed values close to 20%
in the groups incubated to 3 and 8 °C and two-fold
higher values after incubation to 12 and 16 °C. In the
groups incubated under high PCO2, State IV+ of the
group incubated at 8 °C showed values similar to the
groups incubated to 12 and 16 °C (Fig. 3). In consequence,
sensitivity to CO2 varied with incubation temperature and

Fig. 1 Maximal oxidative phosphorylation capacity (OXPHOS) of permeabilised heart muscle fibres of (a) Polar cod (B. saida) and (b) NEAC (G.
morhua). Different letters within panels indicate significant differences (p <0.05) between temperature treatments; lower case letters: control PCO2

(400μatm), upper case letters: high PCO2 (1170μatm), * indicates significant differences (p <0.05) between CO2 groups at the same temperature. All
values are reported as means ± S.E.M. (for n refer to Table 1). Open symbols: control PCO2 (400μatm), filled symbols: high PCO2 (1170μatm). Circles:
Polar cod, Squares: NEAC. Blue box: cold shared incubation temperature (3 °C), Red box: warm shared incubation temperature (8 °C) between the
two species
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was maximal but with opposite effects at 8 °C (stimulation
of state IV+ above controls) and 16 °C (depression of
OXPHOS below controls at 16 °C).
OXPHOS coupling efficiency in Polar cod under control

PCO2 was maximal in the group incubated to 3 °C (0.82 ±
0.02), and decreased at 8 °C to values comparable to the
0 °C group (control PCO2: 0.61 ± 0.03, high PCO2:
0.58 ± 0.05), mainly because of increased State IV+ at
8 °C (Fig. 2, 3 and 4). In NEAC (Fig. 4b), the
OXPHOS coupling efficiency was maximal at 8 °C
and control PCO2 (0.81 ± 0.02) and minimal at 16 °C
(0.64 ± 0.06). In the groups incubated under high
PCO2, the maximum of OXPHOS coupling efficiency
fell to 3 °C (0.77 ± 0.03) and reached its minimum at
8 °C (0.46 ± 0.08) to rise again at 12 °C and 16 °C
(0.58 ± 0.05 and 0.56 ± 0.05, respectively). However,
these changes in OXPHOS coupling efficiency were
not significant (control PCO2: F = 5.27; p = 0.82, high

PCO2: F = 9.7886, p = 0.072). At 8 °C, the OXPHOS
coupling efficiency was significantly lower under high
PCO2 than in the control PCO2 group (p = 0.003).
Comparing the OXPHOS coupling efficiency between
the two species, NEAC and Polar cod showed similar
values in the 3 °C/control PCO2 group (Fig. 4 blue
box) and at 8 °C/high PCO2 (p >0.05, Fig. 4 red box),
while the coupling efficiency was higher in NEAC incu-
bated at 8 °C/control PCO2 than in Polar cod incubated
under the same conditions (p <0.001, Fig. 4 red box).
The thermal sensitivity of Complex IV also differed

between the two species (Fig. 5). In Polar cod, Com-
plex IV capacity rose from 0 to 6 °C (control PCO2:
F = 67.29, p <0.001) and decreased between 6 °C and
8 °C (control PCO2: p <0.001). This trajectory was
only present as a non-significant trend in the groups
incubated under high PCO2 (F = 3.88, p = 0.10) be-
cause of the non-significant decrease of the mean

Fig. 2 State IV* of permeabilised heart muscle fibres of (a) Polar cod (B. saida) and (b) NEAC (G. morhua). Different letters within panels indicate
significant differences (p <0.05) between temperature treatments; lower case letters: control PCO2 (400μatm), upper case letters: high PCO2

(1170μatm), * indicates significant differences (p <0.05) between CO2 groups at the same temperature. All values are reported as means ± S.E.M.
(for n refer to Table 1). Open symbols: control PCO2 (400μatm), filled symbols: high PCO2 (1170μatm). Circles: Polar cod, Squares: NEAC. Blue box:
cold shared incubation temperature (3 °C), Red box: warm shared incubation temperature (8 °C) between the two species

Fig. 3 Percentage of oxygen consumed by State IV+ in relation to OXPHOS in permeabilised heart muscle fibres of Polar cod (B. saida, panel a)
and NEAC (G. morhua, panel b). Different letters within the panels indicate significant differences (p <0.05) between temperature treatments;
lower case letters: control PCO2 (400μatm), upper case letters: high PCO2 (1170μatm), * indicates significant differences (p <0.05) between CO2

groups at the same temperature. All values are reported as means ± S.E.M. (for n refer to Table 1). Open symbols: control PCO2 (400μatm), filled
symbols: high PCO2 (1170μatm). Circles: Polar cod, Squares: NEAC. Blue box: cold shared incubation temperature (3 °C), Red box: warm shared
incubation temperature (8 °C) between the two species
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capacity of Complex IV at 6 °C/high PCO2 compared
to control PCO2 at the same temperature (p = 0.09).
In NEAC, Complex IV capacity increased with increasing
temperatures in the groups incubated under control PCO2

(F = 3.25, p = 0.05), but not in the groups incubated under
high PCO2 (F = 2.18, p = 0.12). At 16 °C, the capacity of
NEAC Complex IV was lower under high PCO2 (p =0.099)
than under control PCO2. Comparing the two species, the
capacity of Complex IV was similar (non-significant
differences) in all shared treatments (3 °C/control
CO2, 8 °C/control CO2 and 8 °C/high CO2: p >0.05,
Fig. 5 blue and red boxes).

Discussion
Our study shows differences in mitochondrial metabolism
between a cold-adapted Arctic and a cold-acclimated sub-
Arctic fish from the same area, potentially leading to

differences in acclimation capacities to ocean acidification
and warming.
Mitochondria from permeabilised heart fibres appeared

to be affected mainly by the incubation temperature while
high levels of CO2 significantly affected mitochondrial res-
piration only in NEAC (Gadus morhua) and mainly at the
highest investigated temperature (16 °C). NEAC OXPHOS
and Complex IV capacities decreased under elevated CO2

at high temperature, although the latter only as non-sig-
nificant trend. This suggests that the noxious effects
of high PCO2 are stronger at the upper end of the
thermal window and might affect the heat tolerance
of NEAC [2, 17]. Furthermore, proton leak at 8 °C
was higher in the group incubated under high PCO2

than in the control PCO2 group, indicating that over-
all mitochondrial efficiency might be affected through
alterations of membrane characteristics. Elevated
PCO2 is reported to inhibit Citrate Synthase and

Fig. 4 OXPHOS coupling efficiency in permeabilised heart muscle fibres of (a) Polar cod (B. saida) and (b) NEAC (G. morhua). Different letters
within panels indicate significant differences (p <0.05) between temperature treatments; lower case letters: control PCO2 (400μatm), upper case
letters: high PCO2 (1170μatm), * indicates significant differences (p <0.05) between CO2 groups at the same temperature. All values are reported
as means ± S.E.M. (for n refer to Table 1). Open symbols: control PCO2 (400μatm), filled symbols: high PCO2 (1170μatm). Circles: Polar cod, Squares:
NEAC. Blue box: cold shared incubation temperature (3 °C), Red box: warm shared incubation temperature (8 °C) between the two species

Fig. 5 Complex IV (Cytochrome c Oxidase) capacity. Panel a: permeabilised heart muscle fibres of Polar cod (B. saida). Panel b: permeabilised
heart muscle fibres of NEAC (G. morhua). Different letters within the panels indicate significant differences (p <0.05) between temperature
treatments; lower case letters: control PCO2 (400μatm), upper case letters: high PCO2 (1170μatm). All values are reported as means ± S.E.M. (for n
refer to Table 1). Open symbols: control PCO2 (400μatm), filled symbols: high PCO2 (1170μatm). Circles: Polar cod, Squares: NEAC. Blue box: cold
shared incubation temperature (3 °C), Red box: warm shared incubation temperature (8 °C) between the two species
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Complex II in mammals and fish [40, 72, 73] with
subsequent stimulation of the mitochondrial anaplero-
tic pathways to overcome this inhibition [40, 74]. The
difference in sensitivity of the two species to elevated
levels of CO2 could be related to differences in pref-
erential metabolic pathways, with Polar cod (Boreoga-
dus saida) relying more than NEAC on anaplerotic
pathways that feed directly into Complex I such as the
oxidation of glutamate, pyruvate or palmitoyl carnitine
[40, 73]. Further investigation, especially at the genetic
level is needed. Furthermore, it is still unknown whether
and to what extent elevated PCO2 might alter the mem-
brane characteristics and contribute to proton leak.
In Polar cod, OXPHOS of the groups incubated at

3-6-8 °C was higher at the respective incubation
temperature than OXPHOS of the 0 °C treatments
while the OXPHOS coupling efficiency was highest in
the 3 °C group and lowest in the 0 and 8 °C groups.
This indicates an optimum temperature for ATP pro-
duction efficiency between 3 and 6 °C. At lower and
higher temperatures, the increased proton leak in
relation to OXPHOS created a less favourable ratio
between ATP produced and oxygen consumed. These
findings match those by Drost et al. [75], where heart
rate of acutely warmed Polar cod increased until a
first Arrhenius breakpoint at 3 °C. Heart rate still in-
creased further but at a lower rate until 8 °C, passing
a second break temperature. In our study, 8 °C corre-
sponds to the highest rate of proton leak, and lowest
Complex IV capacity, implying a direct participation
of mitochondria in the thermal responses of the
heart. The close similarity between the data from the
acute study of Drost et al. [75], our 4-months incuba-
tion study and a study on behavioural thermal prefer-
ence from Schurmann and Christiansen [76] indicates
preferred temperatures of 3–6 °C within a thermal
gradient from 0 to 8 °C for Polar cod, suggesting that
Polar cod have only limited abilities to acclimate to
higher temperatures.
In contrast, NEAC OXPHOS continued to increase

with long-term incubation temperatures to even above
those experienced within the natural habitat. This ap-
pears to occur without compromising OXPHOS coup-
ling efficiency and reveals a higher acclimation potential
than Polar cod, in line with the overall distribution area
of Atlantic cod from temperate to (sub-) Arctic waters.
This apparent plasticity is in line with the findings by
Zittier et al. [77] in which NEAC specimens acclimated
to 15 °C displayed critical temperatures (Tc, defined as
the onset of the anaerobic metabolism, cf. Frederich &
Pörtner [78]) about 10 °C higher than specimens kept at
ambient temperature (4 °C). In Polar cod, the high pro-
ton leak at 8 °C is the main cause of reduced mitochon-
drial efficiency (OXPHOS coupling efficiency). This

increase in proton leak can be caused by loss of mem-
brane integrity in response to changes in membrane flu-
idity [7, 79]. In a previous study, Martinez et al. [80]
found increased proton permeability of the inner
mitochondrial membrane of the Antarctic silverfish
Pleuragramma antarcticum after warming. In addition,
Strobel et al. [40] found that this may be due to an un-
changed saturation index of the mitochondrial membrane,
observed in liver of the Antarctic Notothenia rossii after
warm acclimation. These findings suggest a limited ability
of Antarctic stenothermal fish to acclimate to temperature
changes. Similar patterns may constrain acclimation of
cold-adapted Arctic fish. The decreased capacity of Com-
plex IV at 8 °C in Polar cod implies that the interactions be-
tween the inner membrane and embedded enzymes may
also be affected by high temperatures [80, 81]. In NEAC,
proton leak was lower than in Polar cod and reached 40%
of OXPHOS at 12 °C, while in Polar cod the same relative
values were found at 8 °C under control PCO2. A strong
thermal response of proton leak may reflect high
temperature sensitivity of the organism [52, 82–84], and
thus a higher baseline proton leak combined with its
steeper increase upon warming may point towards a stron-
ger degree of cold adaptation in Polar cod.
The findings in this study contrast earlier results ob-

tained in isolated mitochondrial suspensions where
mitochondria remained fully functional beyond whole
organism heat limits [82, 85]. The present findings sug-
gest that mitochondria may display wider thermal limits
in suspensions than when embedded in permeabilised fi-
bres. Mitochondria in permeabilised fibres may still
interact with other cellular organelles and are thus inte-
grated into a more complex system than are isolated
mitochondria. These considerations suggest that thermal
tolerance is more constrained in permeabilized fibres
than in isolated mitochondria. Such findings may thus
be in line with the assumed narrowing of thermal win-
dows once molecular and mitochondrial functions are
integrated into larger units up to whole organism [86].
While the experiment was carried out at non-limiting
PO2 in the media (>100 nmol ml−1) [87], diffusion gradi-
ents of oxygen and/or other substances within the per-
meabilised cardiac fibres may cause this hierarchy in
thermal constraints. In a study on growth, mortality and
standard metabolic rates (SMR) of the same Polar cod
and NEAC as examined in this study, Kunz et al. [61]
found higher SMR in Polar cod than in NEAC at the
same incubation temperatures. This is mirrored in the
mitochondrial respiration presented in this study, where
OXPHOS capacity in Polar cod was larger than in
NEAC at both 3 and 8 °C. In Polar cod, the SMR of the
3 and 6 °C groups were lower than in the groups incu-
bated at 8 °C, which is mirrored in the pattern of cardiac
State IV+ respiration. At 8 °C the OXPHOS coupling
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efficiency (i.e. ATP production efficiency) decreased as
State IV+ increased and the capacity of Complex IV de-
creased. Maybe these findings indicate decreased cardiac
mitochondrial efficiency that may limit cardiac function
and promote heart failure, which is consistent with a
drop in cardiac function [75] and the onset of heart fail-
ure in Polar cod at 8 °C. At this temperature, oxygen de-
mand and mortality increased, and growth decreased in
this species [61]. In fact, the estimated decrease in ATP
production efficiency at 8 °C was paralleled by a re-
duced feed conversion efficiency and concomitant in-
crease in SMR. This likely indicates a shift in energy
allocation due to an impaired balance between energy
production and demand, e.g. due to increased mito-
chondrial proton leak (see [88] for review). According
to these findings, 8 °C is close to the long-term upper
thermal tolerance limit for the Svalbard population of
Polar cod, which is again in line with the observed in-
creased mortality [61].
In NEAC, the parallel rise of whole organism SMR

and cardiac fibre OXPHOS and the parallel decrease of
OXPHOS and SMR at high PCO2 compared to controls
at 16 °C indicates that cardiac mitochondrial function is
adjusted to the level of whole animal energy demand at
different incubation temperatures and that the effects of
high PCO2 are greatest close to the upper thermal limit.
Thermal constraints setting in at whole animal level may
again relate to the thermal sensitivity of cardiac mito-
chondrial function [28, 29, 32, 33]. The fact that first
performance limitations are observed in the 16 °C/high
PCO2 incubation may not be of direct relevance for the
Svalbard stock of NEAC over the next century, but
marks a potential southern distribution limit for the
Barents Sea and Norwegian Sea.
Polar cod is a cold adapted species and the constraint

on cardiac mitochondrial metabolism at 8 °C, concomi-
tant with increased mortality indicates that the animal’s
thermal window matches its current habitat temperature
range. In contrast, adult NEAC show the ability to
broaden their thermal window beyond the present sub-
Arctic habitat temperatures (see above). Because of the
habitat temperature range of the two species is similarly
wide but shifted to lower temperatures in Polar cod,
combined with the high metabolic baseline cost (SMR)
of Polar cod the two species may be classified as cold-
adapted (Polar cod) or cold-acclimated (NEAC)
eurytherms. NEAC appear to be much more plastic than
Polar cod, thus, Polar cod may be more vulnerable to
future ocean conditions than NEAC.

Conclusions
Future ocean acidification and warming may impair car-
diac mitochondrial function of Polar cod (Boreogadus
saida) and Northeast Arctic cod (NEAC, Gadus

morhua) in somewhat different ways. In Polar cod, high
temperature (8 °C) increases proton leak and thereby de-
creases ATP production efficiency, while high CO2 levels
did not have a significant effect. In NEAC, mitochon-
drial respiration remained functional at higher tempera-
tures, but capacity was depressed by the combination of
high temperature and high PCO2. Furthermore, in
NEAC, incubation temperature leads to variable mito-
chondrial response patterns under elevated PCO2. The
causes of the different responses to elevated PCO2 in the
heart of these two species remain to be identified, for ex-
ample, the role of anaplerotic pathways and their regula-
tion should be further investigated.
As a result of the degree of cold adaptation, Polar cod

display high metabolic maintenance costs (indicating that
it is cold-eurythermal) and low acclimation capacity, while
NEAC is cold acclimated and benefits from a lower rate of
metabolism and a higher plasticity to acclimate to increas-
ing temperature. As a consequence, mitochondrial func-
tion of NEAC hearts may be less constrained by rising
temperatures than Polar cod, indicating that NEAC could
outperform and possibly replace Polar cod in the waters
around Svalbard if ocean warming and acidification further
increase towards the conditions predicted for the end of
the century (8 °C and 1170μatm PCO2). Since Polar cod
has a key role in Arctic ecosystems [48], temperature
driven changes in the distribution of this species can be an
important component in the impacts of climate change
on Arctic ocean ecosystems.
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